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HIGHLIGHTS

• Recent progress in Zn–air batteries is critically reviewed.

• Current challenges of rechargeable Zn–air batteries are highlighted.

• Strategies for the advancement of the anode, electrolyte, and oxygen catalyst are discussed.

• Future research directions are provided to design commercial Zn–air batteries.

ABSTRACT Zinc–air batteries (ZABs) are gaining attention as an 
ideal option for various applications requiring high-capacity batteries, 
such as portable electronics, electric vehicles, and renewable energy 
storage. ZABs offer advantages such as low environmental impact, 
enhanced safety compared to Li-ion batteries, and cost-effectiveness 
due to the abundance of zinc. However, early research faced challenges 
due to parasitic reactions at the zinc anode and slow oxygen redox 
kinetics. Recent advancements in restructuring the anode, utilizing 
alternative electrolytes, and developing bifunctional oxygen catalysts 
have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and 
achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter 
lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and 
reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. 
The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.
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1 Introduction

The intermittent nature of renewable energy sources neces-
sitates efficient energy storage solutions. This has spurred 
research and widespread adoption of renewable energy sys-
tems, including the development of rechargeable batteries 
driven by rising demand for electric vehicles (EVs) and 
Internet of Things (IoT) sensors [1, 2]. At present, lithium-
ion batteries (LIBs) are the leading rechargeable battery 
technology available in commercial applications, including 
EVs, portable electronics, and medical devices [3, 4]. How-
ever, researchers are seeking alternatives to LIBs due to their 
high cost, low energy density, and toxicity [5]. In contrast 
to other metals, zinc (Zn) boasts a notably lower price ($2.6 
per kg) compared to lithium (Li) ($20 per kg), along with 

a compact ion radius (0.74 Å) that complements its high 
energy density. The superior features of ZABs relative to 
other batteries are illustrated in Fig. 1. Zinc–air batteries 
(ZABs) have garnered attention as a promising alternative 
due to their compelling attributes, including impressive 
theoretical energy densities of 1218 Wh  kg−1 (gravimetric) 
and 6136 Wh  L−1 (volumetric) [6, 7], eco-friendliness of 
harnessing power from Zn and atmospheric oxygen, and 
their compact form factor attributed to the air cathode, and 
significantly low operating cost of < $10  kW−1  h−1 [8]. His-
torically, primary ZABs found commercial use in the nine-
teenth century for hearing, navigation, medical, and railroad 
signal applications, owing to their high energy density. Fur-
thermore, zinc’s inherent low reactivity and robust stabil-
ity in aqueous electrolytes position it for sustained cyclic 

Fig. 1  a Theoretical specific energies, volumetric energy densities, nominal cell voltages, and properties for various metal anodes, b schematic 
diagram of a ZAB, and c comparison of the theoretical specific energies, safety, stability, reversibility in aqueous media, and affordability of 
metal–air batteries [22, 23]
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operation in rechargeable applications [9–11]. In fact, prior 
to the ubiquity of LIBs, ZABs were proposed as the future 
power source for electric vehicles (EVs) [7, 10, 12].

In the past few decades, substantial progress in the devel-
opment of electrode materials, electrolytes, interfacial sci-
ence, and model designs of rechargeable ZABs. However, 
achieving stable electrochemical operation is the main obsta-
cle for the commercialization of rechargeable ZABs. The 
fundamental challenges such as high polarization and fast 
degradation of the air cathode, low interfacial compatibil-
ity and stability of the electrolyte, and poor electrochemi-
cal irreversibility of the Zn anode must be resolved to get 
stable operation of rechargeable ZABs [1, 13–16]. Thus, the 
rational design of individual components and device systems 
is essential to achieve a satisfactory performance in sustain-
able ZABs. The deeper understanding of the electrocatalytic 
oxygen reduction/evolution reaction (ORR/OER) of the air 
cathode, electrolyte, Zn anode, and electrolyte/electrode 
interface stability is needed as it exerts a great influence 
on the reaction kinetics, performance, etc., of rechargeable 
ZABs. In addition, maintaining the electrochemical interface 
stability is the key to ensuring the long-term stable operation 
of ZABs [17–21].

Many studies have highlighted the potential of ZABs 
as a promising alternative to conventional rechargeable 
batteries with assessments covering the entire system or 
specific components [24–27]. However, to shed light on 
recent research activities, it is crucial to provide an over-
view of the current progress and remaining challenges for 
state-of-the-art ZABs especially with respect to the design 
principles of key materials and their structure–property 
relationship at the atomic level. In recognition of this, we 
aim to provide an up-to-date overview of the rapidly evolv-
ing field of ZABs issues such as Zn anode stabilization, 
oxygen electrocatalysts design, relevant reaction mecha-
nisms, interface design of air cathodes, and electrolyte/
electrode interfacial behaviors. Additionally, we provide 
a brief correlation of Zn electrode, electrolyte, separator, 
and air electrode for both primary and rechargeable ZABs, 
along with their configuration and operation. We compre-
hensively discuss new concepts of electrocatalysts such as 
perovskite oxide-based, carbon-based, and hybrid or mixed 
for mechanically rechargeable ZABs, and flexible ZABs. 
This review then concludes with a summary and future 
directions for ZAB development.

2  Fundamentals, Working Principle, 
and Mechanism of Rechargeable ZABs

The various forms of electrically rechargeable ZABs are illus-
trated in Fig. 2. The conventional planar configuration was 
designed to achieve a high energy density, while flow bat-
teries for realizing high cycle numbers and operational life-
times. Flexible ZABs are particularly important for portable 
electronic devices needing high energy–density and flexible 
designs [28]. Figure 2a illustrates a usual planar configuration 
of rechargeable ZAB consisting of four essential components: 
(i) a Zn electrode; (ii) an air electrode consisting of a gas dif-
fusion layer (GDL), current collector, and bifunctional oxygen 
electrocatalyst; (iii) a liquid electrolyte; and (iv) a separator. 
In the laboratory, plastic plates, chambers, and gaskets are 
widely used to simplify the battery assembly. In Fig. 2b, gel 
electrolytes are used in place of liquid electrolytes in planar 
batteries. Typically, these gel electrolytes are based on conduc-
tive hydrogels.

Figure 2c is commonly used rechargeable ZABs with a 
liquid electrolyte reservoir between the Zn and air electrodes 
that is refilled to improve runtime and battery life. Refresh-
ing the electrolyte can slow the deterioration of Zn electrode 
and eliminate carbonate precipitates in air electrode [29, 30]. 
Figure 2d shows a flexible battery arrangement suitable for 
portable systems [31–34]. The planar electrodes and solid-
state electrolyte can bend and twist without damage [35, 36]. 
These can also take on different shapes including a coaxial 
cable design for flexible batteries [37, 38].

The working principles of primary ZABs remain the same 
across the different configurations. A conventional ZAB is 
composed of an alkaline electrolyte, a negative Zn electrode, 
a membrane separator, and a positive air electrode as shown 
in Fig. 2a. Oxidation of Zn produces soluble zincate ions 
(Zn(OH)4

2−) during battery discharge, which then transform 
into insoluble zinc oxide when supersaturated in the electrolyte 
[12, 39]. The reactions are as follows:

Negative Zn electrode reactions:

Positive air electrode reaction:

(1)Zn + 4OH−
→ Zn(OH)2−

4
+ 2e−

(2)Zn(OH)2−
4

→ ZnO + H2O + 2OH−

(3)O2 + 4e− + 2H2O → 4OH−
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Overall reaction:

Parasitic reaction in the Zn electrode:

Poisoning of the electrolyte:

When Zn and water react, hydrogen gas production as 
well as oxidation occurs on the negative electrode. This 
phenomenon is called a parasitic reaction, which results in 
gradual corrosion and efficiency reduction of Zn metal. Oxy-
gen in the air diffuses via the porous gas diffusion electrode, 
which acts as a positive electrode, where it is reduced on 
the electrocatalyst surface when it comes into direct contact 

(4)2Zn + O2 → 2ZnO

(5)Zn + 2H2O → Zn(OH)2 + H2

(6)
KOH + CO2 → KHCO3 or 2KOH + CO2 → K2CO3 + H2O

with the electrolyte [40]. Interestingly, at the air electrode 
of ZABs, hydroxide ions are the main product of the ORR. 
This process is analogous to the ORR that occurs in alkaline 
hydrogen fuel cells [41, 42], and in fact the electrode design 
and catalyst materials for these energy conversion systems 
are identical. As such, several interesting ORR catalysts have 
been used in fuel cells that could also be applied to ZABs 
[43–46].

Recharging ZABs involves reversible electrochemical 
processes, resulting in Zn metal plating on the negative elec-
trode and oxygen evolving from the positive electrode. Zn 
is highly active and can be plated in an aqueous electrolyte, 
but the discharge product zincate is highly soluble and often 
escapes the negative electrode area, leading to low cycla-
bility. An incomplete reversal of zincate during recharging 
can cause electrode shape changes and dendrite formation, 

Fig. 2  Four common rechargeable ZAB configurations: a a planar battery with an aqueous electrolyte, b a planar battery with a gel electrolyte, 
c a flow battery, and d a flexible battery. Reproduced with permission from [28]. e Illustration of intermediates in the ORR and OER processes. f 
Theoretical ORR and OER volcano plots of overpotential based on the scaling relationships [50]. Copyright 2023, Wiley
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which can reduce battery performance or even cause a short 
circuit [47, 48]. Zn metal electrodes are also concerned with 
parasitic hydrogen evolution reaction (HER)-mediated cor-
rosion and uneven deposition of zincate ion (Eq. 5). These 
issues can lead to reduced cycling stability of the cell or even 
a short circuit if Zn dendrites penetrate the battery separa-
tors. In addition, the electrolyte could evaporate or be diluted 
with extended usage depending on the relative humidity of 
the surrounding environment. Alkaline electrolytes can react 
with ambient  CO2 (Eq. 6), leading to salt precipitate forma-
tion that can eventually clog the porous framework of the air 
electrode [28, 39]. Thus, research efforts are necessary to 
develop electrolytes and optimize the interaction of electro-
lyte–electrodes aiming to improve the overall performance 
of ZABs. In contrast, the ORR and OER of the air cathode 
also affect equally the energy efficiency, power density, and 
durability of the rechargeable ZABs. Due to the complex 
multi-electron reaction process and slow kinetics of the ORR 
and OER processes, the energy efficiency of the battery is 
generally reduced to 55–65%, which poses a great challenge 
to the scalability of rechargeable ZABs. Therefore, develop-
ment of high-performance bifunctional oxygen electrocata-
lysts by analyzing its reaction pathway is very important for 
the advancement of rechargeable ZABs [49]:

2.1  Mechanisms of ORR

The cathodic ORR proceeds via two main pathways in alka-
line electrolytes. In one type, bidentate oxygen molecules 
are adsorbed on the active site (*) and then undergo a direct 
four-electron  (4e−) path to generate  OH−, which is a widely 
accepted faster reaction pathway (Fig. 2e). The reaction 
steps are as follows [50]:

The other involves two  2e− pathways with the adsorption 
of  O2 molecules at the top, producing  H2O2 as an intermedi-
ate species. The ORR proceeding with this reaction pathway 
is relatively slow. The reaction equation is as follows.

(7)∗ +O2(g) + H2O (l) + e− →∗ OOH + OH−(aq.)

(8)∗ OOH + e− →∗ O + OH−(aq.)

(9)∗ O + H2O(l) + e− →∗ OH + OH−(aq.)

(10)∗ OH + e− →∗ +OH−(aq.)

A clear understanding of the adsorption energy of oxy-
gen intermediates at each reaction step is a prerequisite for 
searching ORR/OER bifunctional catalysts.

2.2  Mechanisms of OER

The OER reaction pathway of ZABs is opposite to the four-
electron path of the ORR (Fig. 2e). Recently, transition 
metal oxides such as rutile and tremolite have been exten-
sively studied for OER, and the free energies of oxygen 
intermediates have been systematically investigated. The 
free energy and active site requirements of ORR and OER 
are different, making it difficult for a catalyst to exhibit two 
excellent electrochemical properties at the same time. A 
bifunctional volcano model built on the scaling relationship 
between the free energies of the oxygen intermediates in the 
ORR and OER processes is shown in Fig. 2f. In the volcano 
diagram, the ORR triangle undergoes the reduction steps of 
*OH (ΔG1) and  O2 (ΔG4), while the OER region undergoes 
the generation of *OH (ΔG2) and *OOH (ΔG3). Therefore, 
the ΔGOH values required to reach the summit of the ORR 
and OER volcanoes are not the same. Adjusting the ΔGOH 
value of the catalyst to obtain optimal ORR activity will 
result in the loss of optimal OER activity and vice versa. 
Thus, maintaining the tops of the OER and ORR volcanoes 
as close to each other as possible according to the scaling 
relationship is pivotal for designing efficient bifunctional 
catalysts for ZABs [50, 51].

3  Challenges and Progress on Basic 
Components of ZABs

ZABs technology has a long way to go to overcome the 
challenges and make it commercially viable. ZABs typi-
cally have a short lifetime due to the deactivation of the air 
catalyst during charging, resulting in low current density 
and high overpotential values. High potentials lead to oxi-
dation and corrosion of the oxygen electrocatalyst. In addi-
tion, the porous structure of the air electrode is too fragile 
to withstand gas evolution (OER) during charging, leading 
to mechanical degradation of the electrode material and loss 

(11)O2(g) + H2O(l) + 2e− → HO2
− + OH−(aq.)

(12)HO2
− + H2O (l) + 2e− → 3OH−(aq.)
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of activity, which ultimately leads to battery degradation. In 
addition, the formation of dendrites and unwanted parasitic 
reactions leading to HER (Eq. 5) significantly reduce the 
moisture level of the electrolyte, leading to corrosion of the 
zinc electrode and reduced battery life. Similarly, the elec-
trolyte causes technical problems such as ionic conductiv-
ity, increased Zn solubility (reducing the available active 
surface of the Zn anode), and electrolyte evaporation, all of 
which limit the practical usability of rechargeable (ZAB) 
batteries. At the same time, atmospheric carbon dioxide  CO2 
interacts with electrolyte species to form carbonate deposits 
that interfere with ionic conductivity and block air diffu-
sion pathways at the air electrode surface. Therefore, vari-
ous research experiments need to be conducted to explore 
catalytically active materials, suitable electrode structures, 
electrolyte compositions, and Zn anode materials to improve 
the round-trip efficiency and power output of rechargeable 
ZABs [1, 52].

3.1  Anode Materials

Improving the reversibility of the Zn anode and alleviating 
issues such as dendrite formation, passivation, hydrogen 
evolution, and corrosion have been critical areas of focus in 
enhancing the lifetime of ZABs. Zn electrodes, constructed 
from plates, foil, or compressed particles, have recently 
been replaced by three-dimensional (3D) porous structures 
to improve their surface area and inhibit dendrite forma-
tion through direct contact with the electrolyte. Parker et al. 
[53] achieved a Zn utilization rate of almost 90% in a pri-
mary ZAB using a 3D Zn electrode with interconnected Zn 
domains and a monolithic void space. Another study [54] 
compared compressed powder-type Zn with 3D Zn elec-
trodes and found that ZnO deposition occurred uniformly 
within the void/space of the 3D Zn electrode, allowing it to 
be cycled more than 100 times at 40% discharging. However, 
it should be noted that the high surface area of 3D Zn elec-
trodes may lead to corrosion and HER, reducing battery life.

Innovative designs based on coatings or composite 
design via alloying or chemical coating have emerged as 
effective strategies to improve the reversibility of Zn anode 
[55, 56]. Sun et al. utilized a simple displacement reaction 
to construct a homogeneous and densely structured Cu/
Zn composite anode, which can be converted into a CuZn/
Zn composite during cycling and improves the corrosion 

resistance of zinc anodes [57]. Chen et al. used in situ reduc-
tion and self-alloying processes to coat a CuxZny alloy layer 
on Zn foil anode, which can act as a nucleating agent to 
protect the growth of zinc dendrites resulting in enhanced 
electrochemical performance of ZABs [58]. Jo et al. [55] 
achieved 91.5% corrosion inhibition efficiency and 99.5% 
retention in discharge capacity of a primary ZAB using a 
Zn-Bi alloy. Aremu et al. [59] demonstrated dendrite-free 
cycling and high capacity without passivation in a second-
ary battery using a Zn anode coated with bismuth oxide, 
potassium sulfide, and Pb (II) oxide additives. In addition, 
metal coating using aluminum oxide  (Al2O3), copper oxide 
(CuO), and titanium oxide (TiO), etc., have been found to 
improve the ZABs performance by forming a protective 
anodic layer and suppressing spontaneous side reactions 
[60–63]. Zhang et al. [64] synthesized ZnO@TiNxOy core/
shell nanorods using atomic layer deposition as an anode, 
where the  TiNxOy coating effectively reduced the dissolu-
tion of Zn, lowered the internal resistance and facilitated the 
charge transfer (Fig. 3a − e). The ZAB using thin  TiNxOy 
coating showed a stable discharge capacity of 508 mAh  g−1 
over 7500 cycles by efficiently blocking heavier zincate mol-
ecules while allowing  OH− and  H2O molecules to perme-
ate through the anode. Zhang et al. [65] fabricated PVA@
SO4

2− receptor–ZnMoO4 with SEI-like structure coating 
to stabilize Zn surfaces (Fig. 3f). The SEI-like structure 
of  SO4

2− receptor (SR) enhanced the dispersion of counte-
rion  Zn2+ to inhibit dendrite formation. And the inorganic 
 ZnMoO4 as protective layer suppresses dendrites and side 
reactions. As shown in Fig. 3g, h, modified Zn cell indicated 
improvement of charge/discharge capacity compared with 
pristine Zn regarding smaller potential gap of redox peak 
representing smaller electrochemical polarization and higher 
reactivity and smaller semicircle representing rapid charge 
transfer. Moreover, the modified Zn cell represents over 90% 
specific capacity retention, whereas pristine Zn shows only 
59% cyclic retention after 1000 cycles at 1 A  g−1 (Fig. 3i).

Organic anode coatings are more cost-effective, easily 
fabricated, environmentally friendly, and controllable than 
inorganic coatings. Extensive research has been conducted 
on organic additives including polyvinyl alcohol (PVA), 
polyacrylonitrile (PAN), and polyaniline (PANI) hydrogels, 
inhibiting the self-discharge and corrosion of ZABs [66, 67]. 
Zhang et al. used a polymer binder to encapsulate Zn metal 
and create a stable 3D ZnO/PVA/β-CD/PEG composite elec-
trode that significantly reduced anode distortion with > 80 
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cycles [68]. Moreover, organic additives can behave as 
impurities and insulators, improving battery impedance [63]. 
However, organic additives can reduce the specific energy 
of batteries and increase weight and cost. Consequently, it 
is necessary to select them carefully and optimize the anode 
composition.

Typically, the use of additives can reduce the specific 
energy of a battery and increase its weight and cost, thus 
it is essential to select additives carefully and optimize the 
anode composition. Inorganic and organic anode additives 
produce a protective layer similar to SEI that hinders electro-
lyte access and immobilizes zincate ions, thereby reducing 
parasitic anodic reactions [69, 70]. Despite some progress, 
there have been limited studies on anode additives, making 
it difficult to identify the mechanisms and effects of each 

additive, particularly with respect to specific materials. 
Thus, a more systematic analysis is needed to understand 
how different coating materials affect the degradation and 
battery stability.

The structural design and composition optimization of Zn 
electrodes has been extensively studied to achieve the excel-
lent activity of ZABs. Morphology alteration of the anode is 
a strategy to enhance its activity and reduce deformation. An 
excessively porous structure can adversely affect electrode 
resistance and the corrosion rate, but fine-tuning can pro-
mote mass transport and electrochemical activity by increas-
ing the surface area. Recently, researchers have reported that 
Zn anodes with a porous and sponge-like 3D architecture 
can be produced, which has the potential to increase their 
reversibility. Moreover, ZABs with sponge-like electrodes 

Fig. 3  a Zn dissolution (mmol  L−1) in a 4 M KOH solution. b Scanning electron microscopy (SEM) micrographs of uncoated ZnO and ZnO@
TiNxOy anode before and after the charging process. c X-ray diffraction patterns for ZnO nanorods and a ZnO@TiNxOy anode before and after 
the charging process. d Electrochemical impedance spectroscopy (EIS) results and the related equivalent circuit for uncoated ZnO and a ZnO@
TiNxOy  nanorod anode. Reproduced with permission from [64]. e Cycling performance of ZnO@TiNxOy nanorod anode (2  mg   cm−2) with 
200 cycles ALD at 0.5 C charge and 2 C discharge rates in beaker cell with 10 mL ZnO saturated 4 M KOH electrolyte. The cutoff voltages are 
1.4/2 V. One dot every five data points. Produced with permission from [64]. f Cycling performance of bare Zn and PVA@SR-ZnMoO4 SEI-like 
structure coating modified Zn. g CV curves at 0.1 mV  s−1. h EIS curves before cycling. i Long-term cycling performance at 1.0 A g.−1. Pro-
duced with permission from [65]
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can be employed in wearable devices due to their compress-
ibility and mechanical flexibility. Lin et al. demonstrated 
that electroplating a porous Zn anode at 500 Hz resulted in 
a doubled specific surface area and a 60% increase in power 
density [71]. In a study by Pan et al. [72], a sponge-like 
anode was formed by electrodeposition of Zn nanosheets 
on N-doped carbon foam, resulting in a high mechanical 
strength, a power density of 260 mW  cm−2, and a low volt-
age gap of 0.657 V at 5 mA  cm−2. Additionally, the eutec-
tic-composition alloying, 3D printing, and gradient design 
is an effective strategy to substantially tackle side reaction 
and severe dendrite growth of zinc anode, leading to rapid 
capacity fading and short lifespan of rechargeable ZIBs. 
For instance, Wang et.al. reported the lamellar structure, 
composed of alternating zinc and aluminum nanolamel-
las, which delivered dendrite-free zinc stripping/plating for 
more than 2000 h, high energy density and 100% capacity 
retention of ZABs after 200 h of cycling [73]. Zhang et.
al constructed 3D Ni–Zn anode with multi-channel lattice 
structure and super-hydrophilic surface by combining 3D 
printing and electroless plating/electroplating techniques 
which induced the uniform deposition of Zn without Zn 
dendrite growth and highly reversible Zn plating/strip-
ping with satisfactory coulombic efficiency [74]. Cao et.al. 
reported an imprinted gradient zinc electrode that prohibited 

side reactions between the electrolyte and the zinc anode 
and suppressed dendrite growth. The resulting imprinted 
gradient zinc anode was cycled stably for 200 h at a high 
current density/capacity of 10 mA  cm−2/10 mAh  cm−2 by 
outperforming the none-gradient counterparts [75]. Thus, 
structural design and composition optimization strategy can 
be a promising way for dendrite-free ZABs at high current 
densities and high capacities. Table 1 summarizes recent 
optimization strategies for Zn anodes in ZABs.

3.2  Electrolytes

ZABs usually use alkali electrolytes such as KOH and NaOH 
to optimize the activity of both air and Zn electrodes. KOH 
is preferred over NaOH for several reasons, including its 
high ionic conductivity, larger oxygen diffusion coefficient, 
and low viscosity [84]. Since carbonate precipitation is a 
major issue for ZABs, and the use of KOH can alleviate this 
by forming more soluble products (e.g.,  K2CO3 or  KHCO3) 
than their Na counterparts.

Significant advancements have been made in the develop-
ment of alkaline electrolytes (Table 2), which are the most 
commonly used type in ZABs; however, Zn electrodes still 
face corrosion, surface passivation, and dendrite forma-
tion during cycling in ZABs [54]. The volatilization and 

Table 1  Zn anodes used for the construction of ZABs

Structural assessment and electro-
lyte

Anode Specific 
capacity 
(mAh  g−1)

Discharge/
charge voltage 
gap (V)

Cyclic performance References

Hard carbon (HC), 1 M Zn(OTf)2 rGO-SnCu/Zn –  ~ 0.7 1200 h
@ 0.25 mA  cm−2

[76]

Zn surface modification, 2 M 
 ZnSO4 + 0.2 M  MnSO4

Zn-AgNWs 243.9 0.76 800 cycles@0.6 A  g−1 [61]

Bottom cell, 2 M Zn(SO4)2 + 0.1 M 
 MnSO4

Zn@ZrP 132.4 – 780 h
@ 0.5 mA  cm−2

[77]

3D zinc anode, 1 M  ZnSO4 + 1 M 
KCl

Ag-modified Cu foam 676 1.02 80 cycles, 2 h
@ 25 mA  cm−2

[78]

Coin cell, 3 M  ZnSO4 + 0.1 M 
 MnSO4

Zn-Sb3P2O14 111.7 – 450 h @ 10 mA  cm−2 [79]

3D porous framework, 6 M KOH Zn anode 812 0.63 33 cycles
@ 5 mA  cm−2

[80]

Coin cell, 6 M KOH and 0.2 M 
Zn(AC)2

Ti3C2Tx-protected Zn – 0.6 400 cycles
@ 5 mA  cm−2

[81]

Carbon cloth (CC) cathode, 2 M 
 ZnSO4,

Zn@ZIF8 158 – 750 h @ 1.0 mA  cm−2 [82]

Layered structure, 6 M
KOH + 0.2 M Zn(Ac)2 + S ZnO 

aqueous solution

Tin-coated copper foam (CF@Sn) 800 – 5220 h @ 10 mA  cm−2 [83]
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toxicity of alkaline electrolytes due to  CO2 also restrict 
the charge–discharge efficiency and lifespan of ZABs. To 
overcome these, acidic/neutral electrolytes are proposed to 
increase the reversibility of Zn anodes [85, 86]. However, 
these systems have drawbacks such as low coulombic effi-
ciency due to the secondary reactions associated with Zn 
deposition and hydrogen evolution and the development of 
dendrites on the Zn anode, leading to a low cycling life and 
rapid discharging. Thus, finding effective and cost-effective 
electrolytes for practical applications is urgently needed. 
Non-aqueous ionic liquids (ILs) have shown great poten-
tial in this regard, as multiple studies have demonstrated 
their ability to eliminate ZAB dendrites and improve their 
electrochemical properties [87–89]. Ma et al. [90] reported 
ZABs with enhanced properties, including suppression of 
HER and Zn dendrites, using  [EMIm]BF4-Zn(BF4)2 as the 
electrolyte and a cobalt hexacyanoferrate (CoHCF) cathode 

(Fig. 4a–c). The high ionic conductivity of IL-based elec-
trolytes was responsible for the ultrahigh rate performance 
of the as-fabricated ZIBs, with a capacity retention of 98% 
(40,000 cycles) and an excellent coulombic efficiency of 
100% without a loss of capacity (Fig. 4d, e).

The rapid innovation of wearable devices has increased 
the demand for reliable, flexible, and stretchable energy 
systems. Metal-air batteries, particularly highly safe ZABs, 
have attracted significant research interest due to their large 
specific and volumetric energy densities. However, their 
performance significantly deteriorates below 0 °C due to 
their lower electrolytic ionic conductivity and slow kinet-
ics related to the ORR and OER on the air cathode surface 
during the charge–discharge processes. Thus, gel polymer 
electrolytes (GPEs) hold promises as a viable option to 
enhance ion transport in ZABs, thereby improving their 
electrochemical performance even in low temperatures 

Table 2  Summary of recently described electrolytes for ZABs

NAC N-doped active carbon, NF Nickel foam, CP Carbon paper, CC Carbon cloth, DMSO Dimethyl sulfoxide

Electrolyte composition 
(type)

Electrode materials Specific capacity (mAh 
 gzn

−1)
Power density Cyclic performance References

6 M KOH + 0.2 M zinc 
Acetate (alkaline)

Zinc plate//Co–Co3O4@
NAC@NF

721 @10 mA  cm−2 164 mW  cm−2

@0.63 V
35 h@10 mA  cm−2 [97]

6 M KOH + 0.2 M zinc 
Acetate (alkaline)

Zinc foil//Co3O4−x@CP 800 @5 mA  cm−2 122 mW  cm−2

@230 mA  cm−2
150 h@5 mA  cm−2 [98]

7 M KOH + 5–20% v/v
DMSO
(alkaline)

Zinc granules//MnO2@NF 550 @10 mA  cm−2 130 mW  cm−2

@150 mA  cm−2
600 cycles@discharge
@75 mA  cm−2

[99]

6 M KOH + 0.2 M  ZnCl2 
(alkaline)

Zinc plate//Pt–SCFP@CC 781 @10 mA  cm−2 122 mW  cm−2

@214 mA  cm−2
80 h@5 mA  cm−2 [100]

8 M KOH + 0–50% v/v
Ethanol (alkaline)

Zinc granules//MnO2@NF 470 @25 mA  cm−2 32 mW  cm−2

@30 mA  cm−2
– [101]

6.0 M KOH + 0.2 M 
Zn(OAc)2 polyacryla-
mide/montmorillonite 
(PAM/MMT) (GPE)

ZAB-Mn-SAC 631 30 mW  cm−2 29 h@2.0
mA  cm−2

[102]

KOH + DMSO + poly(2-
acrylamido-2-methyl-
propanesulfonic acid)/
polyacrylamide (PAMPS/
PAAm) (GPE)

Organohydrogel electrolyte 
(OHE)-based ZAB

562 21.8 mW  cm−2 45 h@2.0
mA  cm−2

[103]

Polyacrylic acid 
(PAA) + polyacrylamide 
(PAM) in glycerol (GPE)

Zn anode// carbon cloth 
cathode containing Pt/C 
and  RuO2

506.2 8.2 mW  cm−2 10 h @ 1.0 mA  cm−2 [104]

PAM-CNF/KOH/KI (GPE) cable-type ZAB 743 10 mW  cm−2 45 h @ 2 mA  cm−2 [105]
poly(2-acrylamido-2-meth-

ylpropanesulfonic acid 
potassium salt) (PAMPS-
K) + methyl cellulose 
(MC) (GPE)

Zinc plate //  Co3O4 nano-
particle/CC

754.2 54.2 mW  cm−2 24 h @ 1 mA  cm−2 [106]
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Fig. 4  a Three-electrode configuration-based cyclic voltammetry (CV) curves for prepared Zn-ion battery in various electrolytes, b  H2 evolu-
tion according to the number of cycles measured at 0.5 mA  cm−2, c surface morphology of Zn foil after 300 cycles measured at 0.5 mA  cm−2, 
d cyclic stability and coulombic efficiency at an applied current density of 4 A  g−1 for 40,000 cycles, and e rate performance. Reproduced with 
permission from [90]
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(Table 2). Additionally, GPE can suppress the growth of Zn 
dendrites and the solubilization of active ingredients. These 
electrolytes prevent liquid leakage and simplify the produc-
tion of ZABs by combining the functions of the separator 
and electrolyte into a single component.

Water loss is another problem of performance degrada-
tion in open system ZABs, and frequent addition of water 
is inevitable. GPE has been found to reduce water loss, 
improving the battery’s capacity and service life. Hydro-
ponic gel, which can hold 20–100 times its weight in liq-
uid, was investigated by Othman et al. as a gelling agent to 
immobilize KOH electrolytes for ZABs [91]. Subsequently, 
Mohamad et al. produced a battery containing 6 M KOH/
hydroponic gel with a specific capacity of 657.5 mAh  g−1 
(789 W  kg−1) [92]. Yang et al. [93] produced a GPE using 
polyethylene oxide (PEO) and PVA with suitable ionic con-
ductivity, electrochemical stability, and mechanical strength 
for solid-state ZABs. Similarly, Zhu et al. [94] synthesized a 

GPE at room temperature by polymerizing acrylate, KOH, 
and  H2O, which had a specific conductivity of 0.288 S  cm−1. 
This GPE was successfully used in the laboratory to achieve 
performance nearly identical to that of an aqueous alkaline 
solution in Zn–air, Zn–MnO2, and Ni–Cd batteries. Fu et al. 
[95] developed a rechargeable, flexible ZAB using a GPE 
and prefabricated battery components of different sizes and 
shapes to meet the requirements of various applications. An 
optical photograph, a diagram of the entire device, and a 
cross-sectional scanning electron microscopy (SEM) image 
are displayed in Fig. 5a. To create the battery, a PVA-gelled 
electrolyte was laminated between the air electrode, which 
consisted of a bifunctional catalyst-loaded carbon cloth, and 
the Zn film electrode. The battery contained a Zn electrode 
film (Fig. 5b), a bifunctional catalytic air electrode (Fig. 5c), 
and a porous PVA-gelled electrolyte membrane (Fig. 5d). To 
test the battery performance, a  LaNiO3/NCNT composite 
was used to measure the energy density with the current 

Fig. 5  a Flexible, solid-state rechargeable ZAB illustrated using a photograph of its bending ability (top), a cross-sectional SEM image (bot-
tom), and a schematic diagram of its structure (right). b Optical photograph of the freestanding Zn electrode film. c Optical photograph of 
the bifunctional catalytic air electrode using  LaNiO3/NCNT. d Optical photograph of porous PVA-gelled electrolyte membrane. e Comparative 
analysis of the energy and current density for an all-solid-state ZAB prepared using the bifunctional catalyst  Co3O4 and a  LaNiO3/NCNT-based 
air electrode. f Specific capacity curves for the prepared ZABs as a function of the Zn film thickness. Reproduced with permission from [95]. g 
Scheme displaying the preparation of flexible a ZAB using a porous PVA nanocomposite-based GPE. h GCD curves for ZABs using different 
electrolytes at 3 mA  cm−3 and 20 min per cycle. i Assembled ZABs used as a power source for various electronic devices. Reproduced with per-
mission from [96]
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density (Fig. 5e). The cell using the  LaNiO3/NCNT compos-
ite demonstrated a considerably higher energy density than 
that containing  Co3O4 nanoparticles (NPs) due to the syn-
ergistic behaviors of  LaNiO3 and NCNT, resulting in higher 
catalytic activity. This approach is solid-state, versatile, and 
simplifies ZAB production compared to aqueous electro-
lytes. However, challenges remain, such as low mechanical 
strength, high impedance at the electrode–electrolyte inter-
face, and low ionic conductivity.

Initially, increasing the thickness of Zn film in the bat-
tery would pose issues, including reduced contact between 
Zn particles and electrolytes, increased diffusion resistance, 
and battery polarization, resulting in a loss in energy den-
sity. However, as indicated in Fig. 5f, batteries with varying 
Zn film thicknesses exhibited similar potential and specific 
capacity measurements until around 80% of a full discharge. 
Batteries with denser Zn films experienced a minor capacity 
loss in voltage reduction when completely discharged due 
to increased production of zinc oxide, which raises the Zn 
film’s internal resistance. Nevertheless, the 60-µm-thickness 
Zn film battery provided a capacity almost three times higher 
than that of the 20-µm due to the collaborative action of the 
gelled-PVA membrane and 3D Zn electrode in increasing 
Zn electrode accessibility to the electrolyte, which results in 
a weaker diffusion polarization and stable specific capacity 
(Fig. 5f, inset). The proposed battery exhibited a high energy 
density of 2905 Wh  L−1, indicating its potential as an alter-
native to commercially available bendable Zn-MnO2 batter-
ies and LIBs.

Fan et al. [96] reported a flexible ZAB with a high ionic 
conductivity GPE and enhanced electrolyte retention. Fig-
ure 5g depicts the manufacturing process of the porous PVA-
based nanocomposite GPE. First, a polymer membrane was 
obtained by gelling a mixture of PVA, polyethylene glycol 
(PEG), and  SiO2 powder (0, 1, 5, or 9 wt%), after which the 
pore-inducing agent was dissolved in ethanol. The obtained 
polymer membrane was then immersed in a highly alkaline 
KOH (6 M) solution. Next, the laminated structure of the 
ZAB was created using Zn foil and an electrocatalyst-loaded 
air electrode. The practical performance of the as-prepared 
GPE was tested by constructing a flexible ZAB configura-
tion in which the GPE was placed between commercially 
available  Co3O4-loaded carbon cloth and Zn foil. Figure 5h 
presents the galvanostatic charge–discharge (GCD) curves 
for three ZAB solid-state devices containing pure PVA, 
porous PVA, and the GPE as electrolytes. The ZAB with the 

highly conductive GPE (with porous PVA and 5 wt%  SiO2) 
exhibited superior rechargeability, with cycling stability over 
144 cycles (48 h). For this performance, two pre-assembled 
ZABs were connected in series, enclosed in aluminum plas-
tic films with ventilation holes (Fig. 5i). The two ZABs con-
nected as a power source to a mobile phone, electric fan, 
LED screen, and LED watch, achieving a high open-circuit 
voltage (OCV) of 2.54 V. The ZABs also showed high stabil-
ity without significant potential change under various bend-
ing angles.

3.3  Separators

ZABs utilize separators as physical barriers to ensure a safe 
distance between the Zn and air electrodes. They must be 
electrically resistant, highly conductive to ions, and elec-
trochemically stable within the potential operating window. 
They also need to be mechanically robust to prevent short 
circuits caused by Zn dendrites. Porous polymer films such 
as polyethylene (PE), polyamide, and polypropylene (PP) 
have been used as separators in ZABs due to their ability to 
retain electrolytes while allowing for rapid  OH− transport. 
However, these separators have many drawbacks in liquid 
electrolytes such as electrolyte evaporation, severe Zn cor-
rosion, high zincate crossover, and zinc dendrite formation, 
leading to a decline in efficiency of ZABs [107]. The surface 
functionalization strategies such as surface treatment with 
cationic or nonionic surfactants, sulfonation are effective in 
improving the hydrophilicity, electrolyte uptake capacity, 
and the  OH− transport. For example, sulfonated non-woven 
PP/PE separators exhibited higher hydrophilicity, resulting 
in double ionic conductivity when used in alkaline electro-
lytes [108, 109]. ZABs prepared using sulfonated separators 
have also demonstrated a power density of 27–38 mW  cm−2. 
Inorganic polymer-based separators exhibit superior ther-
mal stability compared with the organic counterpart. Saputra 
et al. [110] developed a ZAB by dip-coating the Zn electrode 
in a 5-μm MCM-41 membrane. The device structure was 
further enhanced by incorporating a commercially available 
air electrode in KOH. The prepared ZAB exhibited a power 
density of 32 mW  cm−2 with a remarkable energy density of 
300 Wh  L−1. Its performance was found to be comparable 
with commercially available Zn–air button cells of similar 
sizes. Other approaches to consider involve utilizing com-
mercially available PP membrane coatings that incorporate a 
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copolymer synthesized from two IL monomers, allowing for 
anionic exchange [111]. Alternatively, impregnating Nafion 
with agents that repel anions has also been explored [112]. 
While modified separators offer extended battery life, the 
widespread adoption is hindered by the expensive nature 
of Nafion and ILs. To enhance ionic conductivity and ion 
selectivity of separators, more cost-effective approached are 
needed.

3.4  Air Electrodes

An air electrode consists of three key components: an active 
layer, a GDL, and a current collector. Commonly, porous 
carbon materials combined with a wet-proofing binder such 
as polytetrafluoroethylene (PTFE) are used as the GDL [39]. 
The catalytic active layer, responsible for both the ORR and 
OER, consists of carbon materials, bifunctional catalysts, 
and the binder [113]. The GDL acts as an oxygen channel, 
providing a large hydrophobic surface area for air contact 
while preventing electrolyte leakage [12, 114]. The current 
collector, typically made of conductive metal mesh, such as 
Ni foam or stainless steel, is positioned between the active 
layer (which covers the current collector surface and inter-
acts with the electrolyte) and GDL (which faces the open air) 
[115–117]. During the ORR process, the gaseous phase of 
oxygen is preferred due to its limited solubility and diffusiv-
ity in the electrolyte. Consequently, the air electrode’s high 
surface area provides a boundary between the gas (air), liq-
uid (electrolyte), and solid (catalyst) [118]. Hence, air elec-
trodes benefit from a 3D porous structure. Recently, inno-
vative bifunctional catalysts have demonstrated enhanced 
performance in air cathodes, showing excellent efficiency, 
economic viability, and low pollution levels [119, 120]. 
However, the issue of catalyst and carbon substrate cor-
rosion requires attention. Specifically, the reactive oxygen 
generated during OER can significantly damage and oxidize 
the catalyst and carbon material, primarily due to the larger 
surface area of carbon substrate [121].

The air electrode plays a crucial role in determining the 
overall performance of a battery as it facilitates the kinet-
ics of oxygen reaction. The slow reaction kinetics of the 
air electrode during the ORR and OER contribute to the 
high polarization and poor electrode reversibility of ZABs. 
Thus, there has been significant interest in designing effi-
cient bifunctional oxygen catalysts to accelerate the reaction 

kinetics and reduce charge/discharge overpotential, thereby 
improving battery performance. Spin regulation of catalyti-
cally active sites is the pioneering strategy in boosting oxy-
gen reaction activity of catalyst [122]. Recently, Li et al. 
synthesized spin regulated heteroatom-doped amorphous 
transition metal sulfides (i.e., Mo-doped CoS) via a one-
step hydrothermal process. The spin state of  Co2+ was suc-
cessfully modulated to the low-spin state, which optimized 
the adsorption free energy of various intermediates thereby 
enhancing the oxygen reduction reaction kinetics. The fabri-
cated ZABs also delivered good cycle stability (over 100 h), 
a high discharge voltage (1.25 V under 0.5 A), and a supe-
rior overall mass-energy density (93 Wh  kg−1), providing 
new insight into the design of efficient catalysts for oxygen 
electrocatalysis [123]. Various materials, including metal 
oxides, metal hydroxides, metal sulfides, carbon materials, 
and their composites, have been extensively explored as 
potential bifunctional oxygen electrocatalysts.

4  Design of Air Catalysts

Bifunctional oxygen electrocatalysts with high activity and 
robust stability are essential for practical ZAB devices. In 
general, oxygen electrocatalysis takes place at the gas  (O2)/
solid (catalyst)/liquid (electrolyte) three-phase interface, and 
its intrinsic activity is closely related to the unsaturated coor-
dination sites at the solid catalyst interface. Therefore, con-
trolling the local electronic structure and surface/interface 
properties through unique design strategies is particularly 
important to optimize the adsorption/desorption behavior of 
intermediates, lower the energy barrier, and accelerate the 
kinetic process of ORR and OER reaction. In addition, the 
conductivity, number and intrinsic electrochemical activity 
of the active sites of ORR and OER catalysts are also impor-
tant factors in achieving good performance of ZAB. Theo-
retically, the intermediate absorption energy barrier can be 
used to evaluate the intrinsic catalytic activity of an electro-
catalyst. Several surface, near-surface, and interfacial engi-
neering strategies have been explored to tune the electronic 
structure and binding energy of ZAB electrocatalysts. These 
strategies have deepened the understanding of the activity 
enhancement mechanism and provided important insight for 
the construction of high-efficiency bifunctional air cathode 
catalysts [16, 124]. In this section, various oxygen electro-
catalyst engineering strategies including bifunctional oxygen 
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electrocatalysts, perovskite oxides electrocatalysts, carbon-
based electrocatalysts, and hybrid or mixed electrocatalysts 
are systematically described with typical examples of each 
design strategy which could provide in-depth understanding 
of the role of micro/nanostructure, surface, and electronic 
features of the air cathode in accelerating the kinetics of air 
electrocatalysts for high-speed ZAB.

4.1  Bifunctional Oxygen Electrocatalysts

Despite the impressive electrocatalytic activity demonstrated 
by noble metal-based electrocatalysts like Ru, Ir, and Pt for 
the ORR and OER [125–127], the high manufacturing costs, 
limited lifespan, and inadequate bifunctional oxygen activity 
have hindered their use in rechargeable ZABs. As an alter-
native, there has been recent exploration of transition metal 
oxides, sulfides, phosphides, and carbon materials as highly 
efficient alternative materials [128–134]. Transition metal 
oxides (TMOs), especially cobalt oxides, have gained atten-
tion for their earth abundance, stable nature, and excellent 
bifunctional activity [32, 135, 136]. However, cobalt oxides 
still have limited electrocatalytic oxygen activity due to a 
scarcity of active sites and lower intrinsic activity of oxygen 
generation and dissociation [137]. To address this, porous 
nanostructures and the N doping of cobalt oxides have been 
proposed as effective approaches to increase active sites and 
enhance oxygen adsorption [138, 139]. Notably, the produc-
tion of N-doped cobalt oxides necessitates high temperatures 
(> 600 °C) [136] or hazardous ammonia sources [140, 141], 
leading to challenges such as severe aggregation, structural 
breakdown, and environmental pollution problems [142].

Wang et al. [143] synthesized porous nanoarrays consist-
ing of N-doped cobalt oxide over carbon cloth (NP-Co3O4/
CC) (Fig. 6a). The leaf-like vertically aligned nanoarrays 
on the carbon cloth substrate with the formation of abun-
dant pores indicated on surface morphology of NP-Co3O4/
CC (Fig. 6b). The diffraction rings presented in the SAED 
pattern were attributed to the lattice planes of  Co3O4. Vari-
ous facets of  Co3O4 formed, which are indicated by planes 
(400), (311), (220), and (111) in the TEM images (Fig. 6c). 
Moreover, the ZIF-derived porous nanosheets of cobalt 
oxide resulted in NP-Co3O4 with a surface area of 173 
 m2  g−1, significantly greater than some previous works on 
porous cobalt oxides. The prepared NP-Co3O4/CC provided 
a highly effective cathode alternative, better than Pt/C + Ir/C 

air electrodes in terms of less overpotential, a higher power 
density (~ 200 mW  cm−2), and a slight voltage drop after 
cycling for 400 h (Fig. 6d, e).

Wang et al. [144] proposed highly porous N-doped car-
bon matrix with copper–cobalt diatomic sites (Cu–Co/
NC) for bifunctional (ORR/OER) oxygen electrocatalysts 
(Fig. 6f). The coexistence of  CuN4 and  CoN4 coordination 
boosted electrocatalytic activity. From the practical test of 
home-built ZAB setup, Cu–Co/NC delivered maximum 
peak power density of 295.9 mW  cm−2 compared with 
Pt/C +  RuO2 electrocatalyst for 92.6 mW  cm−2 (Fig. 6g). 
The specific capacity and zinc utilization of Cu-Co/NC are 
694 mAh  g−1 and 85% at 20 mA  cm−2, whereas 628.6 mAh 
 g−1 and 77% for Pt/C +  RuO2 at same conditions (Fig. 6h). 
There is no voltage drop during galvanostatic discharge at 
20 mA  cm−2 for 45 h and successfully operating LED device 
(Fig. 6i). Moreover, Cu–Co/NC demonstrates small voltage 
gap of 0.68 V over 510 h during 1000 charge–discharge 
cycles with negligible voltage decay (Fig. 6j).

Nanostructured manganese oxides  (MnOx) have also been 
employed as active metal catalysts for the ORR and OER 
due to their abundance, multiple oxidation states (MnO, 
 MnO2, and  Mn2O3), large surface area, and higher electro-
catalytic activity [145, 146]. Gorlin et al. [147] found that 
 MnOx is effective as a bifunctional catalyst, demonstrating 
electrode oxygen activity that is comparable with that of 
benchmark noble metal catalysts. Kim et al. [148] studied 
a Ni-doped  Mn2O3 catalyst, showing a half-wave potential 
of ~ 0.801 V with a power density of 88.2 mW  cm−2 for 
the prepared ZAB. Moreover, Li et al. [149] prepared Fe-
doped hollow yolk-shelled  Mn3O4 nanoboxes, resulting in 
a half-wave potential of 0.78 V for the ORR with a specific 
capacity of 740 mAh  g−1. However, despite its potential as 
an effective catalyst for the ORR and OER, the practical 
application of  MnOx in long-life batteries is hindered by its 
low conductivity and instability [150].

Spinel oxides  (AB2O4) have gained significant attention 
recently as bifunctional oxygen electrocatalysts due to 
their low toxicity, modifiable ion arrangement, and lower 
cost [151]. In particular, the presence of donor–acceptor 
adsorption sites can increase the catalytic activity of oxygen 
by facilitating the adsorption/desorption of reversible 
oxygen species in materials with mixed valences [152]. 
Doping  AB2O4 with a third metal can also produce a more 
effective electronic structure, leading to stronger overall 
performance. For example, Liu et  al. [153] deployed a 
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Fig. 6  a Scheme showing the preparation of NP-Co3O4/CC and associated reaction mechanisms. b SEM micrographs for NP-Co3O4/CC. c HRTEM 
images for NP-Co3O4. d Battery voltage and power density and e Galvanostatic discharge–charge cycling curves at 5  mA  cm.−2 of aqueous rechargea-
ble ZABs with the NP-Co3O4/CC and Pt/C   +  Ir/C catalyst as the air electrode, respectively. Produced with permission from [143]. f Synthetic scheme 
of Cu-Co/NC. g Discharge polarization curves and the corresponding power densities. h Specific capacities of zinc–air batteries at different discharge 
current densities. i Long-term durability of primary zinc–air battery with Cu-Co/NC catalyst. j Galvanostatic discharge/charge cycling curves (the 
inset shows the round-trip efficiency of zinc–air battery at first 10 cycles and last 10 cycles). Produced with permission from [144]
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solvothermal technique to produce a  ZnCoMnO4/N-reduced 
graphene oxide (rGO) electrocatalyst. The Zn doping 
resulted in Co–N electronic interactions and consequently 
more favorable binding energies in  ZnCoMnO4/N-rGO for 
 O2 and  H2O, which in turn produced outstanding ORR and 
OER performances.

Spinels have the potential to catalyze both the ORR and 
OER (Fig. 7a) due to the presence of both tetrahedral and 
octahedral sites inside the structure [154]. As such, tuning 
the oxidation states or oxygen vacancies is possible via the 
rational partial substitution of tetrahedral or octahedral sites 
within the crystal lattice. Recently, researchers have reported 
the development of nano-sized  NiCo2O4 and its nanocom-
posites, particularly those containing N-doped carbon nano-
structures [155–157]. The abundance of edge active sites in 
1D morphologies such as carbon nanotubes (CNTs) and car-
bon nanofibers improves electrochemical metrics and leads 
to longer stability when combined with  NiCo2O4. Similar 
outstanding results have been achieved when CNTs are 
combined with spinels derived from other transition metals 
(e.g., Co, Fe, Mn, and Zn). Zhao et al. [126] demonstrated a 
facile strategy based on oxidative thermal treatment. Using 
this strategy, the residual Mn and Co oxide NPs embed-
ded within the N-doped CNTs were transformed into spinel 
Mn-Co oxide NPs partially incorporated in the N-doped 
CNTs. Due to the close proximity of the spinel Mn-Co oxide 
and the graphitic walls of the CNTs, the resulting catalyst 
exhibited a strong bifunctional ORR and OER performance.

Most recently, Go et al. [158] reported oxygen-vacancy-
rich CoFe/CoFe2O4 incorporated in N-doped hollow carbon 
spheres (Fig. 7b, c). Figure 7d presents a TEM image of 
the hollow structure of the carbon spheres, while Fig. 7e 
displays a high-resolution TEM (HRTEM) image of the 
prepared catalysts (CoFe,  CoFe2O4, and the composite 
CoFe/CoFe2O4) and the heterointerface between CoFe and 
 CoFe2O4. Figure 7f–h present fast Fourier transform (FFT) 
micrographs showing the mixed crystal structure of the com-
posite. Additionally, high-resolution inverse FFT (IFFT) 
micrographs (Fig. 7i–k) were used to determine the lattice 
spacing for the prepared catalysts, with the results revealing 
(1 1 0) and (2 2 0) planes corresponding to the CoFe alloy 
and  CoFe2O4. The coexistence of various crystal structures 
and a heterointerface between the CoFe and  CoFe2O4 was 
also observed. Figure 7l, m presents the results for the ORR 
and OER performance of the fabricated ZAB.  Vo-CoFe/
CoFe2O4@NC demonstrated excellent ORR performance 

with a half-wave potential of 0.855 V and a Tafel slope of 
62 mV  dec−1, which was a significant improvement over 
Pt/C. The OER performance of the prepared spheres (over-
potential of 360 mV; Tafel slope of 64 mV  dec−1) was also 
higher than that of the state-of-the-art  RuO2 which had an 
overpotential of 330 mV and a Tafel slope of 72 mV  dec−1. 
A high OCV of about 1.53 V, a high current density of 139.5 
mW  cm−2, an excellent specific capacity of 774.8 mAh 
 gZn

−1, and remarkable stability for up to 45 h were observed 
when the  Vo-CoFe/CoFe2O4@NC composite was used as the 
air cathode in a ZAB. The excellent ORR, OER, and ZAB 
performance was due to the high number of oxygen vacan-
cies in  CoFe2O4 and the strongly coupled heterointerface 
between the  CoFe2O4 and CoFe alloy.

4.2  Perovskite Oxides Electrocatalysts in Alkaline 
Electrolytes

Perovskite oxides  (ABO3) containing alkali or rare-earth 
metals at the A-site and a transition metal at the B-site have 
gained great attention as cathode electrocatalysts [159–162]. 
Perovskite oxides offer a diverse range of structures, oxygen 
levels, and electrocatalytic features that are tunable with the 
partial replacement of A- or B-site cations [163, 164]. A 
number of strategies such as cation doping, nanostructur-
ing, surface optimization, and the use of composites can 
improve ORR/OER performance [165, 166]. Zhu et al. [167] 
proposed a novel  SrNb0.1Co0.7Fe0.2O3−δ (SNCF) perovskite 
and studied its stability and activity in an alkaline solution, 
finding that this material has the potential to act as an elec-
trocatalyst in the OER process. The author observed that the 
addition of niobium to the A-site of  SrCo0.7Fe0.2O3 resulted 
in improved OER performance. Bu et al. [165] reported a 
novel approach for the fabrication of cation-ordered perovs-
kites as efficient bifunctional catalysts for ZABs. The author 
optimized the Fe content in  PrBa0.5Sr0.5Co2–xFexO5+δ (where 
x = 0 − 2) and observed an OER performance that was almost 
nine times higher than that of the noble metal oxide  IrO2.

Defect engineering is also a useful technique for a range 
of electrocatalytic processes. Defects in metal oxides can 
significantly alter the material’s band structure, spin state, 
and charge transport. The most observed defect in perovskite 
oxides is oxygen vacancies, the presence of which increases 
electrocatalytic performance. Two common paths to induc-
ing oxygen vacancies in perovskite oxide electrocatalysts 
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Fig. 7  a Illustration of the spinel crystal structure. Reproduced with permission from [154]. b, c Crystallographic arrangement and step-by-step illustra-
tion of the synthesis of hollow-structured  Vo-CoFe/CoFe2O4@NC. d Low-resolution TEM image showing the hollow structure of  Vo-CoFe/CoFe2O4@
NC. e HRTEM micrograph indicating the presence of CoFe,  CoFe2O4, and CoFe/CoFe2O4 and the location of the heterointerface between CoFe and 
 CoFe2O4. f–h Corresponding fast Fourier transform (FFT) and i–k inversed FFT micrographs. l ORR performance in terms of the Tafel plot (top) and 
the current density and half-wave potential (bottom) for the prepared catalysts in 0.1 M KOH with  O2 saturation. m OER performance in terms of the 
Tafel plot (left), the OER overpotential (right) required to achieve a current of 10 mA  cm−2, and the Tafel slopes for the prepared catalysts in 0.1 M 
KOH with  N2 saturation. n Comparative analysis of the open-circuit voltage (OCV) measured for  Vo-CoFe/CoFe2O4@NC and Pt/C +  RuO2. o Polariza-
tion curve and plots of the power density. p Galvanostatic full-discharge test at a fixed current density of 10 mA cm.−2. q Charge/discharge cyclic per-
formance for ZABs using  Vo-CoFe/CoFe2O4@NC (red line) and Pt/C +  RuO2 (black line) as the air cathode. Reproduced with permission from [158]
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are treating them with reductive gases/agents or producing 
more/fewer A-sites. Jung et al. [159] reported the heat treat-
ment (950 °C) of  Ba0.5Sr0.5CoxFe1-xO3-δ (where x = 0.2 or 
0.8; BSCF5582 and BSCF5528) in an argon (Ar) environ-
ment and investigated the resulting structural surface, defect 
chemistry, and electrocatalytic performance (Fig. 8a–c). 
After treating the original perovskite (Pm-3 m) in a reduction 
environment under Ar,  N2, or a vacuum, a modified per-
ovskite structure with the oxygen-deficient brownmillerite 
phase Pcmn was obtained. This environment induced oxy-
gen vacancies in the perovskite structure, leading to square 
planer or local tetrahedral defect sites (Fig. 8a). Samples 
BSCF5582 and BSCF5528 were in an Ar atmosphere at 
950 °C. Interestingly, BSCF5582 had an amorphous layer 
with a thickness that was 10 times larger than the original 
structure, resulting in lower electrocatalytic performance. 
However, the amorphous layer was slightly less thick for 
sample BSCF5528 but with a larger concentration of oxy-
gen vacancies, leading to stronger ORR performance. Thus, 
tuning the surface structure and/or defect chemistry is a 

viable approach to achieving high electrocatalytic perfor-
mance. Using disk electrodes, the ORR performance of Ar-
BSCF5582 and Ar-BSCF5528 perovskites was compared 
with that of  RuO2 and Pt/C (Fig. 8b). The calculated onset 
potential and limiting current density demonstrated that Ar-
BSCF5528 was the highest-performing candidate. The OER 
activity of both samples was also evaluated with and with-
out Ar (Fig. 8c). The results indicated that heat treatment 
had a different impact on the structure and defect chemistry 
of BSCF5582 and BSCF5528. The OER activity for Ar-
BSCF5582 was significantly lower due to the thickness of 
the amorphous layer, while Ar-BSCF5528 did not exhibit a 
significant change in the amorphous layer thickness follow-
ing the heat treatment.

Zhu et  al. [168] reported enhanced electrocatalytic 
activity for perovskite oxides  La1–xFeO3-δ (where x = 0.02, 
0.05, 0.1) in an alkaline solution, employing a tunable 
cationic deficiency method. Figure 8d presents the crystal 
structure tuning used to produce oxygen vacancies via 
the A-site deficiency strategy, while Fig. 8e, f displays 

Fig. 8  a Structural change in response to heat treatment (950 °C/24 h) in an argon (Ar) environment. b ORR performance of modified per-
ovskites and standard catalysts. c Linear plots for OER activity. Reproduced with permission from [156]. d A-site cationic deficiency strategy 
showing the crystal structures for the original LF and the oxygen vacancies in the modified  La1–xFeO3-δ perovskites. e, f SEM micrographs for 
the original LF (left) and optimal perovskite  L0.95F (right). g Linear voltammograms used to determine the OER performance of the original and 
modified perovskite catalysts and h corresponding Tafel plots. Reproduced with permission from [168]
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SEM micrographs at different resolutions (2  µm and 
500  nm) of the original  LaFeO3 (LF) and modified 
 La0.95FeO3-δ  (L0.95F) perovskites. The SEM micrographs 
show that the A-site cation-deficient perovskite  L0.95F 
(Fig. 8f) had a significantly lower particle size and the 
largest surface area, leading to additional active sites 
and enhanced ORR and OER activity. As illustrated in 
Fig.  8g, the OER activity was measured using linear 
sweep voltammetry (LSV). It is interesting to note that 
 L0.95F attained a current density of 10  mA   cm−2 at a 
lower onset potential of 1.64 V, whereas the original LF 
sample did not achieve this current density until it reached 
an onset potential of 1.74 V. This was accredited to the 
more abundant active sites in  L0.95F compared with LF. 
Additionally, the Tafel slopes for LF and cation-deficient 
 La1–xFeO3-δ are presented in Fig. 8h. Significantly smaller 
Tafel slopes were observed for  La1–xFeO3-δ, which were 
attributed to the rapid OER rate and the improved charge 
transfer capability of the modified LF. Thus, tunable 
cationic deficiencies represent a useful strategy for 
producing perovskite oxide-based bifunctional materials 
with excellent electrocatalytic performance.

4.3  Carbon‑Based Electrocatalysts for ZABs

Precious-metal-based electrocatalysts including Pt and its 
alloys are highly effective for the ORR but display poor 
OER activity due to the formation of insulating Pt oxides 
with low electrical conductivity [169]. Conversely, metal 
oxides such as  RuO2 and  IrO2 exhibit excellent OER per-
formance but are less efficient for the ORR [138]. How-
ever, the use of these novel metal oxides in Zn–air batter-
ies (ZABs) is restricted due to their limited availability, 
high cost, and instability. Consequently, substantial efforts 
have been dedicated to developing alternative materials 
with superior bifunctional OER and ORR performance 
[170–172]. These materials include TMOs, hydroxides, 
sulfides, metal-free carbon, and carbon-containing transi-
tion metals. Carbon-based materials, such as graphene/
rGO, CNTs, and their hybrids, have demonstrated rapid 
electron transfer and impressive ORR and OER perfor-
mances. Additionally, their structural properties can be 
tailored using a variety of strategies such as heteroatom 
doping (e.g., N, B, O, S, and P) and defect engineering, 

which leads to the preferential generation of  OH− through 
a four-electron pathway [173, 174].

The presence of more electronegative heteroatoms (as 
compared to carbon atoms) may be responsible for the 
enhanced ORR of heteroatom-decorated carbons because 
this creates electron deficiencies or structural disorder in 
neighboring carbon atoms, leading to facile oxygen adsorp-
tion on the carbon surface [39, 175, 176]. With N doping, 
for example, three distinct active sites can be formed when 
N is introduced to C: graphitic N (quaternary N), pyrrolic N, 
and pyridinic N [176]. Graphitic N provides electrons to the 
p-conjugated system, which can increase the nucleophilic 
nature of the surrounding carbon rings and an increase in 
 O2 adsorption on the carbon surface. Pyridinic N, on the 
other hand, has the ability to attract electrons from neigh-
boring carbons and expedite the adsorption of  H2O oxida-
tion intermediates, which can lead to greater OER activity. 
Liu et al. [177] experimentally verified bifunctional active 
sites in N-doped graphene nanoribbons and reported that 
quaternary-N and pyridinic-N sites were responsible for the 
ORR and OER performance, respectively. The bifunctional-
ity of N-doped graphene nanoribbons induces a synergistic 
effect, enhancing catalytic activities and stability through the 
electron-donating and electron-withdrawing nature of qua-
ternary and pyridinic-N sites, which are favorable for ORR 
and OER, respectively. The assembled ZAB demonstrated 
an excellent power density of 65 mW  cm−2 with remarkable 
cyclic stability over 30 h. Collectively, these studies have 
illustrated the importance of heteroatom-doped carbon for 
use in metal-free carbon bifunctional electrocatalysts.

By controlling the electronic structure and surface polar-
ity, dual-atom doping can also enhance the electrocatalytic 
performance of carbon materials. Ma et al. [178] synthe-
sized N- and S-doped porous carbon using the self-activation 
strategy on garlic stems and demonstrated improved ORR 
electrocatalytic activity and overall ZAB performance. Fig-
ure 9a presents the complete preparation process for het-
eroatom-doped porous carbon. The compounds containing 
N and S are present in the garlic stems, and these interact 
with the graphitic rings of the carbon. The high conductivity 
from graphitic structures and electron acceptor/donor char-
acteristics of N/S heteroatoms promoted catalytic activity 
for improving ZAB performance. The doped carbon was 
used as an air cathode in a primary ZAB and the result-
ing electrocatalytic activity was monitored. The OCV for 
the ZABs with heteroatom-doped carbon (GSC-900) and 
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Fig. 9  a Preparation process for heteroatom (N and S) co-doped porous carbon derived from garlic stems. b OCV for a primary ZAB containing 
GSC-900 and Pt/C as air cathodes. The inset presents the voltage measured using a multimeter. c Galvanostatic discharge curves for the primary 
ZABs to assess their specific capacity. d V-J measurements and related power density for ZABs using GSC-900 and Pt/C as air cathodes. e Gal-
vanostatic cycles for different electrocatalysts and their physical mixtures when used as the air cathode in a rechargeable ZAB. f Schematic illus-
tration of the simple preparation process of 3d-GMC from the metal-coordinated hydrogel. g Bifunctionality of M/C (black), 3d-GMC (red), and 
Pt/C + Ir/C (blue): the bifunctionality value (i.e., onset potential differences (ΔE) between ORR and OER) for each catalyst is provided in figs. h 
Durability test of M/C (black) and 3d-GMC (red) at a current density of 10 mA  cm−2. The electrocatalytic test was performed using 0.1 m KOH 
as an electrolyte. i TEM images for 3d-GMC after OER test. Full cell performance of 3d-GMC for Zn–air battery. j Rate capability, k polariza-
tion tests demonstrating power density, and l cyclability for a Zn–air battery assembled using a 3d-GMC cathode (red) and commercial Zn foil 
anode compared with the Zn–air battery using M/C as the cathode (black). The rate capability test was conducted in this order: OCV, 1, 2, 5, 
10 mA cm.−2. Reproduced with permission from [179]
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standard Pt/C was estimated to be 1.46 V and 1.41 V, respec-
tively (Fig. 9b). Additionally, the calculated specific capacity 
was around 685 mAh  g−1 and 674 mAh  g−1 for GSC-900 
and Pt/C, respectively. Moreover, the power density was 
around ~ 95 mW  cm−2 and ~ 72 mW  cm−2 for GSC-900 and 
Pt/C, respectively (Fig. 9c). The galvanostatic pulse cycles 
were analyzed for the electrocatalysts, and their physical 
mixtures were used as the air cathode in a rechargeable 
ZAB (Fig. 9d), with GSC-900 + FeCoOx outperforming its 
competitors. This high performance was ascribed to the col-
laborative role of N- and S-doped elements in the carbon 
and metal species, which promoted the ORR and OER. Jang 
et al. [179] reported 3D-metal (Co, Fe, and Ni alloys)-coor-
dinated hydrogel in situ-grown graphene on N-doped carbon 
supports (3d-GMC) (Fig. 9e). The bifunctionality values of 
3d-GMC are 0.63 V, indicating that encapsulating 3D gra-
phene onto transition metal alloys enhanced the bifunction-
ality (Fig. 9f). The 3d-GMC represents superior durability 
with no potential drop for 83 h at an operating potential 
of 1.62 V at 10 mA  cm−2 and excellent chemical stability 
with no structural destruction after operation (Fig. 9g-h). 
The catalytic activity under high-current density operating 
represents rate capability of 85% retention (1.1 and 1.3 V 
at 10 and 1 mA  cm−2, respectively) and maximum power 
density of 100 mW  cm−2. The successive charge/discharge 
cycles tested during 200 h operated at 5 mA  cm−2 for 5 min.

Another effective strategy to enhance bifunctional oxygen 
electrocatalysts for use in ZABs is N and P co-doping to pro-
duce porous carbon. Zhang et al. [18] prepared mesoporous 
carbon via N and P co-doping that had a large specific sur-
face area of ∼1663  m2  g−1 Introducing co-doped N/P heter-
oatoms effectively controlled the electronic characteristics 
and surface polarities, resulting in improved ORR and OER 
activities. The outcomes indicated that air electrodes com-
prising N and P-doped porous carbon exhibited exceptional 
performance in both primary and rechargeable ZABs. An 
OCV of 1.48 V, a specific capacity of 735 mAh  gZn

−1, and 
a power density of 55 mW  cm−2 with stable operation for 
over 240 h were observed for the primary ZAB, while the 
rechargeable ZAB demonstrated excellent stability over 180 
cycles at 2 mA  cm−2. Density functional theory simulations 
suggested that co-doping of N/P with the highly porous 
framework of the prepared carbon material was critical to 
its bifunctional activity for the ORR/OER processes. Spe-
cifically, coupled graphitic structures with N/P co-doping 
exhibited the lowest overpotentials for both ORR and OER, 

while isolated N or P-doped graphitic structures displayed 
higher overpotentials.

The ternary heteroatom doping of porous carbon has also 
been reported to achieve higher electrocatalytic activity 
than single-doped carbon materials due to the synergistic 
effect of the heteroatom elements [180–182]. Wang et al. 
[183] reported ternary heteroatom (N, B, and F) doping in 
carbon fibers using electrospinning and annealing. The pre-
pared heteroatom-doped carbon fibers demonstrated supe-
rior ORR activity and specific capacity of 555 mAh  gZn

−1 
with remarkable stability and reversibility after continuous 
cycling for 130 h at 10 mA  cm−2. Razmjooei et al. [184] 
prepared ternary N, S, P-doped rGO using thiourea as the 
N/S dopant and triphenylphosphine as the P dopant. The 
prepared ternary heteroatom-doped rGO demonstrated out-
standing ORR activity, nearly twofold higher than the dual 
N/S-doped rGO, and almost five times higher than P-doped 
rGO. This excellent ORR performance is accredited to the 
synergistic role of ternary heteroatom elements (N, S, and P) 
which not only create additional active sites but also increase 
the graphitic order and the surface area due to the greater 
mesopore volume.

Zheng et al. [185] reported a facile one-step pyrolysis strat-
egy for the production of N-, S-, and P-doped graphene-like 
carbon using onium salts as precursors. Figure 10a presents 
a schematic illustration of the synthesis of N/P/S-doped gra-
phene The higher electronegativity of N heteroatoms (3.04) 
compared to C (2.55) leads to the creation of charged carbon 
sites (C +), favorable for  O2 adsorption and thus enhancing 
ORR activity. Moreover, the electron-donating nature of N, 
acting as an n-type dopant, augments electric conductivity 
and shifts the Fermi level closer to the conduction band. In 
contrast, P heteroatoms exhibit even greater electron-donating 
capacity than N due to their larger atomic radius (70 pm for 
N and 110 pm for P). The pronounced atomic radius of P 
induces significant distortion in graphitic structures and gener-
ates open edge sites, thereby further enhancing ORR activity. 
Additionally, the introduction of S dopants induces a high spin 
density, further promoting ORR activity. Surface morpho-
logical analysis using TEM and EDX (Fig. 10b, c) revealed 
that the heteroatom-doped material consisted of wrinkled 
nanosheets with an interlayer distance of ca. 0.35 nm, which 
was comparable to graphene (0.34 nm). EDX analysis also 
confirms the presence of N, S, and P in the prepared graphene-
like carbon structure. After the successful synthesis of the het-
eroatom-doped graphene, the electrocatalytic performance of 
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the resulting material (NPS-G-2) was tested using a primary 
ZAB in which electrocatalyst-containing carbon fiber acted 
as the air cathode (Fig. 10d). The power density and polari-
zation curves were determined, and a peak power density of 

about 0.151 W  cm−2 and an OCV of 1.372 V were achieved 
(Fig. 10e, f), representing remarkable electrocatalytic perfor-
mance. The specific capacity was measured to be ~ 686 mAh 
 gZn

−1 at 10 mA  cm−2 (Fig. 10g), while the galvanostatic 

Fig. 10  a Process for the fabrication of N,P-doped graphene, N,S-doped graphene and N,S,P-doped graphene (NSP-G). b HRTEM micrograph 
of NSP-G. c STEM micrograph of the prepared NPS-G sample and elemental mapping to determine the heteroatom content (N, P, and S). d 3D 
diagram of the ZAB. e Power density calculations and polarization curves for ZABs using NPS-G-2 and commercial Pt/C (with 20 wt.%) as 
the air cathode. f Galvanostatic discharge curves at 10 mA cm.−2 for the ZABs with NPS-G-2 and Pt/C as the air cathodes, showing an OCV of 
1.372 V for NPS-G-2. g Specific capacity of the ZABs with NPS-G-2 and Pt/C as the ORR catalyst. h Discharge profiles for different current 
densities for the ZABs with NPS-G-2 and Pt/C as the air catalyst. i Photographic image showing illumination from a green LED powered by two 
liquid ZABs connected in series with NPS-G-2 as the air cathode. Reproduced with permission from [185]
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discharge voltage decreased with an increase in the current 
density (Fig. 10h). A green LED (2.4 V) was also powered 
with two liquid ZABs with an NPS-G-2 air cathode connected 
in series (Fig. 10i). The LED demonstrated remarkable opera-
tional stability without any degradation in the brightness of 
the light over 12 h.

4.4  Hybrid or Mixed Electrocatalysts for ZABs

Efforts to design economical non-noble metal-based electro-
catalysts, such as 3D transition metals [186] and nanocar-
bons, or their hybrid/composites, have been prompted by the 
high cost and scarcity of the noble metals currently used in 
commercially available catalysts (such as the Pt-based cata-
lysts used for the HER and ORR and Ru/Ir-based catalysts 
used for the OER) [187, 188]. Because of their high cata-
lytic performance, particularly for the HER and OER, tran-
sition metal phosphides (TMPs) (where TM = Fe, Mn, Co, 
Ni, Cu, and W) have maintained consistent research inter-
est over recent years [189, 190]. However, improvements 
in electrocatalytic performance are hampered by their low 
surface area, insufficient electronic conductivity, and poor 
NP dispersion [191, 192]. To enhance the electrocatalytic 
performance of the prepared electrocatalyst, carbon is used 
to hold the TMP NPs, producing a hybrid TMP/C structure. 
Additionally, metal–organic frameworks (MOFs), which 
have a high SSA and tunable porous structures, are consid-
ered an ideal precursor for hybrid TMP/C via carboniza-
tion at elevated temperatures [192, 193]. Liu et al. [194] 
demonstrated a trifunctional electrocatalyst in which  Co2P 
was implanted in heteroatom-doped (Co, P, and N) carbon 
 (Co2P/CoNPC) using zeolitic imidazolate frameworks as a 
precursor. The synergistic effects of the heteroatom-doped 
carbon-based substrate and  Co2P supported high electrocata-
lytic OER, HER, and ORR activity similar to that of com-
mercially available Pt/C or  RuO2 catalysts.

The preparation steps for  Co2P/CoNPC are illustrated 
in Fig. 11a. SEM and TEM micrographs were acquired 
to assess the surface and morphology of the samples 
(Fig. 11b–f). These analyses clearly indicated that the 
prepared  Co2P/CoNPC had an inherent ZIF-67 morphol-
ogy, while the  Co2P NPs were evenly dispersed within 
the carbon framework. The size of the smallest NPs 
was as low as 7 nm, which is why it was anticipated to 

offer additional active sites and achieve excellent elec-
trocatalytic activity. Furthermore, Fig. 11f presents an 
HRTEM image that shows a lattice spacing of 0.221 nm, 
which was ascribed to the (1 2 1) plane of  Co2P; a lat-
tice spacing of 0.33 nm was also observed and ascribed 
to the carbon (0 0 2) plane, suggesting the presence of a 
carbon layer on the Co2P NPs. The selected area diffrac-
tion (SAED) measurements (Fig. 11g) also confirmed the 
presence of a carbon framework and  Co2P crystals. To 
further visualize the heteroatom elements, elemental map-
ping micrographs were obtained (Fig. 11h–k). To assess 
the performance of the proposed trifunctional catalyst, a 
rechargeable ZAB was assembled with a  Co2P/CoNPC-
based air cathode (Fig. 11l). The ZAB produced a high 
OCV of 1.425 V (Fig. 11m), a peak power density of 116 
mW  cm−2 (Fig. 11n), a low charge–discharge voltage gap 
of around 1.13 V at 50 mA  cm−2 (Fig. 11o), and negligible 
potential loss during the charge–discharge tests after 60 h 
(Fig. 11p). The authors ascribed this high electrocatalytic 
performance to the synergistic effect of  Co2P and the het-
eroatom-decorated carbon.

Shi et al. [195] recently demonstrated a trifunctional elec-
trocatalyst composed of FeCo NPs surrounded by graphitic 
carbon,  Co2P NPs, and a N,P-doped carbon fiber framework. 
The synergistic effect of  Co2P and FeCo NPs was respon-
sible for enhancing the ORR, HER, and OER activity. Xia 
et al. [196] also demonstrated a self-standing Co/nanocar-
bon membrane fabricated using a facile electrospinning 
technique. This membrane was employed as a bifunctional 
air electrode in a ZAB and achieved a high power density 
of 304 mW  cm−2 and a lifetime of 1500 h at 5 mA  cm−2. 
This high performance was due to the self-standing mem-
brane structure, which provided abundant Co–N–C active 
species inside the hierarchical electrode. Despite their prom-
ising performance, MOF-based strategies typically involve 
complex multistep processes that include the carbonization/
oxidation of MOFs followed by phosphidation [197, 198]. 
In addition, MOF-based electrocatalysts suffer from particle 
agglomeration, degraded electrocatalytic activity, and low 
mechanical stability thus, limiting their performance when 
used in ZABs [199–201]. To resolve these issues, other 
advanced strategies are required, such as continuous oxy-
gen electrocatalysts and self-standing air electrodes. Table 3 
summarizes recently reported bifunctional catalysts with 
their performance in ZABs.
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5  Advanced Form of ZABs

In addition to high energy efficiency, good mechanical prop-
erties and flexibility are important for the commercializa-
tion of ZABs in wearable, portable, and flexible electronic 
devices. In practical applications, ZABs must provide sta-
ble and satisfactory electrochemical performance under 
high open-circuit voltages, energy density, power density, 
cell capacity, and various deformation states such as bend-
ing, twisting, and even stretching. Therefore, in addition to 
the design of the cathode electrocatalyst, anode and solid 
electrolyte, and separator, a rational and efficient cell con-
figuration also plays an important role in the performance 
of ZABs. This section describes two recently reported 
advanced ZAB battery configurations: a mechanical 
rechargeable battery and a flexible zinc–air battery.

5.1  Mechanically Rechargeable ZABs

Mechanically rechargeable batteries (MR-ZABs) offer an 
alternative to electrically rechargeable batteries, allowing 
for the physical replacement or removal of the consumed 
Zn electrode and electrolyte. These batteries are regarded 
as primary batteries that can be refurbished and recharged, 
avoiding the issues of dendritic Zn deposition associated 
with electrically rechargeable batteries. As a result, sim-
pler unifunctional catalysts that only need to operate in the 
discharge mode can be used. For these reasons, extensive 
research efforts have been dedicated to the development 
of MR-ZABs. For example, Singh et al. [20] demonstrated 
surface tunable spherical cobalt oxide  (Co3O4) NPs dis-
tributed over N-doped graphene. The prepared composite 
 (Co3O4–SP/NGr-24 h) acted as a cathode electrocatalyst 
for MR-ZABs and exhibited excellent stability and minimal 

Fig. 11  a Preparation process for  Co2P/CoNPC. b, c SEM images for ZIF-67. d SEM image for  Co2P/CoNPC. e HRTEM image for  Co2P/
CoNPC, with the inset showing the particle size distribution for  Co2P NPs. f HRTEM image showing the planes related to  Co2P NPs and the 
carbon framework. g SAED pattern. h–k Elemental mapping of  Co2P/CoNPC. l  Co2P/CoNPC used as the air cathode in a ZAB. m OCV plot 
with the inset showing the multimeter setup for the calculation of the voltage. n Plot for the power density. o Charge/discharge polarization data. 
p Cyclic stability performance for the assembled ZAB. Reproduced with permission from [194]
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Table 3  Recent progress of bifunctional catalysts with their performance in ZABs

Type Electrolyte Air electrode catalyst layer Zn elec-
trode

Open 
circuit 
voltage 
(V)

Discharge/charge 
voltage gap (V)

Peak 
power 
density 
(mW 
 cm−2)

Specific 
capacity 
(mAh 
 g−1)

Cyclic perfor-
mance

Refer-
ences

A 6 M KOH + 0.2 M 
Zn(CH3COO)2∙2H2O

N-CoS2 YSSs Polished 
Zn foil

1.41 0.85 @ 
10 mA  cm−2

81 744 More than 165 h
@ 10 mA  cm−2

[202]

A 6.0 M KOH + 0.2 M Zn acetate Porous Ni/NiO nanosheets Zn plate 1.47 0.83 @ 
2 mA  cm−2

225 853 240 cycles, 120 h
@ 2 mA  cm−2

[203]

A poly(vinyl alcohol) (PVA) gel film Spinel  CoIn2Se4 nanosheets Zn plate 1.37 0.71 @ 
10 mA  cm−2

107 733 400 cycles
@ 10 mA  cm−2

[204]

A 6 M KOH + 0.2 M Zn acetate MnO2-IL0.5 Polished 
Zn 
plates

1.51 0.86 @ 
10 mA  cm−2

166 762 40 h
@ 10 mA  cm−2

[205]

A KOH + Zn(Ac)2 np-AlFeCoNiCr Zn foil 1.55 0.76 @  
2 mA  cm−2

125 800 120 h @ 
20 mA  cm−2

[206]

A,B 6 M KOH + 0.2 M Zn(OAc)2 Co3O4@LaCoO3 Zn plate 1.46 – 140 785 555 cycles, 185 h 
@ 2 mA  cm−2

[207]

A,B 6 M KOH + 0.2 M Zn(OAc)2 LaMnO3 Zn foil – 0.82 @  
10 mA  cm−2

170 725 100 cycles @ 
5 mA  cm−2

[208]

A,B 6 M KOH + 0.2 M Zn(OAc)2 LaNi0.85Mg0.15O3 Polished 
Zn foil

1.35 0.92 @  
10 mA  cm−2

45 810 220 cycles, 110 h 
@ 10 mA  cm−2

[209]

A,B 6 M KOH + 0.2 M Zn(OAc)2 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 
(BSCF)-ceria  (CeO2)

Zn foil 1.62 0.83 @  
20 mA  cm−2

131 716 180 cycles, 80 h 
@ 10 mA  cm−2

[210]

A,B,C,D 6 M KOH + 0.2 M  ZnCl2 Pt-Sr(Co0.8Fe0.2)0.95P0.05O3−δ 
(SCFP)/Super P

Zn plate 1.44 0.86 
@5 mA  cm−2

122 790.4 240 cycles, 80 h
@ 5 mA  cm−2

[100]

A,B,C,D 6 M KOH + 0.2 M Zn(OAc)2 LaMn0.7Co0.3O3 (LMCO) Zn foil 1.40 0.77 @  
1 mA  cm−2

35 764 90 cycles, 30 h @ 
5 mA  cm−2

[211]

A,B,C,D 6 M KOH + 0.2 M Zn(OAc)2 Ni3FeN/V@N-doped 
graphene

Polished 
Zn foil

1.52 0.92 @  
10 mA  cm−2

168 650 150 cycles, 220 h 
@ 10 mA  cm−2

[212]

A,C,D 6 M KOH Fe@N–C-700 Zn plate 1.40 – 220 – 100 cycles, 16.7 h
@ 10 mA  cm−2

[213]

A,C,D 6 M KOH + 0.2 M Zn(CH3COO)2 NCO@HHPC Zn plate 1.48 0.73 @ 
10 mA  cm−2

267 767 1460 cycles, 
487 h

@ 10 mA  cm−2

[214]

A,C,D 6 M KOH + 0.2 M Zn acetate Co5.47N@N-rGO-750 Zn plate 1.45 0.77 @ 
1 mA  cm−2

121 789 2000 cycles, 
330 h

@ 1 mA  cm−2

[215]

A,C,D 6 M KOH + 0.2 M Zn(Ac)2 FeNiP/NPCS Polished 
Zn 
plate

1.51 0.58 @ 
10 mA  cm−2

163 603 330 cycles, 110 h
@ 10 mA  cm−2

[216]

A,C,D 6 M KOH/0.2 M Zn(ac)2 mixed 
solution

Ni–Co–S/NSC Zn plate 1.43 0.73 @ 
10 mA  cm−2

137 829 180 cycles
@ 10 mA  cm−2

[217]

A,C,D 6 M KOH + 0.2 M Zn(CH3COO)2 GNCNTs-4 Polished 
Zn foil

1.48 0.76 @ 
5 mA  cm−2

253 801 9000 cycles, 
3000 h

@ 5 mA  cm−2

[218]

A,C,D 6.0 M KOH + 0.2 M Zn(Ac)2 Ni1Co3@N–CN Zn foil 1.446 0.71 @ 
5 mA  cm−2

98.2 721.6 200 h
@ 5 mA  cm−2

[219]

A,C,D 6.0 M KOH + 0.2 M zinc acetate NCNTM Zn foil 1.5 0.8 @ 5 mA  cm−2 220 797 4800 cycles, 
1600 h

@ 5 mA  cm−2

[220]

A,C,D 6 M KOH + 0.2 M Zn(Ac)2 Co-Co3O4@NAC Polished 
Zn 
plate

1.45 0.77 @ 
10 mA  cm−2

164 721 35 h
@ 10 mA  cm−2

[97]

A,C,D 6 M KOH + 0.2 M  ZnCl2 Fe,Co-SA/CS Polished 
Zn 
plate

1.43 0.88 @ 
5 mA  cm−2

86.7 819.6 300 cycles, 100 h
@ 5 mA  cm−2

[221]

A,C,D 6 M KOH + 0.2 M  ZnCl2 Fe-Nx-HCS Polished 
Zn 
plate

1.42 1 @ 10 mA  cm−2 154 422 58 h
@ 10 mA  cm−2

[222]

A,C,D 6.0 mol  L−1 KOH + 0.2 mol  L−1 
Zn acetate

CoSe2@NC loaded on Ni 
foam

Polished 
Zn 
plates

1.48 0.93 @ 
10 mA  cm−2

137.1 751.1 500 cycles
@ 10 mA  cm−2

[223]
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voltage loss at 50 mA  cm−2. In another report, Kharabe et al. 
[239] proposed hydrothermally synthesized boehmite-phase 
aluminum oxyhydroxide (AlOOH) nanosheets anchored on 
N-doped graphene. The prepared composite (AlOOH/NGr) 
demonstrated an ORR onset potential of around 0.83 V with 
a half-wave potential of 0.72, combined with remarkable 
catalytic robustness in an alkaline solution. When utilizing 
AlOOH/NGr as an air electrode in a primary ZAB, an OCV 
of 1.27 V, a flat discharge curve at 10 mA  cm−2, a specific 
capacity of 720 mAh  g−1, and a power density of 204 mW 
 cm−2 were observed. Additionally, the homemade battery 

exhibited a long life of over 35 h at 10 mA  cm−2 after four 
cycles of mechanical recharging.

Shinde et al. [228] proposed a scalable carbon nitride (CN) 
sponge as an oxygen electrocatalyst for rechargeable ZABs 
(Fig. 12). The prepared sponge (denoted as P,S-CN) was 
prepared via pyrolysis followed by polymerization; its pos-
sible reaction mechanisms are illustrated in Fig. 12a. Optical 
images revealed a sponge-like structure associated with diverse 
dimensions (Fig. 12b), with arbitrarily positioned and entan-
gled 3D hierarchical network of tubular P,S-CNS observed in 
HRSEM images (Fig. 12c, d). The prepared sample was then 

Table 3  (continued)

Type Electrolyte Air electrode catalyst layer Zn elec-
trode

Open 
circuit 
voltage 
(V)

Discharge/charge 
voltage gap (V)

Peak 
power 
density 
(mW 
 cm−2)

Specific 
capacity 
(mAh 
 g−1)

Cyclic perfor-
mance

Refer-
ences

A,C,D 6 M KOH + 0.2 M Zn (AC)2 CoFe@NC/KB-800 Zn foil 1.351 0.65 @ 
2 mA  cm−2

160 654 600 cycles, 100 h
@ 2 mA  cm−2

[224]

A,C,D 0.2 M Zn(CH3COO)2 + 6 M KOH MDPCF-based ZAB Zn foil 1.48 – 288.8 740 330 h
@ 10 mA  cm−2

[225]

A,C,D 6 M KOH CoP/NP-HPC Zn plate 1.4 – 186 – 80 h
@ 2 mA  cm−2

[226]

A,C,D 6 M KOH + 0.2 M zinc acetate RuCoOx@Co/N-CNT Polished 
Zn 
plates

1.44 0.79 @ 
2 mA  cm−2

93 788 200 cycles, 34 h
@ 2 mA  cm−2

[227]

A,C,D 6 M KOH + 0.2 M Zn acetate P,S-CNS Polished 
Zn 
plates

1.51 – 198 830 200 cycles, 40 h
@ 2 mA  cm−2

[228]

A,C,D 6 M KOH + 0.2 M Zn(OAc)2 MnCo2O4@C Polished 
Zn 
plate

1.43 0.72 @ 
5 mA  cm−2

40 – 70 h
@ 10 mA  cm−2

[229]

A,C,D 6 M KOH + 0.2 M
Zn(CH3COO)2

Co/Co3O4@PGS Zn plate 1.45 0.96 @ 
20 mA  cm−2

118.27 – 4800 cycles, 
800 h

@ 10 mA  cm−2

[136]

A,C,D 6 M KOH + 0.2 M  ZnCl2 Fe0.5Co0.5Ox/NrGO Zn plate 1.43–
1.44

0.89 @  
10 mA  cm−2

86 756 120 h
@ 10 mA  cm−2

[230]

A,C,D 6 M KOH + 0.2 M
zinc acetate

Janus NiFe@C@Co CNFs Polished 
Zn foil

1.44 0.77 @  
5 mA  cm−2

130 694 200 h @ 
5 mA  cm−2

[231]

A,C,D 6 M KOH
 + 
0.2 M  ZnCl2

FeCo@NC-d Zn plate 1.456 0.79 @  
5 mA  cm−2

190.2 – 120 cycles @ 
5 mA  cm−2

[232]

A,C,D 6 M KOH
 + 
0.2 M ZnO

CuCo2O4@CNTs Zn plate 1.41 0.79 @  
10 mA  cm−2

– – 160 cycles, 80 h 
@ 2 mA  cm−2

[233]

A,C,D 6 M KOH + 0.2 M Zn(CH3COO)2 Fe2Ni@NC Zn plate 1.493 0.805 @  
50 mA  cm−2

126 – 500 cycles @ 
10 mA  cm−2

[234]

A,C,D KOH/Zn(Ac)2 CoNi@CoCN Zn plate 1.498 – 162.5 773.5 200 cycles [235]
A,C,D 6 M KOH + 

0.2 M Zn(CH3COO)2

NPSC-Co2Fe1 Zn foil 1.44 0.96 @  
10 mA  cm−2

174.6 – 210 cycles, 70 h 
@ 5 mA  cm−2

[236]

A,C,D 6 M KOH + 0.2 M
ZnCl2

CoSx/Co-NC-800 Zn foil 1.40 0.73 @  
2 mA  cm−2

103 770.4 450 cycles, 90 h 
@ 5 mA  cm−2

[237]

A,C,D 6 M KOH + 0.2 M Zn(OAc)2 FeCo–N–C-700 Tailored 
Zn 
plate

1.39 – 150 518 360 cycles, 60 h 
@ 1 mA  cm−2

[238]

A: Bifunctional oxygen electrocatalyst, B: Perovskite oxides as electrocatalysts, C: Carbon-based electrocatalysts, D: Hybrid/mixed electrocata-
lysts
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Fig. 12  a Synthesis process for the sponge-like P,S-CNS catalyst and associated reaction mechanisms. b Photograph of the prepared P,S-CNS 
samples and c, d corresponding SEM images. e Schematic diagram of the primary ZAB. f Polarization curves and calculation of the power 
densities for primary ZABs constructed using various catalysts. g Galvanostatic discharge curves for the primary ZAB using P,S-CNS as the air 
cathode. h Specific capacity of the primary ZAB using P,S-CNS as the ORR catalyst. i Stability of the primary ZAB using a P,S-CNS cathode 
with mechanical recharging. j Photograph of LED illumination powered by the proposed ZAB. Reproduced with permission from [228]
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used in a primary ZAB as the air cathode (Fig. 12e), with its 
performance then analyzed based on polarization curves and 
its power density (Fig. 12f), galvanostatic discharge curves 
(Fig. 12g), its specific capacity for the ORR process (Fig. 12h), 
its long-term stability as an MR-ZAB (Fig. 12i), and as the 
power source for an illuminated LED (Fig. 12j). This 3D P,S-
CNS structure led to the fabrication of a primary ZAB with an 
excellent specific capacity of 830 mA h  g−1, power density of 
198 mW  cm−2, OCV of 1.51 V, and superior robustness over 
210 h after several mechanical recharges. This high perfor-
mance was attributed to its bifunctional activity due to dual 
doping and the effective mass/charge transfer.

MR-ZABs can be classified as refuellable or reconstructa-
ble cells. Zn plates or cassettes of reconstructable cells can 
be physically removed and regenerated upon discharge. For 
smooth operation, a complex industrial facility is required for 
this type of cell design [16]. The reconstructable cells also face 
challenges in the reverse reaction at the air cathode, making it 
difficult to release  O2 from  OH− and water. In addition, usage 
of expensive Pt catalyst is another bottleneck of this design. 
In contrast, the battery is recharged with aqueous electrolytes 
in refuellable cells. Recharging is accomplished simply by 
exchanging the cassettes. The used Zn anode can be subse-
quently recycled or refined into Zn. The hydraulic systems can 
pump alkaline electrolytes through a static bed of Zn particles 
or circulate the Zn slurry through the battery’s anode com-
partment, resulting in mitigation of dendritic formation issues 
at the anode. The refuellable cells can store the electroactive 
components necessary for battery operation in a tank situated 
outside the battery structure, which offers greater flexibility 
in terms of energy and power decoupling. The refuellable cell 
design of ZAB has less mechanical stress on the electrodes, 
enabling long-lasting system development for large-scale 
applications [240]. However, the high manufacturing costs 
associated with ensuring a stable Zn supply and establishing 
recharging stations hinder their widespread adoption, despite 
significant advancements in MR-ZAB technology.

5.2  Flexible Zn–Air Batteries

Smart electronics and flexible devices have been highlighted 
for use in wearable and portable electronic systems, includ-
ing intelligent bracelets, wearable cell phones, and human-
like electronic skin [241–244]. The electrochemical abil-
ity and adaptability of each component in these devices is 

crucial to their realization. A recent trend in the design and 
fabrication of power sources such as supercapacitors and 
batteries has been the development of stretchable, flexible, 
and wearable characteristics [245, 246]. In particular, a 
range of flexible battery designs has been reported, including 
stretchable, cable, and bendable types [242, 247–249], with 
the safety, low cost, environmental friendliness, and high 
energy density of ZABs particularly suitable for the develop-
ment of flexible and portable systems [95]. However, the flat, 
stacked, and rigid designs of conventional ZABs with alka-
line electrolytes have restricted their use in flexible and port-
able applications. Peng and coworkers [38, 250–253] have 
been pioneers in the development of cable-type structures 
for use in 1D batteries and supercapacitors, but the potential 
for versatile ZAB design has been overlooked to date.

The air cathode, which consists of an active material and 
a porous current collector, is a critical component of assem-
bled ZABs because it is where the ORR and OER occur. 
Conventionally, carbon paper-based electrodes have been 
used for ZABs but are a rigid substrate and thus not suit-
able for flexible devices. Thus, it is necessary to design and 
develop flexible air electrodes with higher electrochemical 
performance and flexibility. Li et al. [254] demonstrated a 
flexible air electrode using a spray method to coat a bifunc-
tional catalyst onto carbon fiber (Fig. 13a–c). The bifunc-
tional catalyst consisted of mesoporous  Co3O4 nanosheets 
 (Co3O4-NSs) and N-doped rGO (N-rGO) and had a uniform 
morphology. The prepared catalyst demonstrated excep-
tional ORR and OER activity due to its high surface area, 
mesoporous framework, and synergy between  Co3O4-NSs 
and N-rGO. A fiber-based ZAB was constructed using this 
air cathode (Fig. 13a), which demonstrated excellent cyclic 
stability and charge–discharge polarization characteristics, 
outperforming a commercially available Pt/C +  RuO2 elec-
trode (Fig. 13b). The prepared ZAB also had the ability to 
sustain severe deformation without the loss of significant 
electrochemical performance (Fig. 13c), highlighting its 
potential application in wearable electronics.

Another unique strategy is the use of freestanding air 
cathodes in which the active material is grown directly on 
the flexible substrate. This approach favors rapid mass trans-
fer and offers a robust electrode structure. Meng et al. [34] 
recently demonstrated a freestanding cathode using  Co4N 
NP-deposited carbon fiber embedded on carbon cloth (CC) 
(Fig. 13d–f). Due to the presence of a hierarchical network 
and the combined role of  Co4N and Co–N–C, the prepared 
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Fig. 13  a Fabrication process for the air electrode in a fiber-shaped flexible ZAB. b Galvanostatic charge–discharge plots for ZABs using differ-
ent electrocatalysts. c Galvanostatic charge–discharge curves for a fiber-shaped flexible ZAB under different deformation conditions. Reproduced 
with permission from [254]. d Fabrication process for a  Co4N/CNW/CC electrode. e, f Low- (10 µm) and high-resolution (1 µm) SEM images 
for the prepared  Co4N/CNW/CC electrode. g Images of a cable-type flexible ZAB under different twisting or bending conditions. h Current 
density-dependent galvanostatic charge–discharge curves for the cable-type flexible ZAB. Reproduced with permission from [34]. i Schematic 
diagram of a flexible ZAB based on a Co/N@CNTs@CNMF-800 cathode. j Measurement of the OCV with the inset showing the flexible elec-
trode. k Polarization and power density plots. l Cyclic stability of the flexible ZAB under different bending conditions. Reproduced with permis-
sion from [255]
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 Co4N/CNW/CC samples exhibited excellent catalytic activ-
ity combined with remarkable stability for the ORR and 
OER. A flexible ZAB was then constructed using a  Co4N/
CNW/CC electrode. The prepared ZAB demonstrated supe-
rior flexibility (Fig. 13g) and remarkable rechargeability 
(Fig. 13h). This high performance of the flexible ZAB means 
that it is a promising candidate for use in wearable devices.

Two strategies are commonly used to enhance mechani-
cal flexibility in wearable electronics: (1) adhesive-assisted 
loading of the active material on a flexible substrate, and (2) 
direct growth of the active material on a flexible substrate, 
eliminating the need for adhesives or additives. The latter 
approach, which is cost-effective and scalable, is particularly 

well suited for flexible electrode design. Liu et al. [255] pro-
posed an easy and scalable method to construct high-quality 
bifunctional freestanding air electrodes for flexible ZABs 
(Fig. 13i–l). The solid-state flexible ZAB design consisted 
of an anode of Zn foil, the prepared electrocatalyst (Co/N@
CNTs@CNMF-800) as the cathode, and KOH/PVA as a gel 
electrolyte (Fig. 13i). The flexible ZAB demonstrated an 
OCV of 1.40 V (Fig. 13j) and power density of 26.5 mW 
 cm−2 (Fig. 13k). In addition, the flexible ZAB exhibited 
remarkable stability with bending angles of 90° and 180° 
(Fig. 13l). The flexible ZAB could be further exploited for 
use in wearable systems. Park et al. [38] reported an all-
solid-state cable-type flexible ZAB. Their system consisted 

Fig. 14  a Fabrication process for a solid-state flexible cable-type ZAB. b Coating of gelatin-based GPE and KOH (0.1  M) on a spiral zinc 
anode. c Photograph of a prototype flexible cable-type ZAB. d Cross-sectional optical microscope image of the cable-type ZAB. e Discharge 
curves for cable-type and stacked ZABs with/without the Fe/N/C electrocatalyst measured at a current density of 0.1 mA   cm−2. f Discharge 
curve measurements for a flexible cable-type ZAB under different bending conditions. Reproduced with permission from [36]. g Fabrication 
process for the synthesis of the electrocatalyst CoCu/N-CNS-x (x = 1, 2, 3) over nickel foam. h SEM image (2 µm). i TEM image (10 nm). j‑l 
HRTEM images (5 nm and 1 nm) showing the presence of Cu and Co in the prepared electrocatalyst. m Measurement of charge–discharge plots 
for two flexible ZABs connected in parallel or series and n corresponding Nyquist plots. o Charge–discharge measurements for the flexible ZAB 
under different bending conditions at 2 mA cm.−2. p Voltage measurements for the flexible ZAB after bending and recovery. q Illumination of 
an LED powered by two flexible ZABs connected in series under various bending settings. r Image of a wearable bracelet containing a flexible 
solid-state ZAB used to power the LED screen. s Charging of a mobile phone using four ZABs in series. Reproduced with permission from 
[256]
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of a spiral-type Zn anode, a gel-type polymer electrolyte, 
and an inexpensive Fe/N/C electrocatalyst-based air cathode 
(Fig. 14a–f). Figure 14a, b presents the fabrication process 
for the flexible cable-type ZAB, while a photographic image 
of the ZAB is displayed in Fig. 14c, showing holes that act 
as air inlets for the  O2 used in the electrocatalytic reactions. 
Figure 14d presents an optical micrograph for a cross sec-
tion of the flexible cable-type ZAB. To test the electrocata-
lytic performance of the proposed ZAB, both stacked and 
cable-type ZABs were fabricated using a gelatin-based GPE 
(GGPE; Fig. 14e). Interestingly, both the stacked and cable-
type ZABs with the Fe/N/C-900 electrocatalyst produced a 
higher performance than those where the electrocatalyst was 
absent. The device was also tested for voltage stability under 
bending/non-bending conditions (Fig. 14f). No significant 
voltage loss was observed, confirming that the prepared 
electrocatalyst was suitable for use in wearable applications. 
Kuang et al. [256] also prepared an all-solid-state flexible 
ZAB based on the unique electrocatalyst CoCu/N-CNS as 
the cathode (Fig. 14g–s). The proposed strategy allowed 
for the direct growth of the prepared electrocatalyst over Ni 
foam. The various steps involved are shown in Fig. 14g. The 
prepared electrocatalyst contained tightly bound nanosheets 
with abundant embedded NPs (Fig.  14h), with the NPs 
clearly seen in TEM images (Fig. 14i–l). The lattice spac-
ing as assessed using TEM analysis indicated the presence 
of both Co and Cu in the carbon nanosheet framework. To 
test the flexibility and electrocatalytic performance of the 
proposed cathode, the change in the voltage of a ZAB was 
tested (Fig. 14m), while Nyquist plots were obtained to meas-
ure the resistance for ZABs connected in series and parallel 
(Fig. 14n). In addition, the flexibility and stability of the ZAB 
meant that there was no significant change in the voltage 
under different bending conditions (Fig. 14o, p). An LED 
light, wearable bracelet, and mobile phone were also powered 
using the proposed ZAB, producing an excellent illumination 
performance (Fig. 14q–s). The prepared system thus offers 
a facile device design and has the potential for use in next-
generation wearable and portable energy storage devices.

6  Conclusions and Outlook

Zinc–air batteries (ZABs) have a higher theoretical energy 
density (1218 Wh  kg−1) compared to LIBs, making them 
more energy-efficient in a form factor and thereby enabling 

in a lighter and cheaper design. This suggests a promising 
avenue for substantial progress in the realm of ZABs for 
portable and flexible versions that can easily integrate into 
wearable devices, such as cell phones, electronic skins, and 
intelligent bracelets. Moreover, ZABs are a much more 
promising alternative, from the environmentally friendly 
viewpoint, because they utilize oxygen from the air as a 
reactant, which reduces the need for heavy metal compo-
nents within the battery. ZABs do not rely on scarce metal 
resources, making them a more sustainable option over 
LIBs. However, ZABs currently face challenges in achieving 
their full theoretical energy density and suffer from limita-
tions related to electrode degradation and electrolyte man-
agement. Also, conventional ZAB designs with rigid and 
stacked structures using aqueous alkaline electrolytes do not 
align with the requisites of portability and flexibility. Explo-
ration of the wearability, including mechanical deformation 
(bending, twisting, folding, stretching, and compressing), 
flexibility, stretchability, thermal conductivity, permeability 
of air and water molecules, is a paramount significance to 
accelerate the rapidly evolving of applications. Hence, future 
research endeavors must be directed toward the development 
of solid-state or quasi-solid-state polymer-based electrolytes, 
possessing both elevated ionic conductivity and mechani-
cal strength. In this context, we tackle these concerns and 
deploy efficient strategies to fully actualize the benefits 
offered by ZAB technology.

(1) Maximizing energy density through elevated cata-
lytic activity: Limited energy density remains a significant 
challenge for ZABs because practical applications have 
been struggled to achieve the potential of high theoretical 
energy density. The actual energy density of ZABs cur-
rently falls below that of other battery technologies, such 
as LIBs. The reactions of ORR (oxygen reduction reaction) 
and OER (oxygen evolution reaction) play an important role 
in overcoming this challenge. ORR requires effective con-
tact between the electrocatalyst, air electrode, and electro-
lyte due to its gas-consuming nature. Conversely, for OER, 
prompt separation of the generated oxygen from the inter-
face between electrocatalyst and air electrode is essential. 
This disparity necessitates different hydrophobicity levels 
for catalysts and air electrodes in OER and ORR reactions.

The catalytic activity of catalysts is also crucial for effi-
cient electrochemical processes, and two main approaches 
enhance intrinsic activity: heteroatom (N, O, S, B, P, etc.) 
doping and porous structure control. Heteroatom doping 



 Nano-Micro Lett.          (2024) 16:138   138  Page 32 of 44

https://doi.org/10.1007/s40820-024-01328-1© The authors

induces charge redistribution and alters electronic structure, 
reducing adsorption energy of oxygen-containing species 
and thereby enhancing catalytic activity. Pore size engineer-
ing of the electrode materials increases the density of active 
sites. Macro-/mesopores facilitate the mass transfer allowing 
reactants to easily access the active centers and promote the 
diffusion of oxygen and reactants, whereas micropores pro-
vide a large specific surface area supporting a high degree 
of dispersion of active sites. To further enhance the utiliza-
tion of active sites while preventing nanoparticle agglomera-
tion, various strategies, including core–shell design, space 
confinement, and hierarchical structures, can be employed. 
The effective integration of metal active species with low-
dimensional carbonaceous materials, such as carbon nano-
tubes (CNT) and graphene, has emerged as a promising 
approach to develop hybrid electrocatalysts characterized 
by high electrocatalytic activity, rapid electron transfer 
rates, superior selectivity, and satisfactory stability. The 
presence of π-conjugated conductive ligands and unbound 
electrons dissociated from the sp2 graphitic structure ensures 
fast charge transport during redox reactions, which greatly 
enhances electrocatalytic activity. These approaches also 
ensure the uniform loading of metal catalytic active sites 
onto functionalized carbon supports, leading to a strong cou-
pling synergetic effect.

(2) Long-term stability/durability: The utilization of 
zinc gives rise to a noteworthy consideration. Firstly, long-
term performance and practical usability are impeded by 
challenges, such as enduring permanent damage from 
corrosive by-products, irreversible ZnO deposition, and the 
formation of zinc dendrites. The presence of subsequent 
by-products, such as hydrogen peroxide, triggers avalanche 
damage of the air electrode, leading to a substantial 
decrease in the stability of rechargeable ZAB. Moreover, 
the unresolved electrochemical oxidation behavior of the 
OER for carbon-based electrodes during charging results 
in decreased electrical conductivity and hydrophobicity 
after multiple deep charge and discharge cycles, further 
compromising the battery’s stability.

Second, the deposition of ZnO on the zinc anode poses 
another challenge as it obstructs further reactions between 
electrolyte and electrode structure, affecting the structural 
integrity of the electrode. Excessive ZnO obstructs the pores 
of the air electrode, impeding the rapid transport of gas and 
ion, reducing the active reaction area and stability. The sta-
bility of the ZABs is also affected by uneven distribution of 

active components during charging process of zinc anode, 
due to the liquid-phase mass transfer resistance. This results 
in higher deposition rates of active components on protrud-
ing regions of the zinc electrode surface, causing to the for-
mation of zinc dendrites and altering the electrode’s shape. 
These dendrites pose a grave challenge to the overall stabil-
ity and functionality of the ZABs.

Last, the sensitivity of zinc to moisture is a significant 
concern, leading to self-discharge reactions when exposed 
to humid environments, ultimately reducing the battery’s 
shelf life and overall performance. The air electrode is also 
susceptible to degradation over time due to the complex 
ORR occurring on its surface. Continuous exposure to harsh 
electrochemical conditions during charge/discharge cycles 
leads to the progressive deterioration of the electrode’s cata-
lytic activity and structural integrity. To address this issues, 
robust encapsulation techniques and/or moisture-resistant 
materials are essential to enhance the reliability of ZABs.

Besides, significant reduction in performance stability 
and durability is observed upon deactivating the catalysts in 
ZABs. Conventional cell fabrication methods using casting 
or coating with polymeric binders are often considered labo-
rious and time-consuming. In this context, self-supported 
electrocatalysts directly grown on conductive substrates, 
such as carbon cloth, Ni foam, and stainless steel (SS) mesh, 
have emerged as compelling choices. Numerous approaches 
are centered around electrode design enhancements aimed 
at bolstering this stability. Direct growth (in situ) of highly 
active catalysts on corrosion-resistant conductive substrates 
is an efficient strategy to inhibit cycle corrosion effects in 
high-efficiency air electrodes. It can also offer bendability, 
portability, crumpled morphology, and lightweight nature. 
The integration of catalytic materials with conductive sub-
strates creates opportunities to advance electrocatalytic 
technologies and presents an attractive prospect for catalysis 
research and development.

(3) Advanced ionic liquid or (quasi- or all-) solid-state 
electrolytes: The choice of electrolyte is vital to ensure 
ZABs’ enduring functionality, acting as the conduit for ion 
migration during charging/discharging, impacting ohmic 
resistance of batteries. Like any other batteries, evaporation 
and leakage of electrolytes are also critical issues affecting 
the device performance, safety, and lifetime of ZABs. Con-
ventional alkaline electrolytes in primary ZABs suffer from 
zincate precipitation and carbonation, limiting their cycle 
life. The vulnerability to atmospheric  CO2 leads to carbonate 
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formation, reducing conductivity and hindering air diffusion. 
This increases polarization and shortens battery lifespan. 
Although many efforts have been made to mitigate carbon-
ate formation through physicochemical adsorption of  CO2, 
such approaches may result in considerable material and 
management costs.

Ionic liquids are potential alternatives to conventional 
aqueous alkaline electrolytes, offering benefits such as 
reduced electrolyte evaporation, resistance to hydrogen evo-
lution and  CO2 poisoning, and improved battery efficiency 
and cycle life. Additionally, electrolyte additives, such as 
zinc acetate and citric acid, can enhance the performance of 
ZABs by improving the shape change of the zinc electrode. 
Introducing inorganic or organic additives into electrolytes 
helps mitigate dendrite formation and irregularities on elec-
trode surfaces. For example, the addition of polyethylene 
glycol (PEG) as an electrolyte additive has been demon-
strated to effectively mitigate the kinetics of zinc electro-
deposition and inhibit the growth of zinc dendrites.

Quasi- or all-solid-state electrolytes, serving dual roles as 
ion conductors and separators, simplify battery design and 
manufacturing processes. This approach effectively tackles 
issues tied to highly active zinc electrodes and aqueous elec-
trolytes, mitigating concerns such as corrosion, passivation, 
and dendrite growth. This is achieved through the advan-
tageous attributes of semisolid electrolytes, such as their 
restricted water content and high elastic modulus, which 
facilitate effective alleviation of these challenges. Employ-
ing semisolid electrolyte systems offers a promising avenue 
to address challenges associated with interactions, enhancing 
the performance and stability of zinc-based electrochemical 
systems.

Research is ongoing to explore novel electrolyte formula-
tions for enhanced performance and cyclability. The water-
in-salt (WIS) electrolytes are a recent invention to prohibit 
anodic HER and widen the potential window [257]. The high 
salt concentration electrolytes could be an effective strat-
egy to address issues like HER and dendrite growth at the 
anode side. Dong et al. reported a highly concentrated aque-
ous electrolyte containing zinc acetate with unprecedented 
solubility (up to 23 m) by using the hydrotropic agents 
that transform the acetate anion ligands into a hydrophilic 
coordination structure. The hydrotropic agents, including 
potassium acetate, urea, and acetamide, are effective in con-
structing highly concentrated zinc acetate electrolytes which 

retain 70% of their initial capacity after 4,000 cycles on Zn//
pyrene-4,5,9,10-tetraone full cell of ZABs [258]. Further, 
efforts toward improving the electrolyte–electrode interfacial 
properties must be emphasized when replacing the incum-
bent liquid electrolytes with versatile solid-state alternatives.

(4) Portable and flexible ZABs: Recent developments in 
portable and flexible ZABs hold great promise for wearable 
devices, such as wearable cell phones, human-like electronic 
skins, and intelligent bracelets. The fabrication of flexible 
ZABs necessitates the integration of flexible current collec-
tors, electrolyte membranes, and encapsulating materials. 
Careful design of each component is essential to maintain 
stable electrochemical performance, even under deforma-
tion. Moreover, ensuring structural and mechanical stability 
of the fabricated electrodes is vital for long-term and cyclic 
utilization. As aforementioned, a key challenge for future 
research is fabricating all- or quasi-solid-state electrolytes, 
exhibiting both high ionic conductivity and mechanical 
robustness. The utilization of binder-free self-supported air 
electrodes excels in meeting the demanding requirements of 
flexible devices. These advantages include simplifying the 
design and fabrication of air electrodes, allowing for practi-
cal and scalable preparation of self-supported electrodes. 
Thus, enhancing the interaction between active materials 
and substrates through judicious optimization of prepara-
tion conditions emerges as a critical aspect to be pursued in 
order to achieve the desired objectives in the development 
of flexible ZABs.
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