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HIGHLIGHTS

• An overview of the superhydrophobic surface -assisted strategies for fabricating microspheres and supraparticles are presented.

• The applications of microspheres and supraparticles fabricated using SHS-assisted strategies are discussed in detail.

• NCrucial challenges facing the development of microspheres and supraparticles fabricated through SHS-assisted strategies are analysed.

ABSTRACT Superhydrophobic surface (SHS) has been well developed, as SHS renders the 
property of minimizing the water/solid contact interface. Water droplets deposited onto SHS 
with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhe-
sion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics 
make SHS suitable for a wide range of applications. One particularly promising application is 
the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as 
a universal platform capable of providing customized services for a variety of microspheres 
and supraparticles. In this review, an overview of the strategies for fabricating microspheres 
and supraparticles with the aid of SHS, including cross-linking process, polymer melting, 
and droplet template evaporation methods, is first presented. Then, the applications of micro-
spheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating 
photonic devices with controllable structures and tunable structural colors, acting as catalysts 
with emerging or synergetic properties, being integrated into the biomedical field to construct 
the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally, 
the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.
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1 Introduction

Wettability, typically defined as the tendency of a liquid to 
spread out on a solid, has been one of the most important 
characteristics of a solid surface. The superhydrophobic 
surface (SHS) represents a specific solid surface on which 
a droplet of water shows a contact angle greater than 150°, 
thus manifesting excellent water repellency. It is found that 
biological surfaces, such as those of certain plants and ani-
mals, exhibit excellent superhydrophobic capabilities due to 
their suitable morphologies and specific surface chemistry 
properties [1–3]. Inspired by nature, superhydrophobicity 
has been successfully mimicked through a rational design of 
surface roughness and proper regulation of surface energy 
[4–6]. The extensive design and fabrication of artificial 
SHS have driven the potential development in many fields, 
such as self-cleaning [5, 7–9], anti-fogging [10–14], anti-
icing [15–19], oil/water separation [20–23], water collec-
tion [24–27], liquid transportation [28–34], anti-corrosion 
[35–41] and anti-fouling [42–47].

SHS with low adhesion is one of the most common types 
of SHS [29, 48–50]. It has a large contact angle (more than 
150°), as well as a low sliding angle (less than 10°) [51–53]. 
The water drop standing on this surface acts like a sphere and 
it can easily roll off from the surface, allowing the droplet 
to be well collected [54–56]. Based on this phenomenon, a 
range of functional materials, particularly microspheres and 
supraparticles, have been successfully fabricated. Micro-
spheres refer to individual tiny spherical particles, with 
typical diameters in the micrometer range was 1–1,000 μm 
[57–59]. Supraparticle is a term to describe a type of three-
dimensional macroscopic structure formed by dispersed 
nano- or microparticles through self-assembly, typically 
ranging in size from a few 10 μm to several 100 μm [60, 61]. 
The microspheres are typically obtained on low-adhesion 
SHS through cross-linking curing reactions [62, 63], poly-
mer melting method [64] and droplet template evaporation 
strategy [65, 66]. Supraparticles are formed by evaporating 
droplet templates on SHS [67]. These SHS-assisted fabri-
cation strategies offer several advantages, including mate-
rial saving, reduced organic pollution, and high throughput 
production, aligning with the principles of environmental 
protection, cost-effectiveness, and energy efficiency [63, 
68]. Moreover, through these strategies, microspheres and 

supraparticles with controllable morphologies, customizable 
structures and tunable properties can be easily acquired by 
adjusting the formula and properties of droplets. These tech-
nical superiorities make SHS popular for fabricating supra-
particles and microspheres. It is worth mentioning that the 
superamphiphobic surface (SAS), serving as a special type of 
SHS, showcases a unique combination of essential character-
istics. In addition to possessing the requisite surface rough-
ness and low surface energy characteristic of SHS, SAS also 
boasts specific topographical features, including overhangs, 
reentrant geometries, or convex curvatures [69]. This unique 
configuration imparts remarkable repellent properties, not 
only against aqueous substances but also towards oily liquids 
such as hexadecane, ethylene glycol, and tetradecane. This 
versatility enables SAS to be utilized in the fabrication of 
microspheres and supraparticles from various liquid droplets, 
extending beyond the confinement of water droplets.

In this review, a comprehensive summary of the fabri-
cation strategies assisted by SHS is provided first. These 
strategies can be broadly classified into three distinct catego-
ries: cross-linking curing, polymer melting, and droplet tem-
plate evaporation methods. Each category will be discussed 
in detail. Especially, in the droplet template evaporation 
method, the factors that regulate the morphologies, struc-
tures, and properties of supraparticles will be introduced in 
detail. Subsequently, the devices consisting of microspheres 
and supraparticles are summarized according to their appli-
cations in colloidal photonic crystals, catalysts, biological 
medicine, protein crystallization, and trace analyte detection. 
Finally, the development prospects and remaining challenges 
of this research field are presented.

2  SHS‑Assisted Fabrication Strategies 
for Versatile Microspheres 
and Supraparticles

The fabrications of microspheres and supraparticles take 
advantage of the high liquid repellency and low adhesion 
of SHS. These SHS-assisted fabrication strategies can be 
divided into three categories, including cross-linking cur-
ing method, polymer melting process, and droplet template 
evaporation strategy. It is worth mentioning that only liquid 
droplets with the appropriate properties and suitable size 
ranges can remain spherical on SHS [70, 71].
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2.1  Cross‑linking Curing Strategy

SHS-assisted fabrication strategies for preparing the micro-
spheres rely on three types of reactions. One is a cross-
linking or polymerization reaction. When the liquid drop-
lets containing polymerizable monomers or cross-linkable 
polymers are placed onto SHS, the liquid droplets acquire 
spherical shapes. With the aid of mild conditions (e.g., 
UV-irradiation [64], target ions addition [72], pH change 
[73] and temperature modulation [74]), the monomers or 
polymers appear in-situ polymerization or cross-linking 
reaction, which causes the hardening of these spherical 
droplets, thus forming solid or hydrogel microspheres onto 
SHS [62–65, 72–76]. Due to the low adhesion of SHS [77], 
the resulting microspheres can be easily collected by tilting 
the SHS. For instance, Hans-Jürgen Butt’s group used an 
in-situ cross-linking method initiated by UV light to obtain 
polymer microspheres [64]. In this approach, the droplet 
composed of glycerolate dimethacrylate and tri(ethylene 
glycol) dimethacrylate, along with a photo-initiator, was 
deposited on SAS and formed a spherical shape. After UV 
light irradiation, the methacrylate in the droplet under-
went radical polymerization, resulting in the hardening of 
the droplet and the formation of the polymer microsphere 
(Fig. 1a). To avoid deformation of the droplet during the 
polymerization process, the group designed a bowl-shaped 
SAS and continuously moved the surface to keep the drop-
lets in a rolling motion state.

Apart from the polymer microspheres mentioned above, 
the SHS-assisted cross-linking strategy can also be uti-
lized to fabricate various hydrogel microspheres [62, 63, 
74, 76]. For instance, by dispensing droplets of alginate 
(ALG) solution on SHS and subsequently adding  Ca2+ to 
the system, spherical ALG hydrogel microspheres can be 
formed on SHS due to the  Ca2+-induced cross-linking of 
ALG (Fig. 1b) [65, 78, 79]. By repeating freezing and melt-
ing operations, Polyvinyl alcohol (PVA) hydrogel micro-
spheres can be formed onto SHS due to the formation of 
physical cross-linking networks (Fig. 1b) [65, 80, 81]. By 
adjusting the pH value of the solution or adding polyvalent 
anions, spherical droplets of chitosan solution formed onto 
SHS can transform into hydrated microspheres, as these 
conditions cause cross-linking between chitosan molecules 
[73, 82].

Moreover, microspheres with specific functions and struc-
tures can also be easily achieved via this method. By intro-
ducing magnetic  Fe3O4 particles into a hydrogel precursor 
solution and dispersing the droplets of the combined solu-
tion onto the SHS, followed by a subsequent cross-linking 
process, the hydrogel microspheres rapidly exhibited mag-
netic responsiveness [65]. By incorporating CdTe quantum 
dots into the precursor solution, the produced microspheres 
via a SHS-assisted cross-linking strategy can obtain fluo-
rescent properties [65]. Moreover, by incorporating inor-
ganic  Al2O3 particles into the organic PVA precursor solu-
tion to form an  Al2O3-PVA composite microgels onto SAS 
and then using organic phase as sacrificial templates, a pure 
inorganic  Al2O3 microsphere with hierarchical porous struc-
ture was obtained (Fig. 1c) [83, 84]. Furthermore, relying 
on sequential polymerization or cross-linking process, the 
multi-compartmental microspheres, such as core–shell struc-
ture, multi-layer structure and multi-core structure, can be 
realized onto a SAS (Fig. 1d) [72, 85, 86].

2.2  Polymer Melting Method

The polymer melting method is an additional strategy for 
preparing microspheres, wherein polymer powders are 
heated above the polymer melting temperature on SHS or 
SAS and then cooled using natural air. Due to the high liq-
uid repellency of SHS or SAS, these polymer melts form 
spherical droplets on these surfaces during the heating pro-
cess. Upon cooling, the melts undergo a phase transition and 
solidify into polymer microspheres (Fig. 2a) [87]. Recently, 
with the help of this SHS-assisted polymer melting strat-
egy, a variety of microspheres have been easily fabricated 
by simply replacing the powder composition (Fig. 2b) [64].

Additionally, by incorporating different polymer types 
or adding functional substances, functional microspheres 
such as Janus microspheres and magnetic microspheres 
can be synthesized [64]. It should be noted that the for-
mation of Janus microspheres composed of two com-
ponents is also closely related to annealing conditions, 
as the annealing process significantly affects the degree 
of phase separation. As reported by Hans-Jürgen Butt’s 
group, the polystyrene (PS)/poly(methyl methacrylate) 
(PMMA) Janus microspheres were formed onto SAS at 
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an annealing condition of 160 °C for 10 min. With the 
increase of annealing time (160 °C for 100 min), PS was 
completely embedded PMMA microsphere. Furthermore, 

when the annealing condition was set to 110 °C for 60 min, 
a uniform PS-PMMA microsphere was formed onto SAS 
without phase separation. Generally, this polymer melting 

Fig. 1  Microsphere fabricated by SHS-assisted cross-linking or polymerization strategy. a Polymer microsphere obtained onto the SAS via UV-
induced radical polymerization reaction.  Reproduced with permission from Ref. [64]. Copyright 2013, Wiley–VCH. b PVA and ALG hydrogel 
microsphere formed via a cross-linking reaction. Reproduced with permission from Ref. [65]. Copyright 2021, Wiley–VCH. c Porous  Al2O3 
microspheres obtained onto SAS via a UV-induced cross-linking reaction. Reproduced with permission from Ref. [83]. Copyright 2021, Else-
vier. d Multi-compartmental microsphere fabricated onto SHS via sequential polymerization or cross-linking process. Reproduced with permis-
sion from Ref. [85]. Copyright 2014, Wiley–VCH
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strategy offers a flexible approach for synthesizing one-
component or multi-component microspheres. However, 
there is a great challenge in the synthesis of continuously 
tunable and uniform microspheres. To overcome this 
limitation, the concept of utilizing in-fiber fluid instabil-
ity has been proposed to achieve scalable microparticles 
[88]. In this approach, an ordered microfiber array was 
first formed on SAS at room temperature, and then each 
microfiber broke up into uniformly sized spherical droplets 
when annealed above the viscous flow temperature. After 
cooling, these spherical droplets solidified into polymer 
microspheres (Fig. 2c).

2.3  Droplet Template Evaporation Strategy

2.3.1  Droplet Template Evaporation Strategy 
for Constructing Microspheres

Several microspheres have been produced using the SHS-
assisted droplet template evaporation strategy [65, 66, 89]. 
In this manner, the target substance is initially dissolved in a 
solvent to form a homogeneous solution, and then the drop-
lets of the solution are deposited onto SHS. The interfacial 
tension induces the droplet to be shaped into a spherical 
morphology. As the solvent evaporates, the three-phase 

Fig. 2  Microspheres fabricated by SHS-assisted polymer melting process. a Polymer melts onto a non-wetting surface and a wetting surface 
captured by a high-speed camera, where they only form ball shapes onto the non-wetting surface.  Reproduced with permission from Ref. [87]. 
Copyright 2018, Elsevier. b Magnetic and Janus microspheres obtained onto SAS by heating the polymer powder to a visco-elastic state and 
then cooling it. Reproduced with permission from Ref. [64]. Copyright 2013, Wiley–VCH. c Schematic illustration of large quantities of uni-
form microspheres produced onto SAS using microfiber processing via a polymer melting strategy. Reproduced with permission from Ref. [88]. 
Copyright 2020, Springer
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contact line (TPCL) of the droplet slides freely over the SHS 
at a constant receding contact angle, resulting in decreasing 
droplet size and unchanged droplet shape, ultimately form-
ing a hardened microsphere. For example, Poly(D, L-lactide-
co-glycolide) (PLGA) microspheres have been successfully 
fabricated by placing drops of dioxane solutions containing 
PLGA onto SAS and allowing the solvents to evaporate [66]. 
This developed polymer- and solvent-independent approach 
allows a variety of microspheres to be formed onto SHS 
or SAS. Additionally, by employing a specialized setup 
that allows simultaneous feeding of multiple raw mate-
rial solutions, microspheres with unique structures can be 
prepared. For example, Deng’s group utilized a microflu-
idic spinning instrument with a coaxial needle to print two 
raw material solutions onto SHS, generating the solution 
columns [65]. Due to the Plateau-Rayleigh instability of a 
liquid jet [90–92] and the high liquid repellency of SHS 
[93–95], these solution columns broke up into uniformly 
spherical droplets at ambient temperature. After the solvents 
in the inner core and outer cladding structure evaporated, 
core–shell microspheres were obtained [65]. The introduc-
tion of this device enables the high-throughput production 
of various core–shell microspheres.

Notably, in the SHS-assisted droplet template evapora-
tion strategy, some materials may not form spheres, as the 
drops are pinned and thus cannot move freely during the 
evaporation process. In this review, these materials are clas-
sified as microsphere-like materials because their formation 
process resembles that of microspheres. Yang and colleagues 
reported the formation of a prismatic-shaped crystalline 
material on a protein-based SHS (Fig. 3a) [96]. In this case, 
the droplets of protein buffer were deposited on the SHS in 
the form of balls. As the water content continuously evapo-
rated, the droplets were pinned on SHS. The pinning effect 
caused a stable contact diameter (Dc) during evaporation, 
while the projection diameter (Dp), droplet height (Dh), and 
contact angle all decreased over time (the inset in Fig. 3a) 
[96]. The pinning state observed in droplets can be attributed 
to two factors. One is protein buffer has a lower surface ten-
sion than water [96]. Another is the protein-based SHS pos-
sesses inherent multiple polar residues that may enhance the 
adhesion between SHS and droplets [96, 97]. This pinning 
phenomenon leads to the formation of a prismatic shape, 
instead of a spherical shape [96, 97]. Additionally, shape-
less materials can also be formed using this strategy. When 
a droplet extracted from a diluted solution was deposited 

on an abiotic SHS, it initially followed the Cassie model 
and moved freely over the SHS during the evaporation pro-
cess. Subsequently, an irreversible transition from the Cassie 
to Wenzel state occurred, resulting in the collapse of the 
droplet’s center and the formation of shapeless materials 
(Fig. 3b) [98].

In general, the appearance of various forms can be attrib-
uted to the difference in the dynamic TPCL behavior of 
spherical droplets during evaporation. The formation of 
ideal spheres is attributed to the uniform and continuous 
recession of TPCL throughout the entire evaporation pro-
cess. The reason for the formation of prismatic microsphere-
like materials is that the TPCL begins to pin at the initial 
evaporation stage and remains pinned until the completion 
of evaporation (the inset in Fig. 3a, framed by a red rec-
tangle) [96]. During the evaporation process, if the TPCL 
recedes uniformly and continuously, and suddenly occurs a 
transition from a depinning to pinning state, the shapeless 
microsphere-like materials will be generated onto SHS (the 
inset in Fig. 3b) [98]. Furthermore, the cause of pinning is 
that the evaporation-induced driving force cannot overcome 
the static friction between the liquid droplets and the surface, 
while the reason for de-pinning is the opposite. The magni-
tude of static friction mainly depended on the surface type 
and liquid droplet properties. Consequently, the shapes of 
microspheres can be directly tailored by utilizing different 
surface types [99–101] and employing liquid droplets with 
varying properties.

2.3.2  Droplet Template Evaporation Strategy 
for Constructing Supraparticles

The SHS-assisted droplet template evaporation strategy has 
also emerged as a popular technique for supraparticle fabri-
cation. In this approach, suspended droplets on SHS serve 
as templates, with each nanoparticle (NP) or microparticle 
approaching during the evaporation process, resulting in 
the self-assembly of the particles, causing a formation of 
supraparticles (Fig. 4a-c). This method is well-suited for the 
fabrication of supraparticle materials with controllable size, 
customizable morphology (Fig. 4a-c), tunable structure, and 
tailored performance, which will be described in detail below.

2.3.2.1 Fabricating Supraparticles with  Controllable 
Sizes The size of the supraparticles primarily depends on 
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the volume of the original droplets and the concentration of 
NPs within them [67]. By manipulating these two factors, it 
is possible to generate supraparticles with diameters ranging 
from a few microns to sub-millimeters [67, 102, 105–107]. 
The upper boundary of size is dictated by gravitational forces, 
which, in the case of drops exceeding the capillary length, 
will result in drop flattening. Conversely, the fundamental 
lower constraint depends on the inter-protrusion spacing of 
rough SHS, since particles smaller than this spacing are capa-
ble of permeating SHS and causing it to be wet [64].

2.3.2.2 Constructing Supraparticles with  Diverse Mor-
phologies The morphology of supraparticles is mainly 
governed by the initial morphology of droplets and the 
dynamic behavior of the TPCL) during the evaporation 

process [68]. These two factors, in turn, typically depend 
on the surface utilized and the characteristics of the NP 
suspension. Employing appropriately designed surfaces is 
one of the methods to achieve diverse supraparticle mor-
phologies [99–101], but this study focuses solely on low-
adhesion SHS. When a droplet of NP suspension is depos-
ited on SHS, it initially maintains a spherical shape with a 
contact angle of more than 150°. Consequently, the motion 
behavior of TPCL is regarded as the crucial factor in deter-
mining the morphologies of supraparticles. In general, the 
TPCL freely moves over the SHS during evaporation, form-
ing a spherical supraparticle (Fig. 5a) [67, 102, 105–107]. 
Substituting NPs with different types of colloids, such as 
nano-cubes, nano-plates, and nano-sheets, has no effect on 
supraparticle morphology [108].

Fig. 3  Microsphere-like materials defined in the review showing various shapes fabricated by SHS-assisted droplet template evaporation strat-
egy. a Schematic illustration of the formation of prismatic-shaped crystalline materials on a protein-based SHS, where the inset in a red solid 
frame describes the morphologic change of the droplet onto the SHS during the evaporation process.  Reproduced with permission from Ref. 
[96]. Copyright 2018, Wiley–VCH. b Schematic illustration to describe the formation of shapeless microsphere materials via a droplet evapora-
tion process onto SHS, where the spherical droplet first follows a Cassie model and subsequently undergoes an irreversible transition to a pin-
ning state, resulting in the concentration of solutes into an ultra-small region. The inset in the red dotted box shows SEM images of concentrated 
solute under different magnifications. Reproduced with permission from Ref. [98]. Copyright 2012, American Chemical Society
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Numerous approaches have been reported to regulate 
the dynamic behavior of TPCL for the purpose of mor-
phology manipulation, which can be broadly categorized 
into two main categories. One approach involves altering 
the properties of NP suspensions, while the other involves 
introducing magnetic components into suspensions and 
applying an external magnetic field. For example, when 
adjusting the concentration of the original NP suspension 
to a low critical value, the TPCL remains continuously 
receding at the beginning, leading to a reduction in droplet 
size. With the further extension of evaporation time, the 
NPs become confined in the vicinity of the TPCL, result-
ing in TPCL pinning. In the final phase of evaporation, 
there is a notable decrease in the height of the droplet in 
relation to the meridian radius, causing a curvature at the 
center. This phenomenon becomes more pronounced as the 
concentration decreases (Fig. 5b) [109]. Therefore, as the 
concentration continuously decreases below the threshold, 
the in-folded or concave sphere [103, 109]、doughnut-like 
[103, 110], or even coffee ring [103, 111] shaped suprapar-
ticles can be realized successively. By introducing sucrose 
into a colloidal dispersion with varying concentration, the 
supraparticle morphology can be further altered, resulting 

in a series of new forms on SHS, such as a three-quarter 
sphere with a dimpled bottom, a three-quarter sphere with 
a flat bottom, a bagel shape with a dimpled bottom, and a 
pizza shape with a dimpled bottom [112]. The emergence 
of these morphologies is due to sucrose acting as a shape-
preservative during evaporation. Additionally, by utiliz-
ing suspensions containing NPs with specific forms and 
properties, such as CdSe/CdS nanorod suspension or 26 
vol% alumina powder suspension, a hollow dome-shaped 
structure, also known as an inverted bowl shape, were suc-
cessfully fabricated onto SHS [113, 114]. The formation 
of a hollow dome-shape can be attributed to the fact that 
the TPCL of the drop gets pinned and increased solute 
concentration induces a residue solidification, while the air 
pockets below the droplet remain throughout the evapora-
tion process.

By adjusting both the concentration of superparamag-
netic NPs in the suspension and the intensity of the applied 
magnetic field, various supraparticle morphologies such as 
barrel-like, cone-like, and two-tower-like structures were 
achieved on the SHS (Fig. 5c) [104].

Furthermore, anisometric-shaped supraparticles can 
also be produced by modifying the specific properties of 

Fig. 4  Schematic illustration of the formation of the supraparticles via a SHS-assisted droplet template evaporation strategy. a Spherical supra-
particle.  Reproduced with permission from Ref. [102]. Copyright 2018, Wiley–VCH. b Core–shell structured supraparticles. Reproduced with 
permission from Ref. [103]. Copyright 2010, Wiley–VCH. c Symmetric non-spherical supraparticles. Reproduced with permission from Ref. 
[104]. Copyright 2019, American Chemical Society
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the original NP solution, such as ion strength [115–117], 
NP density [108], NP mono-dispersity [102, 108], and even 
adding volatile solvent composition [118]. For example, 
anisometric boat-like and ellipsoidal supraparticles can 
be obtained by adding salt (e.g., NaCl) beyond a threshold 
into fumed silica NP suspensions and subsequently drying 
the suspension droplets on a flat or curved V-shaped SHS 
(Fig. 5d) [115–117].

In summary, the dynamic behaviors of the TPCL during 
the evaporation process have the following effects on droplet 
morphology: continuous and homogeneous receding of the 
TPCL promotes the formation of spherical or nearly spheri-
cal supraparticles, while the pinning of the TPCL during 
evaporation tends to result in symmetrical non-spherical 
structures. Asymmetric receding of the TPCL, with pinning 

in one direction and homogeneous receding in the perpen-
dicular direction, facilitates the formation of anisotropic-
shaped supraparticles [119].

2.3.2.3 Creating Supraparticles with  Various Struc-
tures Supraparticles with diverse structures can be obtained 
by SHS-assisted droplet template evaporation strategy. All 
supraparticles show mesoporous structures since they are 
formed by an aggregation of NPs [67, 120–122]. By the uti-
lization of bi-disperse colloidal suspensions, a segregation 
phenomenon of the small and large colloids occurs, forming 
a novel hierarchical mesoporous structure (Fig. 6a) [123]. 
The cause of the segregation is that the evaporation pro-
cess results in a local increase in colloid concentration near 
the membrane-air interface, which in turn translates into a 
potential chemical gradient for the two colloids [123]. The 
generation of core–shell structured supraparticles can gen-

Fig. 5  Supraparticles with various morphologies fabricated by SHS-assisted droplet template evaporation strategy. a Supraparticle with a spher-
ical morphology formed on the SHS, where the inset shows the SEM image of the resulting supraparticle.  Reproduced with permission from 
Ref. [67]. Copyright 2015, Wiley–VCH. b The images displaying the diverse forms produced at various values of the initial colloidal suspen-
sion concentration φ0, where the sketches depict the profile map of supraparticles. Reproduced with permission from Ref. [109]. Copyright 
2004, IOP Publishing Ltd. c Optical photos of barrel-like, cone-like, and two-tower-like supraparticles prepared by using colloidal suspensions 
with varied concentrations (1%, 3%, 12%, 21%, 30%) and magnetic fields (16 and 160 KA  m−1). Reproduced with permission from Ref. [104]. 
Copyright 2019, American Chemical Society. d The schematic diagram showing spherical, anisometric ellipsoidal and boat-like supraparticles 
obtained under different ionic strengths. The insets show the photo of spherical and anisometric boat-like supraparticle, respectively. Reproduced 
with permission from Ref. [115]. Copyright 2014, Wiley–VCH
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erally be achieved through two paths. One involves sequen-
tially drying two types of colloidal dispersions onto SHS 
[67]. In this method, a shell is formed by adding one type 
of dispersion droplet onto an existing supraparticle result-
ing from the other dispersion and then evaporating it. An 
alternative is to directly produce core–shell structured drop-
lets onto SHS using a three-phase microfluidic device with 
two inner cylindrical needles, followed by solvent evapora-

tion on the SHS (Fig. 6b) [107]. In this case, the formation 
of a core–shell structure takes advantage of the matching 
surface tension and viscosity between the two immisci-
ble colloidal suspensions. Supraparticles endowed Janus 
structure can also be realized by means of this microfluidic 
device, in which one of the inner steel needles is injected 
with an aqueous suspension containing one type of NPs and 
surfactant, while the other is injected with an organic sus-

Fig. 6  Supraparticles with various structures fabricated by SHS-assisted droplet template evaporation strategy. a A novel hierarchical 
mesoporous structure fabricated from the droplets of bi-disperse colloidal suspensions during evaporation, where mostly large colloidal NPs 
are found in the inner layer and small NPs are mostly distributed in the periphery.  Reproduced with permission from Ref. [123]. Copyright 
2019, American Chemical Society. b Schematic diagram of supraparticles with core–shell structure, Janus structure prepared through the utiliza-
tion of a three-phase microfluidic device. Reproduced with permission from Ref. [107]. Copyright 2014, The Royal Society of Chemistry. c A 
schematic of the supraparticle with a Janus core–shell structure, where the tri-composite supraparticle consists of NP aggregates, coffin-shaped 
NPs and spherical NPs. Reproduced with permission from Ref. [108]. Copyright 2021, MDPI. d Single patch, bi-patch and tri-patch magnetic 
supraparticles formed under the corresponding applied electric field. The scale bars are 500 mm. Reproduced with permission from Ref. [103], 
Copyright 2010, Wiley–VCH
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pension comprising another type of NPs [107]. When the 
continuous oil phase in the device breaks the inner solu-
tions composed of the two kinds of suspensions at the tip of 
the pair of needles, uniform Janus droplets can be acquired 
(Fig. 6b). After evaporating the solvent of the droplets onto 
SHS, the Janus structures are successfully constructed. 
Moreover, a special Janus core–shell structured suprapar-
ticle has also been reported [108]. The structures are pro-
duced by drying liquid droplets containing spherical silica 
NPs, coffin-shaped zeolite, and  TiO2 NP aggregations onto 
SHS (Fig. 6c) [108]. Due to the differences in density and 
morphology of the NPs, the resulting supraparticle shell is 
entirely composed of spherical NPs, while the supraparticle 
core exhibits a spherical Janus structure. The top half of the 
supraparticle core consists of coffin-shaped zeolite, while 
the rest is made up of  TiO2 NP aggregations (Fig. 6c). Fur-
thermore, by introducing superparamagnetic NPs into a col-
loid suspension, interesting patch structures can be formed 
[103]. For instance, Velev and co-workers created a series 
of patchy structures by adding a magnetic Iron-Nickel alloy 
(Fe 55%, Ni 45%) NPs into a sulfate-stabilized polystyrene 
latex and drying the droplets containing the mixture of latex 
and magnetic NPs onto SHS. Through the manipulation of 
magnetic fields with various spatial distributions, magnetic 
NPs aggregation occurred in a region of a droplet subjected 
to strong magnetic fields, eventually causing single, bilat-
eral, trilateral, or even patched structures onto SHS during 
the evaporation process (Fig. 6d) [103].

2.3.2.4 Designing Supraparticles with  Specific Proper-
ties Supraparticle properties are determined by their struc-
tures and compositions. For instance, the supraparticles 
with high porosity generally possess excellent catalytic 
properties, as high porosity facilitates catalyst/adsorbate 
loading and enables high mass transfer flux [105]. When 
their building blocks are arranged in an orderly manner 
to form a photonic crystal structure, supraparticles can 
display photonic bandgap properties and bright struc-
tural colors. Undoubtedly, adjusting the composition of 
the NPs can also be employed to manipulate supraparti-
cle properties. By incorporating superparamagnetic NPs 
into a colloidal suspension system, the supraparticle can 
acquire a magnetic-field response property [103]. Further-
more, Supraparticles formed by CdSe/CdS nanorods can 
preserve the photoluminescence properties of the pristine 
material [113]. Moreover, by simultaneously constructing 
a distinct structure and regulating the characteristics of the 
building blocks, supraparticles will obtain multiple func-
tions. For example, Chen’s group reported the production 
of PS/Fe3O4 Janus supraparticles using the SHS-assisted 
droplet template evaporation strategy, where the PS and 

 Fe3O4 hemispheres were constructed through the ordered 
self-assembly of monodispersed PS NPs and superpara-
magnetic  Fe3O4 NPs, respectively. This PS/Fe3O4 Janus 
supraparticle exhibited both intrinsic photonic band gap 
property and magnetic-field response characteristics 
[107].

3  Applications of Supraparticles 
and Microspheres Fabricated 
by SHS‑Assisted Strategies

Supraparticles represent an emerging class of materials with 
tunable properties. Their size, shape, structure and proper-
ties can be designed by using a colloidal formula with proper 
properties and droplets with appropriate diameter, making 
them versatile in a wide range of applications, such as pho-
tonic crystals and catalysts. Microspheres are crucial in vari-
ous fields due to their uniform size and high surface area. 
They serve as ideal carriers for high-volume encapsulation 
of cells and precise control of drug release. Microsphere-
like materials are usually obtained during the SHS-driven 
protein crystallization and SHS-assisted trace solute detec-
tion processes.

3.1  Colloidal Photonic Crystals

Colloidal photonic crystals are one kind of photonic crystals 
formed by the ordered arrangement of materials with differ-
ent refractive indices [124–128]. Especially, these crystals 
consist of ordered self-assembled colloidal NPs [129–136]. 
Indeed, a supraparticle prepared using the SHS-assisted 
droplet template evaporation strategy can possess a photonic 
crystal structure, if the number of NPs inside the droplet 
is sufficiently large to induce early clustering of NPs [71, 
137]. The critical number of NPs in the system generally 
depends on the parameters affecting the solvent evaporation 
rate and the diffusivity of NPs. Hence, the photonic crystal 
structure can be realized via precise control of the humid-
ity and temperature throughout the evaporation, as well as 
the original NP suspension properties. Recently, it has been 
considered that the mono-dispersity of NPs has a significant 
effect on the formation of photonic crystal structures [102, 
106]. Hans-Jürgen Butt’s group reported a supraparticle 
composed of pH-responsive NPs whose packing structure 
can be tuned by the mono-dispersity of NPs [102]. In this 
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system, highly monodispersed NPs caused by a low pH envi-
ronment showed order arrangement, resulting in a formation 
of the photonic crystal structure. On the contrary, a high 
pH environment caused an agglomeration of pH-responsive 
NPs, thus forming an amorphous structure (Fig. 7a) [102].

The supraparticles endowed with photonic crystal struc-
ture can exhibit unique photonic bandgap properties and 
bright structural colors [138–141], and they can be shaped 
into various forms, such as microwells, micro-balls, micro-
ellipsoidal and micro-doughnut by regulating the dynamic 
behavior of TPCL during evaporation [103]. These features 

make them great application prospects in the field of con-
verters, decorative coatings, displays, optical switching, and 
pigments. For example, Roman Krahne’s group reported a 
hollow-dome-shaped supraparticle with a photonic crystal 
structure produced by the evaporation-induced self-assembly 
process of CdSe/CdS nanorods onto SHS [113]. This pho-
tonic crystal structure showed tremendous prospects in the 
field of color converters, as it can be freely positioned in an 
excitation beam [113]. Orlin D. Velev’s group developed a 
supraparticle with concentric color rings, which were cre-
ated from a mixed suspension of latex microspheres and 

Fig. 7  Supraparticles with colloidal photonic crystals structure. a The highly monodispersed NPs produced in an acidic environment showing 
order arrangement and causing the formation of a photonic crystal structure, while an agglomeration of NPs formed in an alkaline environment 
resulting in an amorphous structure.  Reproduced with permission from Ref. [102], Copyright 2017, American Chemical Society. b Optical 
image, reflection spectra, and SEM images of PS/SiO2 Janus supraparticles with dual photonic bandgaps. Reproduced with permission from Ref. 
[107], Copyright 2014, The Royal Society of Chemistry. c PS/Fe3O4 Janus supraparticles with dual photonic bandgaps, in which the superpara-
magnetic  Fe3O4 chains run perpendicular to the equator interface. The PS/Fe3O4 Janus supraparticles switch aimed at different light intensities, 
where PS hemispheres are upside under weak light intensity and  Fe3O4–TMPTA hemispheres are upside under strong light intensity, making 
them ideal candidates for color conversion devices, as well as day and night dual-viewed displays. Reproduced with permission from Ref. [96], 
Copyright 2014, The Royal Society of Chemistry. d Optical microscopic images and reflectance spectra of microbead- and micro-ellipsoid-
shaped supraparticles with  Fe3O4 NPs incorporation at various view angles, as well as the reflectance spectra of the supraparticles with and 
without  Fe3O4 NPs incorporation. Reproduced with permission from Ref. [119]. Copyright 2015, American Chemical Society
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gold NPs [106]. By placing droplets of the mixed suspen-
sion onto SHS and allowing slow evaporation, the latex 
particles formed a face-centered cubic (FCC) lattice, while 
most of the small gold NPs transferred to the supraparti-
cle surface. This arrangement produced localized photonic 
crystal domains and resulted in the appearance of various 
color rings, offering potential applications in decorative 
coatings [106]. Additionally, the supraparticles composed 
of dual photonic crystal structures have been fabricated by 
governing the surface tensions between the two immisci-
ble components via a tri-phase microfluidic device, where 
each part was composed of self-assembled NPs. When NPs 
employed in the system show different compositions and 
sizes, two distinct structural colors and reflection peaks can 
be found from these supraparticles (Fig. 7b) [107]. Among 
all dual-bandgap supraparticles, the PS/Fe3O4 Janus supra-
particle can be considered as a particular one. Since the 
 Fe3O4 hemisphere with green structural color can roll over 
when applying a magnetic field, the interchange of the top 
positions of the red PS and green  Fe3O4 hemispheres can be 
easily achieved by altering the magnetic field’s direction. 
This dynamic color conversion property renders it a promis-
ing candidate for optical switching materials, as well as for 
the creation of day-night dual-viewed bead panels (Fig. 7c) 
[107]. Zhou’s group reported a kind of supraparticle with 
non-iridescent structural colors and special microscopic 
shapes (e.g., microwells, dimpled microbeads, microbeads 
or micro-ellipsoidal) fabricated by evaporation-induced self-
assembly of colloidal NPs on SHS [119]. In order to enhance 
the coherent structural color and eliminate the strong inco-
herent light-scattering, smaller-sized  Fe3O4 NPs as light 
absorbers were added into this system. The microbead- and 
micro-ellipsoid-shaped supraparticles with  Fe3O4 NPs incor-
poration showed bright structural colors and sharp reflection 
peaks, and the structural colors and reflection peak posi-
tions remained almost unchanged with the modification of 
observed angles from 0 to 75° (Fig. 7d). The structural color 
independent of angles can be attributed to the distinctive 
microstructure, which comprises a polycrystalline surface 
layer and an amorphous inner layer. Moreover, the poly-
crystalline structure is composed of “crystalline regions” 
with FCC structure and ‘‘amorphous regions’’ with ran-
domly arranged NPs. These non-iridescent supraparticles 
with controlled micro-shapes have promising applications 
in the fields of nontoxic, nonbleaching pigments and energy-
efficient full-color display pixels [119].

The employment of the SHS-assisted droplet template 
evaporation method for fabricating colloidal photonic crys-
tals offers numerous advantages. This technique enables 
the fabrication of colloidal photonic crystals with diverse 
and flexible shapes, as well as integrated functionalities. 
However, it is important to acknowledge that the strict for-
mation conditions may pose potential drawbacks to mass 
manufacturing.

3.2  Catalysts

There are significant advantages to applying supraparti-
cles in the catalysts field. Firstly, the inherent mesoporous 
structures of supraparticles make them possess large surface 
areas, offering huge benefits for enhancing catalytic activity. 
Moreover, supraparticle catalysts generally show better sta-
bility compared to individual NPs. Furthermore, by utilizing 
functionalized NPs and controlling suspension properties, 
supraparticles can be tailored to possess specific shapes, 
distinct structures, and emerging or synergetic properties, 
which offers the possibility for their use in specific catalytic 
reactions. As typical examples, the recent advancements in 
the utilization of supraparticles prepared by SHS-assisted 
droplet template evaporation strategy for multi-type cataly-
sis, including photocatalysis, electrocatalysts, and enzyme 
catalysis, will be discussed.

Mesoporous semiconductor materials, owing to their wide 
bandgaps, have demonstrated remarkable performance in 
the field of photocatalysis research [142, 143]. For exam-
ple, Hans-Jürgen Butt and co-authors reported  TiO2 supra-
particle photocatalysis with controlled porosity fabricated 
by firstly obtaining  TiO2-PS composite supraparticles via 
SHS-assisted droplet template evaporation strategy and then 
removing the PS microspheres by calcination [105]. These 
 TiO2 supraparticle catalysts showed porosity-dependent 
photocatalytic efficiency, as confirmed by the photodegrada-
tion experiment of rhodamine B (RhB) (Fig. 8a). The aque-
ous solution containing  TiO2 supraparticles with the larg-
est porosity demonstrated the highest level of degradation 
(∼97%) under UV-A light irradiation (power: 0.3 ± 0.01 mW 
 cm−2, irradiation time: 22 h), resulting in almost complete 
bleaching of the RhB solution [105]. The enhancement in 
photocatalytic activity with increasing porosity can be attrib-
uted to the fact that the presence of macropores promoted 
the diffusion of organic dyes into supraparticles. In recent 
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Fig. 8  Supraparticles fabricated by SHS-assisted droplet template evaporation applied in the field of catalysts. a  TiO2 supraparticles with varied 
porosity used as photocatalysts for RhB photodegradation. The ratios in the top figures represent the volume ratio of  TiO2 to PS in the initial 
droplet of the mixed suspension, which is 1:1, 1:3, 1:5, 1:7, and 1:9, respectively.  Reproduced with permission from Ref. [105], Copyright 2019, 
American Chemical Society. b The patchy particles composed of Pt-covered  Fe3O4 NPs patches and silica framework used as electrocatalysts for 
 H2O2 decomposition. The  O2 bubble formed through  H2O2 decomposition can lift the particle, facilitating the self-propelling motion of supra-
particles. Reproduced with permission from Ref. [146], Copyright 2016, WILEY–VCH



Nano-Micro Lett.           (2024) 16:68  Page 15 of 29    68 

1 3

developments, alternative oxide materials, such as ZnO, 
 SnO2, and  Nb2O5, have gained attention as ideal substitutes 
for  TiO2, since they made a breakthrough in overcoming 
the lower electron mobility of  TiO2 material [144]. Hans-
Jürgen Butt’s group proposed a simple strategy to prepare 
mesoporous ZnO and  SnO2 supraparticles by evaporating 
homologous NP dispersions onto SHS [67]. In addition, this 
group also reported the coupled ZnO/TiO2 and  TiO2 /SnO2 
composite supraparticles fabricated through a sequential 
drying process of NP dispersions onto SHS [67]. Compared 
with pure metallic oxides, the coupled metallic oxide com-
posite demonstrated a largely improved photocatalytic activ-
ity, as it can promote efficient spatial separation of electrons 
and holes [144, 145].

Currently, Pt and its alloys are recognized as the best elec-
trocatalysts for oxygen reduction reactions. However, the 
high cost of Pt materials and declining activity have greatly 
hindered their large-scale use [142]. Integrating Pt into the 
supraparticle system by dint of SHS has become an effective 
approach to solving these problems. For instance, Michael 
Gradzielski and co-workers reported patchy supraparticles 
comprising Pt-covered  Fe3O4 NPs as small patches embed-
ded in a silica framework, which were fabricated by SHS-
assisted droplet template evaporation strategy [146, 147]. 
Once these supraparticles were immersed in an aqueous 
 H2O2 solution, a decomposition reaction of  H2O2 occurred, 
resulting in the generation of oxygen bubbles in the solution 
(Fig. 8b). This observation indicated that the Pt-containing 
supraparticles exhibited high catalytic efficiency. Notably, 
these oxygen bubbles released at the air–water interface 
can cause an oscillating vertical motion and elevation of 
the supraparticle, thus making it an excellent self-propel-
ling material [147]. However, the oxygen evolution in this 
system led to the supraparticles’ disintegration. To enhance 
their mechanical stability, the research group introduced a 
series of additives, such as PS micro-fibrillated cellulose 
or  Na2SiO3 material, to reinforce the supraparticles [148].

The SHS-assisted droplet template evaporation strat-
egy allows for the creation of supraparticles with complex 
properties through the aggregation of functionalized NPs. 
Thus, functionalizing NPs opens a novel avenue for pre-
paring supraparticles with specific catalytic properties. 
One typical example is the immobilization of α-amylase, 
an enzyme catalyst designed for starch decomposition, into 
supraparticles using the covalent binding method [149]. The 
resulting enzyme catalyst, containing α-amylase, acts on the 

α-1,4-glycosidic bond between glucose units, leading to a 
sluggish liberating of maltose. This behavior further results 
in the loss of helical units in starch and hampers the for-
mation of starch-I3

− complexes. Hence, when the enzyme 
catalysts were immersed in a medium containing iodine and 
starch, the medium underwent a color change from blue to 
transparent within a short period [149]. It indicates that 
starch realized a complete decomposition, demonstrating 
the excellent catalytic effect of this enzyme catalyst.

3.3  Biomedicines

SHS offers a novel platform for processing spherical hydro-
gel microspheres. These microspheres hold significant 
potential in various biomedical fields, particularly in drug 
delivery and cell encapsulation. The remarkable superiori-
ties of resulting hydrogel microspheres include (i) low pro-
duction costs, as well as easy synthesis methods and mild 
processing conditions; (ii) nearly 100% encapsulation effi-
ciency for various bioactive substances, such as cells and 
proteins; (iii) the possibility of achieving high drug load and 
a finely regulated drug release rate [150]; (iv) the realization 
of narrow size distribution and mass production [63, 74]; 
(V) wide adjustability of microsphere size, ranging from 
microns to centimeters [76].

The following is a detailed description of how micro-
spheres have been utilized on SHS for drug delivery. Firstly, 
the target drugs are mixed with a monomer in an aqueous 
solvent. Secondly, the droplets of mixed solution are placed 
onto SHS and retain a spherical shape. When the monomer 
undergoes a cross-linking reaction, hydrogel microspheres 
are formed, along with drugs encapsulated in it. Finally, 
the release of drugs is achieved as the hydrogel micro-
spheres exhibit swelling behavior in response to external 
stimuli. These stimuli typically include water [63], pH val-
ues [151], temperature [74], and light [85]. For instance, 
João F Mano’s group developed water-responsive alginate 
hydrogel microspheres loaded with theophylline drug. The 
preparation involved an in-situ cross-linking process of 
alginate droplets and calcium chloride [63]. The resulting 
hydrogel microspheres exhibited a swelling behavior in 
response to water stimulus, allowing for the release of the 
alginate drug in a deionized water environment at 37 °C 
[63]. Their significant volume expansion in water provided 
more space for drug diffusion [152]. Consequently, the 
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alginate hydrogel microsphere demonstrated a high release 
rate (several minutes) and remarkable release efficiency 
(almost 100%). Another study by this group involves pH-
responsive chitosan hydrogel microspheres used as drug 
delivery materials. In this system, dexamethasone served as 
the drug model. The dexamethasone-loaded chitosan hydro-
gel microspheres were formed onto SHS via a neutralized 
reaction and an ionic gelation process [151]. The release 
profiles of dexamethasone indicated that the drug can be 
released at multiple pH values, with a little distinction 
observed across different pH levels [151]. This phenom-
enon can be attributed to the fact that the swelling degree 
of pH-responsive hydrogel microspheres is influenced by 
the pH value, but this system shows a relatively slow swell-
ing rate. In many cases, it may take one or several days 
to observe a significant divergence in the swelling degree, 
whereas drug release typically concludes within a few hours 
[151]. Consequently, the release rate is primarily dependent 
on the diffusion of dexamethasone rather than pH values. 
Song and co-authors reported a composite hydrogel micro-
sphere formed through the cross-linking process of the 
methacrylate-modified dextran and poly(N-isopropylacryla-
mide) (PNIPAM) [74]. The composite hydrogel micro-
sphere exhibited temperature-responsive properties due 
to the low critical solution temperature of PNIPAM in the 
aqueous medium (around 32 °C) [153–155]. When loaded 
with proteins such as bovine serum albumin or insulin, the 
composite hydrogel microsphere showed a fast release of 
the protein below 32 °C, and the release rate could be regu-
lated by adjusting the proportion of microsphere constitu-
ents and the temperature of the medium. These findings 
provide evidence for the feasibility of utilizing hydrogel 
microspheres to develop controlled drug/protein deliv-
ery systems [74]. Although the above spherical hydrogel 
microspheres exhibited many merits in the drug storage 
and release system, their single-compartmental structures 
make them lack combinational functionalities, such as the 
ability to control the material properties independently or 
achieve synergetic therapeutic effects [156, 157]. To over-
come this shortcoming, a novel multi-compartmental hydro-
gel has been employed in drug delivery [85, 86, 158]. For 
instance, Chia-Hung Chen’s group fabricated a core–shell 
structured multi-compartment hydrogel microsphere with 
selective near-infrared (NIR) light sensitivity [85]. The core 
compartment was composed of agarose/alginate hydrogel 
microspheres loaded with polypyrrole NPs and dextran 

drug, while the non-loaded agarose/alginate hydrogel 
served as the shell (Fig. 9a) [85]. The core compartment, 
due to the high photothermal conversion effectiveness of 
polypyrrole NPs [159–161], exhibited NIR responsiveness, 
resulting in a release of the dextran drug, while the non-
loaded shell served as a barrier, controlling the drug release. 
Thus, this multi-compartment structure enables individual 
control of the release speed. In addition to the capability 
of independently regulating the release speed of individual 
compartments, multi-compartment systems have the poten-
tial to deliver multiple molecules simultaneously. João F. 
Mano’s group reported a multilayered hydrogel microsphere 
prepared by a sequential-crosslinking process on SHS, in 
which every layer was loaded with different molecules, thus 
creating a possibility of realizing the sequential release 
of various molecules [158]. Therefore, this multilayered 
hydrogel microsphere may exhibit promising prospects for 
the synergistic treatment of multi-factorial diseases.

Cell encapsulation is a strategy to encapsulate a pool of 
living cells within a semipermeable membrane or hydro-
gel. The utilization of the SHS-assisted cross-linking tech-
nique has been regarded as a highly productive approach 
for encapsulating viable cells within hydrogel materials 
[76]. As a typical example, the procedure for encapsulat-
ing MC3T3 mouse osteoblast inside the hydrogel micro-
sphere will be described in detail [162]. This encapsulat-
ing hydrogel material was obtained from a cross-linking 
process of 4-arm polyethylene glycol (PEG)-vinylsulfone 
and degradable metalloproteinase, which both were dis-
solved in the spherical droplets onto SHS. To ascertain 
the viability of cell encapsulation, MC3T3 mouse osteo-
blast cells were encapsulated and cultured in a controlled 
environment  (CO2 incubator, pH 7.4, 37 °C), followed 
by a staining experiment. The live/dead staining result 
showed that cell viability exceeded 94% after 7 days of 
cultivation (Fig.  9b). Furthermore, the cell spreading 
results monitored by fluorescent microscopy confirmed 
the sustained healthy growth of the encapsulated cells for 
7 days. Subsequently, most of the cells were released onto 
a tissue culture polystyrene Petri after 14 days due to the 
degradation of the sensitive metalloproteinase network. 
The findings demonstrate that the SHS-assisted cross-
linking curing methodology is a highly feasible approach 
to creating hydrogel microspheres for encapsulating living 
cells. Undoubtedly, other types of cells can be effectively 
encapsulated within specific hydrogel microspheres. For 
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instance, João F. Mano’s group reported the encapsula-
tion of L929 cells within alginate hydrogel microspheres, 
which involved the deposition of an alginate suspension 
containing the cells onto SHS, followed by the cross-link-
ing of alginate with  Ca2+ ions [63]. The study revealed 
that the L929 cells exhibited a homogeneous distribu-
tion within the hydrogel microspheres, indicating that the 
employed technique enables the creation of cell-encap-
sulating hydrogel microspheres with uniformity. Besides 

these single-compartmental microspheres, this process-
ing strategy is also suitable for constructing multi-com-
partment structures. By loading each compartment with 
an active agent or cell, the multi-compartment structures 
exhibit great application prospects in the encapsulation of 
multiple substances and cell therapy. For instance, João F. 
Mano’s group reported a bi-layered hydrogel microsphere 
loading L929 cell in the outer layer and  CaCl2 molecule 
in the inner layer [158]. In this system, the core layer 

Fig. 9  Hydrogel microspheres obtained by SHS-assisted cross-linking curing technique employed as drug delivery medium or cell encapsula-
tion materials. a Release of TRITC-dextran drug triggered by NIR laser from a multi-compartment hydrogel microsphere with a core–shell 
structure. The core, loaded with polypyrrole NPs and TRITC-dextran, is sensitive to the NIR laser, while the non-loaded shell is not. A compari-
son of release rates of TRITC-dextran encapsulated in hydrogel microspheres is shown in a broken line chart.  Reproduced with permission from 
Ref. [85], Copyright 2014, Wiley–VCH. b Viability test and observation of cell spreading phenomenon using MC3T3 mouse osteoblast cells. 
Reproduced with permission from Ref. [162], Copyright 2018, Wiley–VCH. c Schematic diagram illustrating the process of encapsulating L929 
cells within the external layer of core–shell structured hydrogel microspheres. The core is formed through the cross-linking of DEX-MA under 
UV light, while the shell formation is attributed to the cross-linking of alginate induced by the release of  Ca2+ immobilized in the inner layer. 
Reproduced with permission from Ref. [158], Copyright 2013, Wiley–VCH
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consisted of a dextran modified with methacrylic groups 
(DEX-MA) hydrogel, while the shell was composed of 
alginate hydrogel. The hardening of the core layer was 
achieved through the UV-light-induced cross-linking of 
DEX-MA, whereas the formation of the alginate shell 
was attributed to the cross-linking of alginate induced by 
the diffusion of  Ca2+ ions from the core (Fig. 9c) [158]. 
Cell viability tests confirmed that L929 cells encapsu-
lated in this structure can maintain viability for 72 h and 
exhibited a homogeneous distribution on the shell layer 
[158], which can be attributed to the fact that this mild 
SHS-assisted cross-linking processing methodology sig-
nificantly reduced an invasion of cell encapsulation and 
protected the viability of loaded cells [163]. Furthermore, 
this configuration holds potential for specific therapeutic 
applications, as the inner layer of the microsphere can 
serve as a reservoir for bioactive or therapeutic agents 
that influence cell behavior. Additionally, the composition 
of the compartmentalized microsphere can be easily tai-
lored by adjusting the formulation of the NP suspensions 
deposited on the SHS, thereby meeting the requirements 
for encapsulating different cell types or bioactive factors.

3.4  Driven Crystallization

Evaporating solvents of droplets on SHS triggers a concen-
tration convergence effect within a confined region, resulting 
in the formation of microsphere-like materials with distinct 
shapes and crystalline structures. A comprehensive descrip-
tion of the formation process can be found in Sect. 2.3 
(Fig. 3a).

Nowadays, the SHS has become a common tool to induce 
the crystallization of various substances, including proteins 
[97], peptides [96] and salts [164]. To illustrate this phe-
nomenon, we will describe the crystallization process of 
lysozyme protein as reported by Yang’s group [97]. Initially, 
the sessile droplet of lysozyme buffer was deposited onto 
the protein-based SHS, which was fabricated by assembling 
phase-transited lysozyme product into a rough structure and 
then coating low surface energy materials onto it (Fig. 10a). 
Due to the high-water repellency of the SHS, the droplet 
stood onto SHS as a spherical shape, resulting in an ultra-
small liquid/solid contact area. As the solvent within the 
droplet gradually evaporated, a concentration convergence 
effect occurred within the limited contact area, thereby 
facilitating the formation of a protein crystal nucleus [97, 

Fig. 10  SHS-assisted droplet template evaporation strategy used to drive protein crystallization. a Schematic illustration of the formation of 
phase-transited lysozyme surface with superhydrophobicity.  Reproduced with permission from Ref. [97]. Copyright 2015, Wiley–VCH. b 
Scheme diagrams (top), Selected area electron diffraction diagrams (middle) and high-resolution transmission electron microscope diagrams 
(bottom) of lysozyme crystals formed on different surfaces, where PTL-SH, PTL-non-SH and PTL-non-SH represent the phase-transited 
lysozyme surface with superhydrophobicity, phase-transited lysozyme surface without superhydrophobicity, and  SiO2 surface with superhydro-
phobicity, respectively. These images demonstrate that high-quality crystals are only formed on a bio-based SHS. Reproduced with permission 
from Ref. [96]. Copyright 2018, Wiley–VCH
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111]. Subsequently, the crystal nucleus grew over time, 
eventually causing the formation of a protein crystal with a 
large size. Specifically, when the volume of the droplet onto 
SHS was set to 10 µL, the crystal nucleus appeared after a 
1.5-h evaporation process, and the crystallization process 
was nearly complete within another hour, ultimately yield-
ing the lysozyme crystal exceeding 100 µm in size [97]. The 
growth of lysozyme crystal followed a classical crystalli-
zation theory and the crystalline domains appeared in two 
forms known as hexagonal and tetragonal. It is worth men-
tioning that the lysozyme protein can achieve high-quality 
crystallization at a fast rate (within several hours) even under 
a low protein concentration (≈70 ×  10−6 mol  L−1) [97]. In 
comparison to traditional methods that require several days 
and higher protein concentrations for successful crystalliza-
tion, this process significantly accelerates the crystalliza-
tion speed while reducing the required protein concentration 
[97]. In addition, this manufacturing process avoids the use 
of toxic additives, complicated crystallization formulas, and 
harsh crystallization conditions. Consequently, this SHS-
assisted droplet template evaporation technique proves to 
be an efficient and cost-effective approach for facilitating 
protein crystallization.

The SHS-assisted droplet template evaporation strategy 
holds particular significance for the crystallization of the 
protein whose source is comparatively rare. For instance, 
a seven residue, fibril-forming peptide with sequence 
GNNQQNY, β-ketoacylacyl carrier protein synthase III 
[165], that is traditionally challenging to crystallize, can 
realize a high-quality crystallization onto bio-based SHS, as 
reported by Yang’s group [96]. In addition, through further 
observing the crystallization behavior of proteins on three 
different surfaces, including bio-based SHS, superhydropho-
bicity and non-bio-based SHS, it has been discovered that 
the high-quality protein or polypeptide crystals only existed 
on a bio-based SHS (Fig. 10b) [96]. This can be attributed to 
the fact that bio-based SHS not only possesses micro/nano-
structures that can facilitate solute concentration, but also 
incorporates numerous functional chemical groups (e.g., 
methyl, thiol, amino) that provide abundant active nuclea-
tion sites to enhance biomolecular crystal growth [96, 166]. 
Due to these favorable characteristics, bio-based SHS can 
expedite the crystallization process of various substances, 
including proteins, polypeptides, and salts, even at low sol-
ute concentrations. Thus, it is highly desirable for large-scale 
production of target material crystallization. Furthermore, 

by introducing combinatorial chemistry into the target mate-
rial intended for crystallization, the interactions between 
the crystals (e.g., specialized proteins) and drugs can play a 
significant role in biomedical and therapeutic applications, 
whether in vivo or in vitro.

3.5  Trace Analyte Detection

The concentration convergence effect induced by evapo-
rating aqueous droplets onto SHS is also highly signifi-
cant in molecular analysis and detection. This is because 
the detection thresholds and detection sensitivities of 
existing spectral analytical methods heavily rely on the 
solute concentrations [167–169]. In this section, Raman 
scattering (SERS) spectroscopy serves as an illustrative 
example to demonstrate the influence of solute concen-
tration [170]. When SERS spectroscopy is employed for 
qualitative and quantitative detection of a target solute, 
the SERS signals of a small number of analyte molecules 
falling into a “hot spot” occupy a high proportion of SERS 
signals in the whole measurement. Hence, it is a feasible 
method that preconcentrating the solute molecules onto 
SHS increases the probability of the analyte molecules 
entering the hot spot. Alexandre G. Brolo’s group eluci-
dated the process of SERS analysis with the help of SHS 
(Fig. 11a) [171]. Firstly, a droplet of an aqueous solute 
solution was deposited on the SHS, maintaining a spheri-
cal shape. Subsequently, the SERS optrode was positioned 
at the top of the droplet. As the solvent evaporated, the 
droplet size continually decreased and the contractive 
droplet was completely captured by the hydrophilic tip 
of the SERS optrode. Finally, the solute achieved enrich-
ment at the hydrophilic tip, enabling its easy detection 
through a SERS analysis [171]. With the utilization of 
this device, the lowest experimentally detected amount 
of nile blue A was 25 fg (34 attomoles). Moreover, tri-
azophos, an organophosphate pesticide utilized in agri-
culture, can be detected in quantities as low as 20 pg (64 
femtomoles). In addition to the configuration where SHS 
only serves as a medium to deliver concentrated analytes 
to the SERS substrate, the dual-functional SHS, which 
not only concentrates solute but also provides SERS hot 
spots, has also been developed [172, 173]. For instance, 
E. Di Fabrizio and colleagues reported the fabrication of 
multi-types of dual-functional SHS by combining silicon 
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micropillar arrays with plasmonic nanostructures [173]. 
Among the multi-types of SHS, the simplest structure 
consisting of silicon micropillar arrays topped with sil-
ver NPs was employed to demonstrate how to achieve a 
low detection threshold and high detection sensitivity. In 
this system, the rhodamine 6G served as a typical solute 
model. Initially, when the solvent of the droplet containing 
rhodamine 6G evaporated on the bi-functional substrate, 
the TPCL moved freely, causing a decrease in droplet 
size while maintaining a constant droplet shape. As the 
evaporation progressed, the solution became more concen-
trated. Upon the culmination of the process of evaporation, 
wherein the shape and concentration attained a state of 

instability, the droplet underwent a collapse, leading to 
the deposition of rhodamine 6G in a specific region. Since 
the precipitation regions and the “hot spots” areas of this 
bi-functional substrate were coincident, rhodamine 6G can 
be detected even at concentrations as low as  10–17 mol  L−1. 
Micro-Raman mapping measurement and spectral analysis 
confirmed the presence of solute rhodamine 6G through 
a clear band center at 1,650  cm−1 (Fig. 11b) [173]. Fur-
thermore, by combining this structure with a fluorescence 
device, DNA can be detected at concentrations as low as 
 10–18 mol  L−1 [173].

While the above dual-functional structure can enhance 
detection sensitivity, there is an inevitable migration of 

Fig. 11  SHS-assisted droplet template evaporation strategy employed to induce a solute concentration and its application in trace analyte detec-
tion. a Schematic diagram illustrating the process of solute concentration onto the SHS and SERS analysis of the solute.  Reproduced with per-
mission from Ref. [171]. Copyright 2015, The Royal Society of Chemistry. b SEM image, Raman mapping measurement, and spectral signature 
of rhodamine solute precipitation from a  10–17 mol·L−1 solution onto a dual-functional structure comprising silicon micropillar arrays adorned 
with silver NPs on the top. Reproduced with permission from Ref. [173]. Copyright 2011, Nature Portfolio. c The still-shot images and confocal 
laser scanning microscope images showing the evaporation process of droplets and the aggregation process of solute onto the structure com-
posed of the micropillar array with a radial density gradient. Reproduced with permission from Ref. [174]. Copyright 2017, American Chemical 
Society
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droplets onto SHS during the evaporation process, leading 
to uncertain deposition sites. Hence, when performing SERS 
analysis, the surface should be completely examined unless 
the target is fluorescently labeled. To address this issue, 
Shin-Hyun Kim and colleagues proposed a structure with 
uneven density [174]. This structure was composed of the 
micropillar array with a radial density gradient, where the 
nanotip array was located on the top surface of each micro-
pillar and Ag NPs were deposited on the nanotips. Since a 
radial density gradient of micropillar causes a radial gradi-
ent of contact angle onto the structure surface, the droplets 
can spontaneously move towards the central region with the 
highest density [174]. Consequently, the analyte dissolved 
in the droplets can be enriched at the central surface of the 
structure during the evaporation process (Fig. 11c) [174]. 
The analyte can be detected at predetermined positions using 
Raman spectra without requiring a complete scan of the 
substrate, thus significantly saving the detection time [174]. 
This makes it a general structure to promote the enrichment 
of the solute [175].

In summary, the SHS-assisted droplet template evapora-
tion strategy plays a significant role in molecular detection, 
particularly for molecules with concentrations as low as the 
attomolar scale. Additionally, this approach has the potential 
to be integrated with various spectral analysis techniques 
(e.g., SERS spectra, fluorescence, and Raman), and is fully 
compatible with existing biological and medical protocols. 
Consequently, it is of great significance for the analysis of 
rare or hazardous chemicals involved in biomedical, food 
safety and ecological pollution.

4  Summary and Future Perspective

In this review, we have presented a comprehensive over-
view of the recent advancements in the field of SHS-assisted 
preparation of microspheres and supraparticles, as well 
as their applications. Firstly, the strategies for fabricating 
microspheres and supraparticles, including SHS-assisted 
cross-linking curing, SHS-assisted polymer melting, and 
SHS-assisted droplet template evaporation, have been pre-
sented. Especially, the preparation processes of supraparti-
cles have been described in detail in terms of morphology, 
structure and properties. In addition, we also summarized 
the influence of the dynamic TPCL behavior of droplets 
during the evaporation process on the resulting shapes of 

supraparticles. Then, we demonstrated the wide range of 
applications for microspheres and supraparticles fabri-
cated through the SHS-assisted strategies. These applica-
tions encompass advanced optical devices, catalysts with 
superior catalytic efficiency, drug delivery systems with 
controlled release rates, cell encapsulation materials with 
improved encapsulation efficiency, Polymer crystallization, 
and molecular trace detection.

Although significant progress has been made, there are 
still challenges and potential outcomes that need to be 
addressed. These difficulties and potential outcomes are 
outlined below:

(1) Size and Shape Control: Achieving precise control over 
the size and shape of microspheres and supraparticles 
remains a challenge. While SHS-assisted methods offer 
some level of control, further optimization is needed 
to achieve mono-dispersity and uniformity in size and 
shape. Exploring the impact of original droplet size 
and solute concentration on the resulting particle size, 
as well as conducting systematic investigations into the 
factors influencing different supraparticle morpholo-
gies, will offer significant benefits for fine-tuning fab-
rication parameters in SHS-assisted methods. This 
exploration will lead to improved control over size and 
shape, ultimately enhancing reproducibility in the pro-
cess.

(2) Scalability and Production Efficiency: Scaling up the 
production of microspheres and supraparticles while 
maintaining their desired properties is an ongoing chal-
lenge in the field. SHS-assisted methods often involve 
complex fabrication processes that can be time-con-
suming and require specialized equipment to ensure 
uniform manufacturing. Additionally, these specialized 
equipment often have limited throughput, typically 
ranging from 100 to 1,000 droplets per second [64]. 
Developing strategies to improve production efficiency, 
such as modifying microfluidic devices by integrating 
multiple channels and sprinklers, may be expected to 
enable the fast fabrication of microdroplets.

(3) Reproducibility, Stability, and Durability: Ensuring the 
good reproducibility of the SHS-assisted methods, the 
long-term stability and durability of microspheres and 
supraparticles is essential for their practical applica-
tions. The reproducibility of the SHS-assisted methods 
mainly depends on the durability of SHS. Thus, investi-
gating the impacts of various nano-microstructures and 
modification techniques on the durability of SHS, with 
the aim of finding a robust SHS, assumes significant 
importance in maintaining consistent production of 
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supraparticles and microspheres. Concerning the stabil-
ity and durability of microspheres and supraparticles, 
multiple factors come into play, including structural 
integrity, resistance to degradation, and stability under 
various environmental conditions. Exploring the fac-
tors holds promise for advancing the practical utility 
of microspheres and supraparticles.

(4) Functionalization and Integration: Expanding the func-
tionality and integration of microspheres and supra-
particles is a promising direction for future research. 
SHS-assisted methods can potentially enable the incor-
poration of functional elements or materials within the 
microspheres or on their surfaces. Developing strate-
gies for precise functionalization and integration will 
enhance their capabilities and enable new applica-
tions. One example is the combination of catalytic 
performance with controlled self-propelled motion 
features, which holds significant potential across vari-
ous domains, including oil cleanup, pollutant decom-
position, agitation and mixing, and selective chemical 
reactions. Another area of interest is the development 
of multiple-compartment microspheres that enable the 
sequential release of multiple drugs. Although multi-
compartment structures and drug delivery systems 
with controlled release rates have been developed, the 
diffusion of drugs between chambers and the external 
environment remains an unavoidable issue, which leads 
to the failure of sequential delivery. To address this 
problem, it is important to select drug delivery sys-
tems with large release rate differences. The integra-
tion of these systems into a single drug delivery system 
holds significant potential for achieving sequential drug 
release. In summary, the functionalization and integra-
tion of microspheres and supraparticles offer exciting 
prospects for future research.

(5) Characterization and Understanding: Comprehensive 
characterization techniques and an in-depth under-
standing of the formation mechanisms are essential 
for further advancements in microspheres and supra-
particles fabricated by SHS-assisted methods. Efforts 
should be made to develop advanced characterization 
techniques that provide detailed information about their 
structural, optical, mechanical, and chemical proper-
ties. This knowledge will contribute to the optimiza-
tion of fabrication processes and the development of 
tailored microspheres and supraparticles.

By addressing these challenges and exploring their poten-
tial outcomes, further advancements can be achieved in 
the SHS-assisted preparations of microspheres and supra-
particles, as well as their applications. Overcoming these 

challenges will bring new opportunities for their use in 
various fields, including materials science, biotechnology, 
medicine, and environmental applications.
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