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 HIGHLIGHTS

• A hollow core–shell structure was constructed with C–Co as the exoskeleton to support the MXene and multiwalled carbon nanotubes 
(MWCNTs) endoskeleton, with MWCNTs growing toward the center of the sphere.

• A reflection loss of − 70.70 dB and an effective absorption bandwidth of 5.67 GHz were obtained when the thickness was only 
2.04 mm. The powder filler ratio was only 15 wt%.

• The unique hollow core–shell structure enhanced multiple reflection and scattering losses.

ABSTRACT High-performance microwave absorption (MA) materi-
als must be studied immediately since electromagnetic pollution has 
become a problem that cannot be disregarded. A straightforward com-
posite material, comprising hollow MXene spheres loaded with C–Co 
frameworks, was prepared to develop multiwalled carbon nanotubes 
(MWCNTs). A high impedance and suitable morphology were guaran-
teed by the C–Co exoskeleton, the attenuation ability was provided by 
the MWCNTs endoskeleton, and the material performance was greatly 
enhanced by the layered core–shell structure. When the thickness was 
only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and 
the minimum reflection loss  (RLmin) was − 70.70 dB. At a thickness of 
1.861 mm, the sample calcined at 700 °C had a  RLmin of − 63.25 dB. 
All samples performed well with a reduced filler ratio of 15 wt%. This 
paper provides a method for making lightweight core–shell composite 
MA materials with magnetoelectric synergy.
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1 Introduction

Electromagnetic waves (EMW) have been widely used as 
functional carriers for information transmission in fields 
such as communications, medical treatment, and the military 
thanks to the rapid development of wireless communication 
technology and the electronic industry, especially with grad-
ual popularization of fifth-generation mobile communication 
technology (5G) and the proposed 6G [1–9]. In addition to 
serving humanity, these information carriers also seriously 
affect electromagnetic safety [10]. As a result, there is a criti-
cal need to create effective microwave absorbing materials 
(MAM), especially in the gigahertz radar frequency band, 
to extend the lives of electronic components, safeguard the 
environment and public health, and provide vital information 
security [11–13].

Excellent MAM design, as is generally known, results 
from taking into account the composition and microstructure 
design [14, 15]. Since it is challenging to combine imped-
ance matching and attenuation capability in traditional sin-
gle components, the MA performance is typically improved 
via the synergistic effects of many components [16]. For 
example, some researchers used the pore structures of natu-
ral materials to obtain high-performance electromagnetic 
wave-resistant materials through carbonization and chemi-
cal modification [17–19]. Others have constructed structures 
with large pores to enhance the electromagnetic properties 
of the material [20–22]. In addition, foldable, flexible, and 
multifunctional composite materials can be obtained by 
introducing polymers [23, 24]. Conductive carbon-based 
materials such as graphene, carbon nanotubes (CNTs), and 
fibrous carbon materials have received widespread attention 
due to their high dielectric properties and simple prepara-
tions [25, 26]. MXene, a developing two-dimensional gra-
phene-like material, is highly desired in the MA industry 
because of its high specific surface area, strong conductivity, 
and abundance of surface functional groups (–F, –O, –OH) 
[27, 28]. However, high conductivity can quickly lead to a 
mismatch in the MXene impedance, which can cause inci-
dent electromagnetic waves to reflect into the atmosphere 
[29, 30]. Based on this, researchers have added magnetic 
materials to the two-dimensional accordion structures of 
MXene to balance the high conductivity and achieve effi-
cient MA via magnetoelectric synergy [31–34]. Neverthe-
less, the attenuation capacities of composite MAMs are still 

somewhat impacted by strongly self-stacking MXene [35, 
36]. Therefore, several MXene morphological forms, includ-
ing aerogels and core–shell structures, have been studied. 
Due to the numerous heterogeneous interfaces, anisotropy, 
and distinctive cavities, core–shell structures exhibit effi-
cient EMW attenuation. The core–shell construction also 
addresses the issue of material self-stacking [14, 37–39]. 
Currently, core–shell structure construction methods are 
roughly divided into surface polymerization and wrapping, 
direct chemical precipitation, self-assembly, and template 
methods. Among them, the hard template method can be 
applied by adjusting the template size to regulate the sizes 
of the nanoparticles [40, 41].

Magnetic particles can be obtained by carbonizing 
metal–organic frameworks (MOFs). MOFs are crystalline 
porous materials comprised of metal ions or clusters and 
organic ligands that provide a designable composition, 
customizable pore structure, high crystallinity, and a large 
specific surface area [42]. As a result, they are widely used 
in water pollution treatment, catalysis, electronics, capaci-
tors, drug delivery, and optics [43–47]. MOFs have gained 
attention as matrixes in MAM construction since the pro-
posal of carbon-based MAMs produced from Prussian blue 
in 2015 [48]. Zeolitic imidazolate frameworks (ZIFs) are 
a class of MOFs materials. ZIF67 is one of the structural 
materials of ZIFs. Since ZIF67 has a unique structure of 
rhombic dodecahedron and is simple to prepare, it has been 
exploited extensively. By carbonizing ZIF67-based materi-
als, multiple polarizations and a distinctive magnetoelectric 
coordination mechanism were produced, which optimized 
the electromagnetic parameters and improved the MA per-
formance of the composite material [25, 42]. On the other 
hand, the carbonized structural morphology, graphitization 
level, and magnetism of ZIF67 itself are influenced by tem-
perature and other factors. In situ-produced CNTs have been 
used by some researchers, while others have demonstrated 
that ZIF67 can produce porous C/Co frameworks with their 
original architectures after high-temperature calcination 
[49–52]. It is vital to maintain the outstanding conductivi-
ties and excellent aspect ratios of CNTs/MWCNTs, which 
offer extensive pathways for electron migration and transi-
tions within the MAMs to release electromagnetic energy as 
thermal energy [53–56].

Based on the foregoing, an innovative strategy for pre-
paring composite core–shell MAMs with MXene  (Ti3C2Tx) 
as the intermediate layer was developed. The MXene 
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nanosheets were loaded onto a rigid, 0-dimensional tem-
plate for high-temperature pyrolysis to avoid the stacking 
issue. The surface functional groups of MXene spheres 
were utilized as  Co2+ ion sites, and an entire ZIF67-coated 
core–shell structure was obtained by self-assembly. The 
C–Co skeleton produced after high-temperature calcina-
tion served as the exoskeleton to support the hollow MXene 
spheres while maximizing impedance matching. Nonzero-
dimensional structures, complex components, and solvent-
soluble polymers were excluded from use as sacrificial tem-
plates [57–60]. Taken together, and to meet the demand for 
production of carbon nanotubes, PS microspheres, which 
are simple and easily accessible, were chosen as templates. 
The original endoskeleton was replaced by in situ growth of 
MWCNTs through high-temperature calcination, leading to 
a successful core–shell structure comprising hollow MXene 
sphere weaved MWCNTs with a C–Co skeleton (HMCCo). 
Such a distribution of carbon nanotubes growth on the inner 
side of the spherical shell has not been reported as far as our 
knowledge. In addition, for the same materials in the MXene 
and CNTs systems, the prepared absorbers have ultrahigh 
MA performance at lower thickness and packing ratios.

2  Experimental and Calculation Methods

2.1  Materials

Polystyrene microspheres (PSs, diameter: ~ 10 μm) were 
obtained from Dongwan Tesu Lang Chemical Raw Material 
Factory.  Ti3AlC2 powder was purchased from Jilin 11 Tech-
nology Co., Ltd. (Jilin, China). Cobalt nitrate hexahydrate 
(Co(NO3)2·6H2O), 2-methylimidazole, anhydrous metha-
nol, and poly dimethyl diallyl ammonium chloride (PDDA, 
20 wt% in  H2O) solution were obtained from Sinopharm 
Chemical Reagent Co., Ltd. All materials were used without 
further purification.

2.2  Synthesis of the MXene/MWCNTs@C–Co 
Composite

2.2.1  Synthesis of PS@MXene

A  Ti3C2Tx MXene solution was prepared according to a 
previously reported method [61]. PS was ultrasonically 
dispersed in 1 wt% PDDA solution and stirred for 12 h. 

Ultrasonication was carried out in an ice-water bath at 
240 w power for 1.5 h. Then, the P-PS white precipitate 
was collected by centrifugation, washed with deion-
ized water to remove excess PDDA, and finally dried for 
24 h in a blast dryer at 70 °C. The obtained P-PS pow-
der was dispersed in deionized water at a concentration 
of 10 mg  mL−1, and then it was slowly added to an equal 
volume of stirred MXene solution (1.0 mg  mL−1). The 
mixed solution was stirred and reacted at room tempera-
ture for 12 h, followed by centrifugation to obtain a pre-
cipitate, and finally, vacuum-dried overnight at 60 °C to 
obtain PS@MXene (PM).

2.2.2  Synthesis of PS@MXene@ZIF67

PS@MXene@ZIF67 (PMZ) was synthesized via a simple 
method. Co(NO3)2·6H2O (400 mg) and 2-methylimidazole 
(452 mg) were separately dissolved in 50 mL of anhydrous 
methanol. PM (x mg) was added to the Co(NO3)2·6H2O 
methanol solution, sonicated at 120 w power for 30 s, and 
stirred for 2 h. Afterward, the 2-methylimidazole methanol 
solution was quickly added, and the solution was slowly 
stirred at room temperature for 24 h. Finally, the purple 
product was collected by centrifugation and dried in a 
60 °C vacuum oven for 6 h. The samples prepared with 
x equal 400, 300, 200, and 100 were denoted as PMZ-1, 
PMZ-2, PMZ-3, and PMZ-4, respectively.

2.2.3  Synthesis of Hollow MXene/MWCNTs@C–Co 
Microspheres

Hollow MXene/MWCNTs@ C–Co microspheres (HMCCo) 
were obtained with a high-temperature heat treatment under 
nitrogen in a tube furnace. PMZ was added to the porcelain 
boat and placed in a tube furnace. The heating rate of the 
tube furnace was set at 5 °C  min−1, the insulation time was 
2 h, and the gas flow rate was 80 mL  min−1. The products 
formed from PMZ-1, PMZ-2, PMZ-3, and PMZ-4 after heat 
treatment at 600 °C were labeled as HMCCo-1, HMCCo-2, 
HMCCo-3, and HMCCo-4, respectively. The heat treatment 
products of PMZ formed at 400, 500, 600, 700, and 800 °C 
were labeled HMCCo-400, HMCCo-500, HMCCo-600, 
HMCCo-700, and HMCCo-800, respectively.
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2.3  Characterization

Microscopic morphologies and structures were observed 
with transmission electron microscopy (TEM, G220, FEI) 
and scanning electron microscopy (SEM, FEI Inspect F50). 
The crystal structures of the composite materials were 
obtained with X-ray diffraction (XRD, Ultima IV, Rigaku). 
The chemical compositions and elemental valence states 
were characterized with Raman spectroscopy (RAM-PRO-
785E, Agiltron) and X-ray photoelectron spectroscopy (XPS, 
Thermo ESCALAB 250XI). Hysteresis loops were meas-
ured with a vibrating sample magnetometer (VSM, Lake-
Shore7404). Thermogravimetric properties were obtained 
using a thermogravimetric analyzer (TG209 F3). The pre-
pared HMCCo powder was mixed with paraffin and pressed 
into a coaxial ring with an outer diameter of 7 mm and 
an inner diameter of 3.05 mm. The filler ratio of HMCCo 
in each coaxial ring was 15 wt%. The pre-experimental 
results for the selection of filler ratio are shown in Fig. S22. 
The electromagnetic parameters of the sample prepara-
tion were based on the coaxial-line method and obtained 
through a vector network analyzer (Ceyear 3656D) within 

the frequency range 2–18 GHz. All samples were examined 
at least three times. Based on this, according to transmis-
sion line theory, the reflection loss (RL) was calculated as 
follows:

where Zin and Z0 are the input impedance of the microwave 
absorber and free space impedance, �r is the complex perme-
ability, �r is the complex permittivity, f  is the frequency of 
the electromagnetic wave, d is the thickness of the absorber, 
and c is the velocity of light in a vacuum [29, 62].

3  Results and Discussion

3.1  Fabrication and Characterization of HMCCo

The fabrication procedures of HMCCo for a hollow sphere 
structure absorber are shown in Fig. 1. Briefly, few-layer 
MXene nanosheets were obtained by HCL-LiF etching and 
ultrasound irradiation. The PS microspheres were positively 

(1)RL = 20log|(Zin − Z0)∕(Zin + Z0)|

(2)Zin = Z0

√
�r∕�rtanh(j

2�fd

c

√
�r�r)

Fig. 1  Schematic illustration of the synthetic process for the HMCCo absorber



Nano-Micro Lett.          (2024) 16:107  Page 5 of 19   107 

1 3

charged after they were modified with PDDA. After that, 
the negatively charged MXene nanosheets in the suspen-
sion were electrostatically self-assembled onto PDDA-PS 
spheres through hydrogen bonding.  Co2+ was captured by 
the abundant functional groups on MXene and served as the 
binding sites for subsequent reactions. Then, ZIF67 was self-
assembled onto the PS@MXene spheres. Finally, HMCCo 

was obtained by high-temperature calcination to remove the 
PS templates. Additionally, the labels and abbreviations used 
are listed in Table S1.

The anticipated morphology was revealed by SEM and 
TEM. As shown in Fig. 2a, the original PS spheres were 
smooth. In Fig. 2b, MXene nanosheets were successfully and 
uniformly covered on the surfaces of the PS spheres through 

Fig. 2  SEM images of a PS, b PS@MXene, c PS@MXene@ZIF67, and d HMCCo-2. e SEM images of an open HMCCo-2 spherical shell and 
the internal structure of the spherical shell. f Elemental mappings of HMCCo-2. g TEM image of the edge of the sample fragments obtained 
after ultrasonication, including carbon nanotubes grown in situ. h TEM image of a single carbon nanotube separated by ultrasound. i HRTEM 
image corresponding to the white circle in (h) 
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electrostatic attraction. Figure 2c shows that the spherical 
surface was completely wrapped by ZIF67 polyhedral par-
ticles with distinct edges and corners. However, if the PS 
sphere was not coated with MXene nanosheets, the absence 
of  Co2+ attachment sites hindered the growth of ZIF67 on 
the sphere surface, as depicted in Fig. S1. The SEM image 
(Fig. 2d) of the sample after high-temperature calcination 
still showed a complete spherical structure, but the ZIF67 
on the surface was carbonized and collapsed, resulting in 
cross-linking. The aforementioned conditions arose for two 
reasons: on the one hand, during calcination, the organic 
ligands decomposed; on the other hand, the transition metal 
cobalt used as a catalyst for formation of the MWCNTs 
was consumed [63]. In addition, the ZIF67 exoskeleton 
maintained the original appearance of the spherical shells 
and prevented them from shrinking after the loss of the PS 
template at high temperatures. After calcination, a very 
interesting morphology appeared, with many carbon nano-
tubes growing toward the interiors of the spherical shells 
and forming a unique conductive network. This may have 
occurred because, during calcination, the innermost carbon 
PS spheres and intermediate layer MXene nanosheets of the 
spherical shell were rich carbon sources for generation of the 
carbon nanotubes, while the ZIF67 on the PMZ surface pro-
vided sufficient catalyst, resulting in the interesting layer-by-
layer assembly. EDS mappings (Fig. 2f) revealed that Co and 
C were tightly bound and evenly distributed on the MXene.

The edges of the spherical shell fragments grew clear 
CNTs (Fig. 2g). The separated single CNTs were obtained 
by ultrasonic (Ice bath, ultrasound at 320 w power for 
20 min) dispersion in HMCCo-ethanol, as shown in Figs. 2h 
and S2. Multiwalled carbon nanotubes with diameters of 
approximately 15 nm appeared in the high-resolution TEM 
image (Fig. 2i), and nanoparticles with diameters of approxi-
mately 10 nm were encapsulated at the tops of the nano-
tubes, which was consistent with the SEM image. The spac-
ing of 0.206 nm corresponded to the (111) plane of the Co 
metal particles, and the outer layer with a spacing of 0.35 nm 
corresponded to the (002) plane of graphitized carbon [64, 
65]. Figure S2b shows the distribution of C and Co, with 
Co concentrated at the closed top of the CNT. Figure S3 
shows the SEM images of PMZ samples made with differ-
ent mass ratios before and after calcination at 600 ℃. Figure 
S3a2, b2 shows that when the mass ratio of PS@MXene to 
cobalt nitrate was 1:2, ZIF67 had a very good coating on the 
sphere, and the sphere was intact after calcination. When 

the growth of ZIF67 increased, it was difficult to ensure the 
integrity of the spheres after calcination. When the mass 
ratio was 1:4 (Fig. S3a4), the PMZ showed excessive ZIF67 
encapsulation and slight detachment.

Figure 3a shows the XRD pattern for the prepared absor-
bent material. HMCCo-2 had a small, broad peak at 25.6°, 
which was believed to originate from the (002) crystal plane 
of the hexagonal graphite CNTs [66]. The peaks at 44.2°, 
51.6°, and 75.8° represented the (111), (200), and (220) 
planes of metallic cobalt with the face-centered cubic struc-
ture (JCPDS No. 15–0806), respectively. The small peak for 
the PM at 6.2° arose from the (002) plane of MXene. Com-
bined with the SEM images, it was found that MXene was 
successfully encapsulated onto the PS spheres. However, 
other smaller peaks for the (004), (006), (008), and (0010) 
planes of MXene shown in Fig. S4 were not observed for 
PM [67]. The peaks at 7.2°, 10.2°, 12.58°, 14.58°, 16.3°, 
17.86°, 24.34°, 26.46°, 29.46°, and 32.2° for PMZ-2 were 
due to the (002), (112), (022), (013), (222), (233), (134), 
(044), and (235) planes of ZIF67, respectively [68]. The 
disappearance of these peaks and generation of the cobalt 
peaks indicated the conversion of the  Co2+ ions in ZIF67 
into metallic Co particles.

The graphite properties shown via XRD were con-
firmed with Raman spectroscopy (Fig. 3b). The D band 
(1355.4  cm−1) and G band (1589.1  cm−1) caused by sp2 
hybridization were observed in HMCCo-2. The heights of 
the D band and G band represent the contents of disordered 
carbon and graphite carbon, respectively, in the lattice struc-
ture [69]. The ratio of ID and IG in the figure was 0.915, and 
the strong D band indicated that there may be defects in the 
graphite carbon or MXene nanosheets in the sample. The 
main Raman peaks for the PS spheres were at 621, 1030, 
1177, 1451, and 1603  cm−1 [70]. The characteristic Raman 
peaks for PS in PMZ-2 disappeared in HMCCo, implying 
the removal of PS microspheres, which is consistent with the 
results of thermogravimetric analysis (Fig. S5). The peaks 
at 201 and 723  cm−1 arose from Ti–C and C–C vibrations, 
while the peak at 620  cm−1 was generated by vibrations 
of the –OH groups. In addition, a characteristic peak for 
MXene appeared at 1553  cm−1, which was also shown in PM 
[71, 72]. The peaks at 128, 162, 179, 260, and 687  cm−1 for 
PMZ-2 were the characteristic peaks of ZIF67, where those 
at 162 and 179  cm−1 were generated by N–Co–N vibrations, 
and the peaks at 260 and 687  cm−1 were derived from the 
C–CH3 bonds in imidazole. The appearance of these peaks 
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indicated the successful growth of ZIF67 on the surface of 
PM. The characteristic peak for the MXene in HMCCo-2 
shifted to 191  cm−1, indicating that the interlayer spacing of 
MXene had increased after calcination. The peaks at 472 and 
675  cm−1 represented the Raman active  Eg and  A1g modes 
for  CoOx [73]. Therefore, there was oxidized cobalt in the 
product, but it was not detected by XRD, indicating that the 
Co nanoparticles in the sample may be encapsulated by thin 
layers of cobalt oxide. No metal Co particle vibration was 
observed in Raman, which was consistent with experimental 
results reported in the literature [74, 75].

The chemical compositions and valence states of the 
PMZ-2 and HMCCo-2 samples were characterized with 

XPS. Figure 3c–f shows that the sample was composed 
of C, Ti, Co, N, O, and F. The C 1s peaks at 283.4, 284.3, 
284.8, 285.3, 286.2, and 288.2  eV were from C–Ti, 
Ti–C–O, C–C/C=C, C–N, C–O, and O–C=O groups, 
respectively [15] (Fig. 3d). The Ti 2p3/2 peaks at 455.4, 
457.9, 458.8, and 460.9 eV for the PMZ sample before 
heat treatment shown in Fig. 3e corresponded to Ti-C, 
Ti(III), Ti–O, and C–Ti–F groups, respectively. The cor-
responding Ti 2p1/2 peaks were at 462.3, 464, 464.8, and 
466.9 eV, respectively. The HMCCo-2 obtained after calci-
nation only had four distinct peaks, namely, those for Ti–C 
2p3/2 and Ti–C 2p1/2 at 454.8 and 462.2 eV, as well as two 
peaks for Ti–O [76]. Due to the absence of  TiO2 peaks in 

Fig. 3  a XRD patterns for ZIF67, PS, PM, PMZ-2, and HMCCo-2. b Raman spectra of PS, MXene, PM, PMZ-2, and HMCCo-2. c XPS survey. 
d C 1s spectra of PMZ-2 and HMCCo-2. e Ti 2p spectra of PMZ-2 and HMCCo-2. f Co 2p spectra of PMZ-2 and HMCCo-2
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the XRD and Raman data, it is believed that the terminal 
groups of MXene in the heat-treated sample were replaced 
by Ti–O [77]. After calcination, metallic Co (Co°) and 
Co compounds were present in the sample. As shown in 
Fig. 3f, the peak positions at 778.5 and 793.6 eV corre-
spond to the 2p3/2 and 2p1/2 energy levels of metallic Co, 
respectively, and those at 780.6 and 795.6 eV were the 
2p3/2 and 2p1/2 binding energies of Co(III), respectively. 
The peaks at 782.3 and 796.9 eV corresponded to the 2p3/2 
and 2p1/2 states of Co(II), and the satellite peaks were at 
786.3 and 802.4 eV [75, 78]. There was no metallic Co 
present in the untreated PMZ-2 sample. The deconvoluted 
N 1 s peaks (Fig. S6a) showed the presence of pyridinic 
N (398.9 eV), graphitic N (400.8 eV), and oxidized N 
(403.5 eV) in the sample. According to prior research, 
abundant pyridinic Ns in HMCCo-2 improve the conduc-
tivity [79]. There were five binding energies in the O 1s 
(Fig. S6b) spectrum of the HMCCo-2 sample for Ti–O 
(530.3 eV), C–Ti–Ox (531.7 eV), Ti–C–(OH)x (532.7 eV), 
 H2O (533.7 eV) and O–F (535.4 eV) [80]. The peaks for 
Ti–C–(OH)x and O–F appeared before calcination. The 

F 1s (Fig. S6c) peaks for the C–Ti–F (684.4 eV) groups 
appeared in the samples before and after calcination [81].

3.2  Electromagnetic Wave Absorption Performance 
of HMCCo

The absorption of an absorber is closely related to its com-
plex permittivity ( �r = �� − j��� ) and complex permeability 
( �r = �� − j��� ). Generally, the real components ( �′ and �′ ) 
and imaginary components ( �′′ and �′′ ) represent the stor-
age and dissipation capacities of the absorber with elec-
tromagnetic waves, respectively [76]. To investigate the 
effect of C–Co content on the performance of the absorber, 
the electromagnetic parameters were tested within the fre-
quency range 2–18 GHz for all paraffin sample coaxial 
rings with 15 wt% filler ratios. As shown in Fig. 4, as 
the coverage of C–Co increased, �′ and �′′ , the relative 
complex dielectric constant and dielectric loss tangent 
( tan�ε = ���∕�� ), showed decreasing trends. This indi-
cated that the increased relative content of magnetic C–Co 
weakened the dielectric storage and dissipation capabili-
ties of the absorber. The free electron theory indicates 

Fig. 4  a Real and b imaginary parts of the complex permittivity, c dielectric loss tangent values, d real and e imaginary parts of the permeabil-
ity, and f magnetic loss tangent values for HMCCo-1, HMCCo-2, HMCCo-3, and HMCCo-4
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that a high �′′ leads to high conductivity, and with higher 
conductivities, more electromagnetic waves are reflected, 
which hinders the entry of electromagnetic waves into 
the interior of the absorber [82]. The real and imaginary 
parts decreased with increase in C–Co content because 
anchoring of the magnetic C–Co networks weakened the 
electronic transitions between the conductive networks 
constructed of pure MXene. The decreasing trend for the 
real part with increase in frequency was consistent with 
the typical frequency dispersion effect. In addition, �′′ and 
tan�e exhibited some fluctuations in the range 2–18 GHz, 
which were due to relaxation peaks caused by polarization 
effects. The Cole–Cole diagram (Fig. S6) based on Debye 
theory demonstrates the polarization behavior of preparing 
absorbers, and the specific formula as follows [83, 84]:

(3where �s and �∞ are the static dielectric constant and 
relative dielectric constant at the high-frequency limit, 
respectively. In the Cole–Cole diagrams of the HMCCo 
samples, some irregular semicircles were observed. This 
indicated that polarization relaxation occurred in the pre-
pared sample due to the influence of an external electro-
magnetic field. The main stimulating factors for relaxation 
are interface polarization and dipole planning [85, 86]. In 
the HMCCo series, interfacial polarization was attributed 
to the accumulation of positive and negative charges from 
the C–Co/MWCNTs, MWCNTs/MXene, and Co nanopar-
ticles/MWCNTs. Dipolar polarization was mainly caused 
by abundant defects in the MWCNTs and MXene and polar 
functional groups with different charges. Therefore, the 
constructed hollow multilayer MXene/MWCNTs/C–Co 
spherical shell structure contributed to dielectric loss.

Magnetic losses caused by magnetic metal cobalt nano-
particles are important for enhancing electromagnetic wave 
dissipation. As shown in Fig. 4d–f, there were several reso-
nance peaks for the complex permeability of the absorber, 
and within the range 2–18 GHz, the values of �′ and �′′ 
were relatively stable. The negative fluctuation at ~ 5 GHz 
displayed in the imaginary part of the HMCCo-4 spectrum 
may have been caused by the direct current generated via 
migration of charge carriers inside the material due to the 
action of an external magnetic field [87]. Additionally, 
the magnetic loss tangent ( tan�μ = ���∕�� ) values of the 

(3)
(
�� −

�s + �∞

2

)2

+
(
���

)2
=
(�s − �∞

2

)2

four samples were all within the range − 0.3 to 0.2 and 
showed small upward trends. It is worth noting that in 
the range 2–18 GHz, tan�ε was larger than tan�μ , which 
demonstrated that the main form of electromagnetic wave 
consumption in the prepared materials was dielectric loss. 
Further magnetic loss mechanisms were indicated by the 
���(��)−2f −1-frequency curves [88]. The curve fluctuation 
shown in Fig. S8 indicated that eddy current losses can 
be ignored. Due to the confinement effect and micro-
scale of the Co particles, natural resonance and exchange 
resonance were the main causes of magnetic loss in the 
prepared composite materials. The magnetic parameters 
shown in Fig. S9 for the samples before and after calcina-
tion were measured at room temperature with a vibrating 
sample magnetometer. Typical magnetism is shown in Fig. 
S9b, and the saturation magnetization (Ms) of HMCCo-2 
was approximately 27.93 emu  g−1. Considerable strength 
was contributed by the cobalt metal, and in addition, the 
sample exhibited low coercivity (Hc = 140.3 G) and rema-
nence (Mr = 9.9 emu  g−1).

The absorption capacities of samples with thicknesses of 
1–5 mm are demonstrated with 3D images (Fig. 5). Fig-
ure 5a–f shows the outstanding absorption performance of 
the prepared material. The RL values were calculated with 
Eqs. 4 and 5. The four samples reached  RLmin values of 
13.63, 14.56, 15.49, and 17.89 GHz, which were − 54.64, 
− 70.70, − 68.26, and − 61.07 dB, respectively. Generally, 
within the frequency range corresponding to RL values 
less than − 10 dB, 90% of electromagnetic waves can be 
absorbed by the absorber, and this frequency range is called 
the effective absorption bandwidth. The effective absorp-
tion bandwidth (EAB) values of the HMCCo series with 
matching thicknesses were 5.54, 5.67, 4.60, and 2.63 GHz, 
respectively, as shown in Fig. 5e. All samples reached the 
 RLmin value at ~ 2 mm, and the performance of HMCCo-2 
was superior to those of the other samples. The optimal RL 
was − 70.70 dB at 14.56 GHz, with an EAB of 5.67 GHz 
(12.33 ~ 18  GHz). A more detailed RL analysis of the 
HMCCo series at 2–18 GHz is shown in Fig. S10a. As the 
thickness of the absorber increased, the optimal RL peak 
shifted toward low frequencies, which is consistent with the 
well-known 1/4 wavelength matching model [89].

Typically, the mechanisms by which materials enhance 
electromagnetic wave absorption can be understood by 
discussing their ability to capture and attenuate incident 
waves. Good impedance matching ensures that as many 



 Nano-Micro Lett.          (2024) 16:107   107  Page 10 of 19

https://doi.org/10.1007/s40820-024-01326-3© The authors

electromagnetic waves as possible enter the interior of the 
absorber. This is evaluated with the normalized characteris-
tic impedance ( Z ), which is calculated according to Eq. 4:

Z values closer to 1 indicate better impedance matching 
[90, 91]. As shown in Fig. S10b, compared to the other two 
samples, HMCCo-1 and HMCCo-2 had larger optimum 
||Zin∕Z0|| values (near the wathet area), which enabled the 
electromagnetic waves to enter the interior of the material. 
The curve for the Z value in Fig. S11b indicated that the area 
of the curve for the HMCCo-2 sample was larger in the area 
near Z =1 than those of the other three samples. HMCCo-4 
showed the worst impedance match. This indicated that 
impedance matching first increased and then decreased with 
increase in C–Co. Note that the impedance of the composite 
material was related to the electromagnetic parameters of 
the material, and there was an optimal impedance value in 
a certain region for each sample, which means that the con-
structed multilayer hollow spherical structure optimized the 

(4)Z = ��Zin∕Z0�� =
√
�r∕�rtanh

�
j
2�fd

c

√
�r�r

�

electromagnetic parameters of the composite system. The 
presence of metallic Co and the carbon nanotubes regulated 
the magnetic permeability and dielectric constant of the 
composite system. Furthermore, the attenuation constant � 
was used to determine the overall efficiency of the absorber 
in consuming electromagnetic waves. The � value is repre-
sented by Eq. 5 [92, 93]:

The frequency-dependent � curve (Fig. S11a) shows that 
within 2–18 GHz, the ability of all absorbers to attenuate 
electromagnetic waves increased with increase in frequency. 
In the high-frequency range, attenuation by the absorber first 
increased and then decreased. The HMCCo-2 sample exhib-
ited strong attenuation at high frequencies, and when the 
||Zin∕Z0|| value approached 1, RL reached its extreme value 
of − 70.70 dB, and the matching thickness was 2.04 mm, as 
shown in Fig. S12. In contrast, an appropriate C–Co load-
ing provided a better balance between impedance match-
ing and the attenuation constant, thereby achieving efficient 
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Fig. 5  3D reflection losses of a HMCCo-1, b HMCCo-2, c HMCCo-3, and d HMCCo-4. e Reflection losses with matching thicknesses of the 
HMCCo samples. f EABs of the HMCCo series
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absorption of electromagnetic waves. EAB is one of the indi-
cators used for evaluating the performance of absorbers, as 
shown in Fig. S10c. Thickness of 1.5–5 mm for the HMCCo 
series resulted in an EAB of 13.1 GHz (4.9–18 GHz) for 
HMCCo-2, which was slightly narrower than the EAB of 
HMCCo-1 (4.75–18 GHz), but better than those of the other 
samples. Both HMCCo-1 and HMCCo-2 reached their wid-
est EAB near 2 mm (Fig. S11c), which subsequently nar-
rowed due to the increased thicknesses, while HMCCo-3 
and HMCCo-4 achieved their largest EAB near 3 mm. This 
means that increasing the amount of C–Co to obtain a wider 
EAB requires increasing the thickness of the absorber.

To explore the advantages of ZIF67 and MXene synergy, 
four groups of comparative experiments were carried out. 
As shown in Fig. S13a, pure ZIF67 maintained a sharp 
dodecahedral structure after calcination at 600  °C, and 
no CNTs were generated. The growth of ZIF67 on the PS 
microspheres did not uniformly and completely envelop the 
entire PS spheres (Fig. S13b1). PS@ZIF67 After calcina-
tion, the template was removed, the ZIF67 particles aggre-
gated, and some of the calcined ZIF67 grew CNTs (Fig. 
S13b2). MXene provided binding sites for the ZIF67 par-
ticles, so the MXene surface was more uniformly wrapped 
by ZIF67, as shown in Fig. S13c1. In the calcined MXene@
ZIF67 sample, the originally grown ZIF67 particles between 
the layers were completely replaced by crisscrossing CNTs 
(Fig. S13c2). It is worth noting that the growth directions 
of the CNTs at this time were random. Figure S12d shows 
that the PS@MXene spheres without ZIF67 wrapped in the 
outer layer shrank after calcination, making it impossible 
to maintain the full spherical shell structure. The RL val-
ues of the comparison group are shown in Fig. S13, and all 
were inferior to that of the experimental group. The reason 
is that the attenuation constant and impedance matching of 
the comparison group did not balance each other (as shown 
in Fig. S15). In addition, the corresponding electromagnetic 
parameters are shown in Fig. S14. In summary, the structure 
designed in this paper made full use of the rich functional 
groups on the surface of MXene to provide binding sites 
for the growth of ZIF67. Additionally, the C–Co obtained 
after calcining ZIF67 was used as the exoskeleton supporting 
the MXene spherical shells, thus ensuring a full spherical 
shell structure. In addition, the PS served as an abundant 
carbon source and provided the basic conditions for in situ 
growth of the MWCNTs with spherical orientations. Perfect 

coordination of the structure and components resulted in an 
excellent performance by the composite absorbing material.

In summary, sample HMCCo-2 exhibited the best mor-
phology and most complete structure. Additionally, consid-
ering the attenuation and impedance matching of the sample, 
sample HMCCo-2 exhibited the minimum RL and the wid-
est EAB with a small matching thickness. Therefore, it is 
believed that the ratio of sample HMCCo-2 could enhance 
electromagnetic wave absorption. Moreover, in comparing 
the electromagnetic properties of the PMZ-2 sample (Fig. 
S16) without calcination, the C–Co layer and MWCNTs 
formed after calcination optimized impedance matching 
of the composite material and significantly improved the 
absorption and consumption of electromagnetic waves.

3.3  Effect of Calcination Temperature 
on the Properties of HMCCo

According to some studies, the temperature affects the 
degree of carbonization of ZIF67, which may cause changes 
in the electromagnetic properties of the HMCCo series [94, 
95]. Therefore, based on the optimal the MXene to ZIF67 
ratio, the influence of temperature on the sample morphol-
ogy and absorption performance was explored by adjust-
ing the calcination temperature during CVD. Specifically, 
the other conditions used for the tube furnace remained 
unchanged, including the nitrogen flow rate, the tempera-
ture rise and fall rates, and the insulation duration. Only 
the insulation temperature was changed, and five different 
temperature parameters were set from 400 to 800 °C for 
the experiments. The electromagnetic parameters of sam-
ples measured at different calcination temperatures with the 
vector network analyzer are shown in Fig. S17. The �′ of the 
samples obtained at 400 and 500 °C was approximately 2, �′′ 
was almost 0, and tan�ε also fluctuated slightly at approxi-
mately 0. This indicated that a heat treatment temperature 
below 500 °C was insufficient to improve the dielectric prop-
erties of the composite samples. Additionally, �′′ and tan�μ 
were almost zero, indicating that the samples obtained at 
these two sets of temperatures had no magnetic losses. When 
the temperature exceeded 600 °C, the electromagnetic per-
formance of the sample was significantly improved. It was 
observed that �′ showed an upward trend as the calcina-
tion temperature increased. As the temperature increased, 
�′′ exhibited more significant fluctuations, indicating that 
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phenomena such as interface polarization and dipole polari-
zation within the material were more prevalent. In addition, 
�′ first increased and then decreased with increase in tem-
perature, and the sample obtained at 700 °C had the highest 
�′ . The resonance behavior of the samples calcined at 700 
and 800 °C was stronger, and the negative peaks were more 
prominent, which was attributed to the increased direct cur-
rent generated by the movement of charge carriers inside 
the material. Overall, tan�ε was higher than tan�μ , indicating 
that the material consumed electromagnetic waves mainly 
due to dielectric loss.

Figure S18 shows that samples with temperatures above 
600 °C exhibited significant and complex relaxation behav-
ior, and the influence of eddy current loss was reduced. More 
magnetic losses came from natural resonance and exchange 
resonance. The resonance peak was more pronounced in 
samples treated at 800 °C, and they showed the strongest 
attenuation ability. However, strong attenuation does not 
necessarily mean strong RL performance. As mentioned 
earlier, the evaluation of RL requires comprehensive attenu-
ation and impedance matching. From the Z values shown in 
Fig. S19, it can be seen that the values of approximately 1 
for the Z values of the samples obtained from carbonization 
at 600 and 700 °C were significantly wider than those of the 
samples obtained at 800 °C. This may be due to the high 
calcination temperatures, increased carbonization degree of 
the sample, and enhanced dielectric properties, resulting in 
more electromagnetic waves being reflected by the sample, 
thereby weakening impedance matching. This conjecture 
can be verified with the Raman spectrum (Fig. S20). As 
the calcination temperature increased, the peak intensities 
for Co gradually increased compared to those of the D and 
G bands, indicating that the cobalt in the outermost layer 
of ZIF67 was largely metallic cobalt. In addition, the value 
of ID∕IG increased with increase in temperature, indicating 
more defects in the MXene or carbon nanotubes within the 
material, which may be the reason for more relaxation peaks 
in �′′ . However, no significant Co peaks were observed after 
calcination at 400 and 500 °C, indicating that ZIF67 main-
tained its original morphology at lower temperatures.

In general, the compositions and morphologies of the 
products were indeed affected by the carbonization tem-
peratures, thereby altering electromagnetic wave absorp-
tion by the samples. Based on the electromagnetic param-
eters obtained from testing, the RL values of the absorber 
were calculated for thicknesses from 1 to 5 mm, as shown 

in Fig. 6. Obviously, 400 and 500 °C were not sufficient to 
carbonize ZIF67, and in SEM images, the surfaces of these 
samples maintained the polyhedral morphology of ZIF67. 
As the temperature was increased, the minimum RL val-
ues of the prepared samples gradually decreased, ranging 
from − 70.70 dB at 14.56 GHz, − 63.25 dB at 15.28 GHz to 
− 62.91 dB at 11.42 GHz, respectively. Notably, the sample 
calcined at 700 °C exhibited the optimal RL with the thin-
nest matching thickness, with a width of only 1.861 mm. 
Moreover, the electromagnetic parameters were closely 
related to the chemical composition and structure of the 
sample. The SEM microscopic morphology diagram in 
Fig. 6g–k shows that as the temperature increased, while 
the PS template was removed, the spherical shell underwent 
slight shrinkage and indentation at high temperatures. This 
means that ZIF67 was heavily carbonized and did not serve 
as the exoskeleton. Therefore, the consumption of electro-
magnetic waves was restricted to some extent. The EAB was 
also affected by the temperature. The EAB of the sample 
calcined at 700 °C decreased to 4.38 GHz (13.62–18 GHz), 
while at 800 °C, it decreased to 3.70 GHz (9.46–13.16 GHz), 
and the effective absorption range was shifted to a lower 
frequency range at this temperature. As shown in Fig. S21, 
the optimal EAB was obtained by adjusting the thickness of 
the sample calcined at 600 °C from 1.5 to 5 mm.

3.4  Mechanism for Electromagnetic Wave Absorption 
Loss

The hollow spherical shell structure reduced the density 
of the material, improved the electromagnetic parameters 
and impedance matching in the sample [96, 97]. Single-
component materials are prone to impedance mismatch and 
lack of conductive networks, so other components are often 
introduced for regulation. Multicomponent heterogeneous 
interfaces exhibit capacitance-like modes between them, 
leading to polarization relaxation behavior of space charges 
under alternating electric fields, which results in polariza-
tion loss [98, 100, 101]. In addition, the process by which 
the components intervene leads to defects, phase transitions, 
and other major factors inducing polarization in the material 
[102, 103]. In this study, the above key factors affecting the 
MA performance were considered comprehensively, and the 
electromagnetic parameters were adjusted to a suitable range 
through the construction of MXene-based hollow core–shell 
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structure and the introduction of magnetoelectric synergism, 
which ensured that the composites exhibited the best elec-
tromagnetic wave attenuation performance.

The mechanism for electromagnetic wave consumption by 
the HMCCo absorber is shown in Fig. 7. First, based on the 
good impedance match of the material, most electromagnetic 
microwaves can enter the absorber, which is also a prerequi-
site for consuming electromagnetic waves. Meanwhile, a few 

microwaves are reflected into the air, and even fewer micro-
waves are transmitted. Second, the interesting hollow layered 
spherical shells provided multiple scattering and reflection 
of the incident electromagnetic waves inside the spheri-
cal shell. The cavities optimized the MA properties of the 
material more than solid structures that also had hierarchical 
structures [104]. Additionally, the unique inner network of 
MWCNTs also extended the paths for multiple scattering 

Fig. 6  RL plots for a HMCCo-400, b HMCCo-500, c HMCCo-600, d HMCCo-700, and e HMCCo-800 at thicknesses of 1 to 5 mm. f RL 
curves for samples prepared at different calcination temperatures with matched thicknesses. SEM images of g1 HMCCo-400, h1 HMCCo-500, 
i1 HMCCo-600, j1 HMCCo-700, and k1 HMCCo-800. SEM detail images of g2 HMCCo-400, h2 HMCCo-500, i2 HMCCo-600, j2 HMCCo-
700, and k2 HMCCo-800
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of the electromagnetic waves and increased the ability of 
the prepared material to consume waves. Furthermore, the 
carbon nanotubes were interweaved with each other to form 
a three-dimensional conductive network, which, along with 
the C–Co skeleton layer, facilitated migration and jumping 
of charge carriers, which converted the electromagnetic 
wave energy into thermal energy and dissipated it. As men-
tioned earlier, dielectric loss is the main mechanism for 
consumption of electromagnetic waves, and dielectric loss 
includes interface polarization and dipole polarization. The 
alternating layer structure of MXene sandwiched between 
the MWCNT layer and the C–Co skeleton layer provided 
a rich heterogeneous interface, where charges of the differ-
ent electrical properties accumulated and formed a structure 

similar to that of a micro-capacitor and enhanced interface 
polarization. In addition, numerous dipoles were formed 
between the many defects and different electrical functional 
groups in the material, which aided dielectric loss. Finally, 
because the prepared material contained metallic cobalt, 
the natural resonance of the cobalt nanoparticles and the 
exchange resonance between different cobalt particles led to 
magnetic loss. In summary, good impedance matching, mul-
tiple composite structure design, and the synergistic effect of 
multiple loss mechanisms provided the HMCCo absorbers 
with excellent electromagnetic wave absorption. As shown 
in the small image in Fig. 7, the absorption by HMCCo-2 
was highly competitive with those of most reported MXene/
CNT absorption materials. More detailed comparative infor-
mation is shown in Table S2.

Fig. 7  Mechanism for electromagnetic wave loss
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4  Conclusions

A novel structure with MWCNTs growing toward the inte-
riors of spherical shells was constructed via self-assembly 
and high-temperature calcination. The as-prepared hollow 
MXene sphere weaved MWCNTs with a C–Co skeleton can 
enhance the multiple losses and polarization effects simul-
taneously. The optimal sample exhibits a minimum RL 
of − 70.70 dB at 14.56 GHz with a matching thickness of 
only 2.04 mm. Meanwhile, by adjusting the thickness from 
1.5 to 5 mm, a broad EAB of 13.1 GHz was obtained. In 
addition, the effects of temperature on the morphology and 
electromagnetic properties of the ZIF67 composite material 
were also studied. This research showed that the appropriate 
temperature safeguards both the growth of MWCNTs and 
the maintenance of a hollow core–shell structure that facili-
tates microwave absorption. Therefore, the unique structural 
design of this study provides a reference for the design of 
efficient electromagnetic wave-absorbing materials in the 
future.
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