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HIGHLIGHTS

• The distinctive characteristics, underlying mechanisms, diverse range of selected materials, and modification methods of contact 
electrification (CE) at various interfaces are summarized and comparatively analyzed, offering valuable guidance for future investi-
gations of triboelectric nanogenerator (TENG) at different interfaces.

• This review gives a detailed insight into the unique applications of TENG relying on different interfacial electrification.

• The challenges and development prospects of TENGs based on CE are discussed.

ABSTRACT The triboelectric nanogenerator (TENG) can effectively col-
lect energy based on contact electrification (CE) at diverse interfaces, includ-
ing solid–solid, liquid–solid, liquid–liquid, gas–solid, and gas–liquid. This 
enables energy harvesting from sources such as water, wind, and sound. In 
this review, we provide an overview of the coexistence of electron and ion 
transfer in the CE process. We elucidate the diverse dominant mechanisms 
observed at different interfaces and emphasize the interconnectedness and 
complementary nature of interface studies. The review also offers a compre-
hensive summary of the factors influencing charge transfer and the advance-
ments in interfacial modification techniques. Additionally, we highlight the 
wide range of applications stemming from the distinctive characteristics of 
charge transfer at various interfaces. Finally, this review elucidates the future 
opportunities and challenges that interface CE may encounter. We anticipate 
that this review can offer valuable insights for future research on interface 
CE and facilitate the continued development and industrialization of TENG.
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1 Introduction

Contact electrification (CE) is a universal phenomenon that 
occurs on various interfaces [1]. This fact has been recog-
nized by scientists since the discovery of static electricity 
in old days [2]. Over the years, many scientific and techno-
logical concepts regarding CE have been proposed. In 2012, 
the triboelectric nanogenerator (TENG) was introduced as 
a means to convert mechanical energy in the environment 
into electrical energy, by harnessing the CE effect to gener-
ate fundamental charge density [3]. This pioneering work 
has opened up new possibilities for achieving clean energy 
and self-powered sensory system. The TENG’s operation 
can utilize the CE on a wide range of interfaces, includ-
ing solid–solid [4, 5], liquid–solid [6–8], liquid–liquid 
[9], gas–solid [10], and gas–liquid interfaces [11]. Conse-
quently, various TENG power units have been developed 
to collect energy [12] from water [13], wind [14], and even 
sound noise [15]. Additionally, self-powered sensor related 
to TENG can be applied to analyze diversified physical 
process occurring on various interfaces [16]. Meanwhile, 
the improvements of the energy conversion efficiency of 
TENG and the stability of the devices are closely depend-
ent on the advancement of interfacial electrification studies 
[17]. Therefore, the development of TENG in various fields 
inspires continuous research interest in CE, and the progress 
in the study of CE at various interfaces can provide feedback 
for enhancing TENG performance, resulting in a virtuous 
research cycle [18].

With the development of TENG, a series of novel materi-
als have been proposed for fabricating TENG [19], including 
ionized polymers [20], metallic glass [21], hydrogel [22] and 
various liquid electrification materials. These materials not 
only enrich the application scope of TENG but also bring 
out a series of unsolved interfacial issues for the study of 
CE [23]. Therefore, it is quite necessary to systematically 
summarize the mechanisms, regulation schemes, and unique 
applications of TENG based on different interfaces, to estab-
lish a complete physical understanding of TENG [24]. Pre-
vious reviews have focused on various aspects of TENG, 
including the CE mechanism at the interface [25], interfacial 
modification strategies [26], the triboelectric series [27] of 
different materials and so on. However, most of the reviews 
only focus on specific interface mechanisms or detailed 
functional device applications of TENG [28]. There is a 

lack of comparative analysis of TENG from the perspec-
tives of diversified interfaces [29]. It is important to note that 
CE at different interfaces has distinctive mechanisms, and 
the related interfacial modification methods as well as the 
suitable application fields vary. Therefore, a comprehensive 
comparison of the different electrification characteristics at 
various interfaces is essential for the further development 
and industrialization of TENG [30].

This article takes a comparatively summary of the char-
acteristics of different interface CE mechanisms as the entry 
point and provides a comprehensive review of the principles, 
ranges of material selection, methods of interface regula-
tion, and applications of interface CE. Firstly, the article 
addresses the principles of CE at different interfaces, high-
lighting the superiority of the electron cloud model [5] and 
the hybrid EDL model [31], as well as the process of inter-
facial CE studies that inspires and complements each other. 
Secondly, the article offers an overview of the factors that 
affect CE at various interfaces and summarizes the general 
adaptation and targeted interface modification methods for 
different interfaces. Finally, the review discusses the appli-
cation of each distinctive interface in various contexts. The 
article aims to offer a fresh perspective on the study of con-
tact electrification at interfaces, emphasizing interface char-
acteristics and interconnections between different interfaces. 
Its purpose is to stimulate innovative ideas and open new 
application domains that significantly enhance the efficiency 
of triboelectric nanogenerator (TENG) energy conversion. 
Additionally, the article discusses the opportunities and chal-
lenges for future studies on CE, aiming to provide insights 
for the development and innovation of related fields.

2  Principle Mechanism for Contact 
Electrification at the Diversified Interfaces

2.1  Principle of Contact Electrification at Solid–solid 
Surfaces

Solid–solid contact electrification is one of the most com-
mon modes of CE. To date, there have been numerous 
discussions relating to the nature of the charge generated 
in interfacial contact electrification [32, 33]. In recent 
years, various charge transfer models have been proposed 
to explain the process of solid–solid interface CE.
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Figure 1a illustrates the energy bands between a metal 
and a dielectric [34], between two different dielectrics [5], 
and between the same dielectric in contact with each other 
[35]. Typically, the energy level occupied by electrons at 
the surface of dielectric material is lower than the Fermi 
level (EF) of the metal, and many surface states remain 
unoccupied. However, when the temperature reaches a cer-
tain point, some electrons in the metal gain enough energy 
to surpass the Fermi level. When the metal comes into 
contact with the dielectric material during this time, these 
high-energy electrons from the metal transfer to the unoc-
cupied surface state of the dielectric material [34]. A simi-
lar situation may occur between different media [5]. This is 
due to the different ability of different dielectrics to retain 
charge. Although contact initiation usually occurs between 
two different materials, contact between two chemically 
identical materials can also generate electrostatic charges. 
In adjacent common dielectrics, the direction of charge 
transfer is influenced by the surface curvature of the sam-
ple. Positive curvature surfaces generally have a net nega-
tive charge, while negative curvature surfaces tend to have 

a net positive charge [35]. The stretching or compression 
of molecules on surfaces with different curvatures pro-
duces different surface energies, so that contact sites on 
surfaces with greater curvature can hold more electrons.

To account for the differences in energy band structure 
between metals and polymers, Wang et al. introduced an 
electron cloud/potential model. This model emphasizes 
charge transfer at the atomic level and visualizes the pro-
cess of charge generation at the interface (Fig. 1b). In this 
model, atoms are depicted as potential wells with loosely 
bound electrons forming an electron cloud in specific 
orbitals [34]. Initially, electron transfer is hindered by the 
local capture effect of the potential well before contact 
between materials. However, when materials come into 
contact, overlapping electron clouds create an asymmetric 
double potential well due to differences in electronegativ-
ity. This asymmetry double potential well leads to varia-
tions in charge trapping capabilities and results in electron 
transfer. Due to the presence of the energy barrier, most of 
the transferred electrons will be retained after the materi-
als have separated. Since potential barriers exist for all 

Fig. 1  Contact electrification principle between solid and solid. a Principle of the charge transfer between different solid materials. b Electron-
cloud–potential-well model for explaining release and transfer of charge between two materials
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types of materials, this model is applicable to interfacial 
CE for all types of materials.

2.2  Contact Electrification Principle Between Solid 
and Liquid

The electron cloud model provides a visualization of the 
electron transfer process at the atomic level [36]. This 
model is also applicable to explain the process of con-
tact electrification at solid–liquid interfaces [37]. It dem-
onstrates that electron transfer plays a dominant role in 

solid–liquid CE in some cases, in addition to the well-
established interfacial ion transfer that has been known 
for decades [38].

A droplet-TENG was utilized as a probe to investigate 
interfacial charge transfer and examine dynamic satura-
tion processes of charge accumulation and surface poten-
tial distribution on polymer surfaces, as shown in Fig. 2a 
[39]. In soaking–dropping experiments, the negative 
surface potential of the PTFE films remained relatively 
unchanged after immersion in different solutions, despite a 
four-order difference in the concentration of  OH− ion. The 
observation indicates a dominant role of electron transfer 
in solid–liquid contact electrification. To gain a deeper 

Fig. 2  Contact electrification principle between solid and liquid. a Working mechanism and electron-cloud model of the liquid droplet TENG. 
b Primary chemical reaction following ionization of liquid water and proton transfer. c Schematic of the structure and dissociation of interfacial 
water. d Formation of electric double-layer at solid–liquid interface
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understanding of the generation of charge at the solid–liquid 
interface, attention was given to the main chemical reac-
tion that occurs following the ionization of liquid water, i.e., 
 H2O+  +  H2O → OH +  H3O+. As shown in Fig. 2b, the strong 
isolated soft X-ray absorption resonance (1a1 → 1b1) dem-
onstrates the generation of electrons during the ionization 
of water molecules  [40]. Additionally, studying interfacial 
water offers valuable insights in the structure and dynamic 
processes of water at the solid–liquid interface. As shown 
in Fig. 2c, surface interfacial water consists of hydrogen 
bonded and hydrated  Na+ ionized water. The presence of 
structurally ordered interfacial water facilitates effective 
electron transfer across the interface [41].

In 2018, Wang et al. introduced a hybrid EDL model and 
a "two-step" process of formation, considering both electron 
transfer and ion adsorption, as shown in Fig. 2d. In the first 
step, due to the thermal motion and the pressure of the liq-
uid, molecules and ions in the liquid impact the solid surface 
and electrons will be transferred between the solid atoms and 
water molecules due to the overlap of the electron clouds of 
the solid atoms and water molecules. The ionization reac-
tion and ion adsorption occur simultaneously as parallel pro-
cesses on the solid surface. It is worth noting that both the 
ions generated by the ionization reaction and the transferred 
electrons can change the potential distribution near the sur-
face. In the second step, free ions in the liquid are attracted 
to the charged surface due to electrostatic forces. As a result, 
these ions migrate toward the charged surface, forming an 
EDL. In addition, the formation of EDL is influenced by the 
ability of the solid material to give/absorb electrons. This is 
consistent with the CE law between solids [31].

2.3  Exploring Contact Electrification Principle 
at Other Interfaces

In recent years, with the development of newer iterations in 
scientific detection techniques, there has been an increase 
in research into the contact initiation of electricity at other 
interfaces [42]. The study highlights the influence of H + on 
the dissociation of dominant groups and preferential adsorp-
tion of OH-, which plays a crucial role in influencing the 
coexistence mechanism of ζ-potentials in ion adsorption and 

electron transfer. By measuring the trends of the characteris-
tic ζ-potentials of the Hex-water, OA-water and HFE-water 
systems at different concentrations of NaCl or HCl, it is pos-
sible to identify the dominant or co-existing mechanisms in 
the different systems. In the raw water system, the ζ-potential 
is initially negative due to the preferential adsorption of OH- 
ions at the interface. With the addition of HCl or NaCl, the 
OH- ions are gradually depleted by the neutralization of 
the H + ions, resulting in the aggregation of H + ions at the 
interface. As a result, the ζ-potential becomes positive. The 
magnitude of the negative ζ-potential initially increases and 
then decreases with increasing NaCl concentration, suggest-
ing a competition between the salt effect and the compres-
sion of the bilayer. When HCl was added to the OA emul-
sion, the magnitude of the negative ζ-potential decreased as 
the introduction of H + ions hindered the dissociation of the 
carboxyl groups. These findings suggest that there is a coex-
istence mechanism in the OA-water system that involves 
preferential ion adsorption in addition to the dissociation of 
the main groups. In addition, this adsorption is affected by 
the concentration of H + in the system. Wang et al. presented 
a theoretical model of gas–solid CE, which incorporates a 
shooting gas collision model and illustrates the initial charge 
of the particles (Fig. 3d). Polar molecules were found to be 
attracted to the initial charge on the surface of solid particles. 
This attraction enhances gas–solid collisions. Given the lim-
ited presence of ions in gas–solid contact, it is reasonable to 
assume that gas–solid CE primary involves electron transfer. 
Also, the amount of transferred charge increases with surface 
area, distance travelled and the initial charge of the particle 
[10]. Additionally, the interaction between multiple state inter-
faces facilitates overcoming the limitations of the solid–solid 
and solid–liquid CE process. As shown in Fig. 4e, Wang et al. 
fabricated a Gas–liquid two-phase flow-based triboelectric 
nanogenerator. After water and PTFE come into contact, the 
gas–liquid two-phase flow rapidly replaces the air, filling the 
gap between the dielectric layer and the electrode. And the 
accumulated charge of the PTFE creates an electric field that 
penetrates the gas–liquid two-phase flow and generates a huge 
discharge. This effectively improves the problems of slow con-
tact separation and small contact area in the solid–liquid CE 
process [11].
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3  Influence of Different Interface Conditions 
on the CE Process and Related Modulation 
Methods

Although CE has found a variety of ways for practical 
applications, further improvements in output performance 
are required to keep up with rapid development pace [43]. 
In this section, we focus on interfaces as a starting point 
and provide a comprehensive summary of the impact of 
various interface conditions on charge generation during 
CE. Furthermore, we explore different modulation tech-
niques for enhancing CE at diverse interfaces.

3.1  Material Selection and Modification Approaches 
for Contact Electrification at Solid–Solid Interfaces

In the solid–solid CE, the fatigue resistance and cyclability 
of the device are important indicators of the performance 
of the solid CE device in practical applications [44]. Wang 
et al. achieved long term operation with a high output of over 
30,000 cycles by utilizing water-based graphene oxide as a 
lubricant [45]. However, the difference in electronegativity 
stemming from the inherent material molecular structure is 
the fundamental factor affecting the start of the charge [46]. 
Therefore, structural design and modification of materials 

Fig. 3  Contact electrification principle at other interfaces. a Illustration of the structure of liquid–liquid TENG and the electron transfer process. 
b The droplet movement process, including generating, approaching the electrode ring and moving away. c Mechanism of CE between liquid and 
liquid. d The gas collision model at the solid–gas interface. e Working principle of the gas–liquid TENG
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are key factors in improving interfacial CE performance 
[47]. Common methods of regulation include designing of 
the material’s molecular structure [48], implementing physi-
cal modifications [49], employing chemical functionaliza-
tion [50], and enhancing process techniques.

Functional groups play a key role in determining the 
chemical properties of organic compounds. Moreover, they 
also have significant impact on the electronegativity of elec-
trically frictional materials [51]. The selection of monomers 
containing suitable functional groups [52] and the control 

of monomer ratios [53] are the effective means of control-
ling the electronegativity of polymeric electrically charged 
materials. As shown in Fig. 4a, Tao et al. synthesized fluor-
inated poly(phthalazinone ether)s (FPPEs) by introducing 
phthalazinone moieties with strong electron-donating prop-
erties [54]. The materials containing 25% phthalazinone 
moieties exhibit a special crystalline behavior that allows 
them to trap and store more electrons. Fan et al. employed 
a physical etching process to prepare three regular polymer 
pattern arrays in the form of lines, cubes and pyramids. 

Fig. 4  Modification for CE at solid–solid interface. a Molecular structure design and synthesis of materials. b Physical modification. c Chemi-
cal modification including ion irradiation and inorganic doping. d Special molding process to improve the CE properties of the material
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Notably, the devices with the pyramidal structure achieved 
an output voltage of up to 18 V, generating significantly 
more power compared to the unstructured films (Fig. 4b) 
[55]. Chemical modifications can cause direct changes in 
chemical bonding and are more commonly used in material 
modifications (Fig. 4c). Wang et al. used the surface treat-
ment technique of plasma irradiation to increase the C–O 
and C–O content on the PI surface [56]. This was achieved 
by utilizing in situ two-step Ar +  O2 reactive ion etching 
(RIE), which resulted in the formation of granular nano-
structures on the PI surface. By doping the F-PI films with 
 BaTiO3 nanoparticles, Wang et al. achieved the creation of 
electron deep traps and interfacial polarizations at interface, 
resulting in charge densities up to 200 µC  m−2 and thermal 
charge stability up to 200 °C [57].

In addition, a well-designed processing process can also 
enhance the charge density for contact initiation. As shown 
in Fig. 4d, Liu et al. used repeated rheological forging to 
effectively modulate the surface functional group compo-
sition, crystallinity and dielectric constant of fluorinated 
ethylene propylene. By utilizing a forged 30-μm-thick film, 
an air breakdown mode TENG was capable of achieving 
an ultra-high charge density of 510 μC  m−2 [58]. The team 
has also developed a quenched polarization (QP) method to 
generate ultra-high and long-lasting frictional charges on 
frictional electro-polymers with weak dipolarity. The QP 
films can achieve a charge density of 391 μC  m−2, which is 
200% higher than that of corona polarization. This method 
enables the use of charge storage materials that are not lim-
ited to highly insulating polymers [59].

Further research summarizes the factors at the micro-
scopic level that influence the frictional starting properties 
of the polymer itself [58]. At the atomic level, the elec-
tronegativity of the atoms determines the electron-captur-
ing capacity of the functional groups. This, in turn, influ-
ences the polarity and density of charges induced through 
friction [60, 61]. At the chain level, the molecular chain 
orientation plays a significant role [62]. It determines the 
probability of functional groups exposed in the surface 
region, coming into contact with the counter material, as 
well as the probability of the electron clouds overlapping 
[63]. Furthermore, higher crystallinity leads to an ordered 
arrangement of molecules, resulting in larger dipole 
moments and higher dipole polarization. The deep traps 
formed at the interface between the crystalline and amor-
phous regions enhance the storage of charge. In addition, 

material characteristics such as hardness [64] and surface 
roughness [65] and temperature difference [66] play a sig-
nificant role in charge generation. It has been shown that 
from 0 to 145 K the output voltage, current, surface charge 
density, and output power increase by 2.7, 2.2, 3.0, and 
2.9 times with the temperature difference between the hot 
and cold friction layers, respectively. And decrease as the 
temperature difference continues to increase. And also an 
increase in the hardness of the material usually reduces the 
contact radius, thus indirectly affecting the charge output.

3.2  Factors Influencing the Solid–Liquid Interface 
and Related Modification Options

Compared to solid–solid contact, ion adsorption plays a 
more significant role in solid–liquid CE [67]. As shown 
in Fig. 5a, different ion species [68], ion concentrations 
[69], and pH [70] of the liquid result in different contact 
voltages and effective contact charges. And similar to the 
solid–solid CE, the temperature difference [71] between 
the liquid and the solid also affects the occurrence of CE. 
In addition, due to the inherent liquid mobility, differ-
ences in contact angles due to the surface morphology of 
the solid and the hydrophilic and hydrophobic properties 
induced by different surface work functions play an impor-
tant role in solid–liquid CE [72, 73].

Song et al. modified the surface from hydrophilic to 
hydrophobic by changing the density of the SAMs mon-
olayer on the  SiO2 surface, as shown in Fig. 5b. By par-
tially exposing -OH groups on  SiO2, they induced a high 
enough surface charge density to create a thicker EDL 
layer. The optimum contact angle and surface energy of 
the substrate were 95.5°and 30.7 mJ   m−2, respectively 
[74]. Wang et al. achieved reversible PCL surface reor-
ganization by controlling the temperature. The mobility 
of the PCL chains increased with temperature, causing 
the hydrophobic groups at the water-polymer interface to 
be switched by hydrophilic groups, resulting in a revers-
ible electrical signal output [75]. Kim et al. has developed 
a comprehensive framework for liquid friction, encom-
passing electrolytes, organic solvents, oxidants, higher 
alcohols, and sugar alcohols. This framework outlines the 
chemical groups that commonly enhance or inhibit the liq-
uid friction effect. For instance, hydroxyl groups are found 
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to enhance the liquid friction effect, while the presence of 
phenyl groups inhibits the liquid tribological effect. This 
highlights the significance of functional groups in the 
solid–liquid charge extraction (CE) process [71].

3.3  Emerging Approaches for Modification of CE 
at Other Interfaces

Regarding modification techniques for other contact interfaces, 
especially those involving gas–solid and gas–liquid interac-
tions, there is still a lack of systematic research. This is primar-
ily due to the constraints imposed by the limited availability 

of data and methodologies in these areas. Nevertheless, draw-
ing on the insights gained from studies on solid–solid and 
solid–liquid interfaces, it is reasonable to conclude that alter-
ing the functional groups and molecular chain structure of the 
contact interface will remain a crucial approach for manipulat-
ing the electrical characteristics of other interfaces [76].

3.4  Key Factors to Consider When Designing Different 
Interface Materials

In the field of material selection for CE, the choice of materi-
als is influenced by factors such as the electronegativity of 

Fig. 5  Factors and modification methods for CE between solid and liquid. a Factors affecting solid–liquid CE including ion concentration, ionic 
type, PH, temperature and surface tension and contact angle. b Modification for improving CE at solid–solid interface
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atoms, the electronic series, and the type of functional group 
[77]. Solid materials, characterized by densely arranged 
atoms, provide ample opportunities for modifying chemi-
cal bonding and crystal structures. As a result, a wide range 
of material options with solid interfaces is available [78]. 
Additionally, the plasticity of solid materials grants them 
excellent processability, surpassing that of liquids and gases, 
as shown in Fig. 6a [79]. In addition, research on modifica-
tions of liquids has primarily focused on ionic species and 
concentrations, studies on gas modifications remain rela-
tively scarce [80]. However, it is worth noting that unlike 
liquids and gases, solid materials are more susceptible to 
wear issues during friction and are prone to corrosion [81, 
82]. Conversely, liquid–liquid and gas–liquid interfaces 

offer distinct advantages in terms of longevity and wear 
resistance.

Charge density is a crucial metric for evaluating energy 
conversion and is a dominant factor in trends observing 
across different interfaces [83]. However, it is important to 
note there is currently a significant variation in research pro-
gress for different interfaces [84]. As illustrated in Fig. 6b, 
this article examines the existing studies on CE at different 
interfaces, encompassing over 40,000 articles included in the 
statistical analysis. Of these, 62% of the studies focused on 
solid–solid CE, while 31% were for solid–liquid CE, indi-
cating that previous research has primarily concentrated on 
these two types of interface CE. Only 3%, 2%, and 1% of 
the studies were for solid–gas, liquid–liquid, and liquid–gas 

Fig. 6  a Comparison of the range of materials available, processability and environmental stability for different interfaces. b Discussion of the 
exploitable prospects of CE at different interfaces based on number of existing studies and c limits of surface charge density
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interfaces, respectively. This may be due to technical limita-
tions, but also suggests promising future developments [85]. 
The differences in the number of studies have resulted in 
variations in the methods used to increase charge density 
[86]. As shown in Fig. 6c, solid–solid CE produces the wid-
est range of charge densities, with intrinsic charge densi-
ties of up to 1200 µC  m−2 or more achievable thanks to 
the development of modification methods [57, 58, 60, 87, 
88]. However, the various modification methods proposed 
for solids in previous studies have not increased the surface 
charge density of solid–liquid and solid–gas interfaces as 
much as desired, and the surface charge densities at these 
interfaces are mainly concentrated around 200 μC  m−2 [59, 
73, 89–91], which may be due to the weak charge-binding 
ability of liquids and gases. The same is true for liquid–liq-
uid CE [92, 93]. However, it is noteworthy that high surface 
charge densities have been achieved for liquid–gas interface 
CE, where the gas–liquid two-phase flow approach has suc-
cessfully increased the charge density range from a few tens 
to 800 µC  L−1 [11, 94]. This exceptional phenomenon at 
special interfaces highlights the impressive progress of spe-
cial interface CE.

4  Applications Related to Contact 
Electrification at Different Interfaces

Frictional electrical devices that are controlled by function-
alized interface structures of different natures have found 
widespread use in the fields of physics, chemistry and biol-
ogy [95, 96]. Moreover, energy conversion and transmission 
based on the frictional electric effect have been extensively 
employed in wearable devices [97], biomedical applications 
[98], smart homes [99], intelligent transportation [100, 101], 
environmental monitoring, and other domains [102]. These 
application scenarios not only enhance the energy efficiency 
of devices [103] but also provide greater convenience and 
comfort in people’s lives. This session describes the prac-
tical application of different contact interfaces for starting 
electrical incoming bands in terms of their characteristics.

4.1  Diversified Application Design Based on Solid–solid 
Contact Electrification

Solid materials are generally rigid and resistant to external 
influences that can change their shape or volume [104]. As 

a result, solid interfaces can be diversified to suit different 
application scenarios and needs [105]. Currently, a vari-
ety of interface CE forms such as single-layer [106, 107], 
multi-layer [108–110], bending [111] and turntable [112] 
have been developed and are used in a variety of environ-
ments. Energy harvesting in many conditions is one of the 
key applications of TENG [113]. Wu et al. designed and 
fabricated a hybrid energy vibration-driven triboelectric 
nanogenerator, which uses wind-driven TENG to generate 
contact separation and thus harvest vibration energy for use 
as a power source in self-powered information detection/
transmission/alarm systems [114]. Jr-Hau He presented a 
wave energy-driven electrochemical system to maximize the 
production of formic acid using the energy collected from 
the nanogenerator, producing 2.798 mmol of formic acid 
per day from wave energy collected over an area of 0.04 
 m2, with a CO conversion efficiency close to 100% [115], 
as shown in Fig. 7a. Tao Jiang has developed a highly sta-
ble multi-phase TENG that achieves a high average output 
power DC output under constant current conditions by 
means of electrode misalignment and circuit connection 
using common everyday materials, expanding the choice of 
TENG materials and using its rotational characteristics for 
cycling runner energy harvesting [116]. Figure 7b describes 
a fully implantable symbiotic pacemaker (SPM) based on an 
implantable frictional electrical nanogenerator, where the 
pacemaker and the body form an interconnected symbiotic 
system where the SPM takes in biomechanical energy from 
cardiac motion, respiratory motion and blood flow while 
the body receives electrical stimulation from the SPM to 
regulate cardiac physiological activity. The device has been 
successfully implemented in large animal models for cardiac 
pacing and sinus arrhythmia correction, and has the advan-
tages of excellent output performance, high power density 
and durability [117].

In the era of 5G and the Internet of Things (IoT), inte-
grated systems for TENGs and IoT technologies are devel-
oping rapidly and are dramatically changing the way 
humans produce and live their daily lives [118]. As shown 
in Fig. 7c, Wang et al. introduced a self-powered vibration 
sensor system using dual-mode TENG. Once the vibration 
amplitude exceeds the danger threshold, AC immediately 
converts to DC and simultaneously triggers the alarm system 
directly. This device can detect the vibration characteris-
tics of a building structure in real time, accurately predict 
construction hazards and monitor the structural health of 
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the building [119]. Wang et al. developed a self-powered 
normally transparent smart window by combining a rotating 
freestanding sliding frictional electro-nanogenerator (RFS-
TENG) and a polymer network liquid crystal (PNLC) cell 
to achieve ultra-transparent and ultra-hazy state switching 
with a response time of less than 7 ms. The window can 
be used in applications such as self-powered skylights and 
wind-driven intelligent agricultural systems [120]. Infor-
mation encoding devices are an important branch of the 
Internet of Things, in areas such as smart defense systems 
and improvised explosive devices (Fig. 7d) [121]. You et al. 
investigated an elastomer with triple-shape-memory effect 
and integrated the development of a multifunctional self-
powered information encoding device (IED). The IED has 
independent, spatio-temporal reprogrammable, self-healing 
and erasable properties.

As an important product of internet development, virtual 
reality (VR) and augmented reality (AR) aim to enable the 
input and output of analogue signals for multiple senses such 
as sight, smell and touch, providing a near-realistic virtual 

experience for humans. The high voltage, low current and 
wide range of material options of wearable TENG devices 
are facilitating the manufacture of VR and AR devices [122, 
123]. Pu et al. reports a TENG-based micromotion sensor 
that can effectively capture blink motion at super-high signal 
level (~ 750 mV) and can be applied to wireless hands-free 
typing systems (Fig. 8a) [124]. Yang et al. used electrostatic 
field-accelerated evaporation to achieve virtual olfaction 
generation, and designed their system to achieve a volatile 
liquid spray flow rate of 0.1 μL  s−1 and an average evapora-
tion rate of 0.12 mg  s−1, allowing the user to perceive odor 
generation within 3 s (Fig. 8b) [125]. Shi et al. designed self-
powered, painless, highly sensitive virtual haptic sensors that 
can be used for virtual tactile displays, Braille guidance, and 
neural stimulation [126]. The team combined TENG with 
ultra-long organic phosphorescence (UOP) and elastomers to 
enable visual tracking of electrical signals [127] (Fig. 8c, d). 
By further incorporating intelligent algorithms, it is possible 
to achieve systems that surpass human tactile perception. 
The artificial tactile smart finger designed by Xuecheng Qu 

Fig. 7  Application scenarios derived from the diverse solid–solid interface CE including a energy harvesting, b biotherapy, c intelligent internet 
of things and d information encoding
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et al. can accurately identify material type and roughness 
with an accuracy of 96.8% by integrating frictional electrical 
sensing and machine learning (Fig. 8e) [128]. In addition, 
similar systems can be used to monitor the comfort of shoes 
during exercise, informing sports training and the custom 
design of shoes (Fig. 8f) [129]. The sensor units embedded 
within the in-shoe sensor pad are airbag TENGs composed 
of activated carbon/polyurethane (AC/PU) and microsphere 
array electrodes. This design enables an exceptionally broad 
detection range, allowing the sensor to handle shock pres-
sures across various scales. Furthermore, In addition, the 
magnetically coupled inductive wireless transmission system 
effectively extends the battery life of the sensor. This offers 

long-lasting information into abrupt variations in foot pres-
sure and friction, which can often go unnoticed by the user.

4.2  Applications Based on CE Between Solid 
and Liquid

Blue energy refers to renewable energy sources derived 
from the ocean [130]. Compared to conventional energy 
sources, blue energy does not produce greenhouse gases 
and other pollutants and has a lower impact on the envi-
ronment and ecosystems, while also being able to reduce 
reliance on limited fossil energy sources [131, 132]. 

Fig. 8  Triboelectric sensor provides a boost to wearable devices and virtual reality development. a Self-powered eye movement monitoring 
system. b Self-powered virtual olfactory generation system. c Nanogenerator with self-powered persistent phosphorescence for reliable optical 
display. d Self-powered electro-tactile system. e Artificial tactile perception smart finger. f Monitoring the degree of comfort of shoes using tri-
boelectric pressure sensors
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Such environments which contain large amounts of water 
resources, such as oceans, rivers and rainwater [133], pro-
vide an ample liquid matrix for solid–liquid power gen-
eration and can take full advantage of the advantages of 
power generation at the solid–liquid interface. As shown in 
Fig. 9a, the study reports an integrated solid–liquid TENG 
based on a fluorinated ethylene propylene film. The device 
results in an electrical output efficiency of 7.7%, capa-
ble of harvesting energy from wave water during surfac-
ing and sinking [134]. Pan et al. designed the buoy L-S 
TENG, which has 48.7 times more friction and energy 
output than a solid–solid contact frictional electro-electric 
nanogenerator of the same area, to harvest energy from 

low frequency motions such as up and down, vibration 
and rotation. the L-S TENG network can achieve an out-
put of 290 µA, 16 725 nC and 300 V with a single trigger 
pulse to generating multiple continuous damping signals to 
maximize the energy requirements of SOS transmitters for 
marine emergencies [135]. Figure 9b shows a TENG using 
shape memory materials to harvest energy from raindrops 
with a power density of up to 230 mW  m−2 under rainy 
conditions [136]. In addition to water energy harvesting, 
solid–liquid CE exists in a wide range of applications in 
liquid sensing [137]. The superhydrophobic liquid–solid 
TENG as a biomedical droplet sensor is repulsive to a wide 
range of solutions including blood, enabling real-time 

Fig. 9  Applications of TENG using CE between solid and liquid including a blue energy, b raining energy harvesting, c self-powered sensor 
and d electrocatalysis
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monitoring of clinical drainage operations and intrave-
nous infusions (Fig. 9c). Solid–liquid CE is also often used 
in combination with chemical reactions such as electro-
chemistry [138], catalysis [139–141], colloidal suspension 
[142], prevention of adsorption and corrosion [143]. As 
illustrated in Fig. 9d, contact electrocatalysis (CEC) is able 
to use the electrons exchanged at the interface between 
water and dielectric powder for chemical reactions, act-
ing on refractory organic compounds, resulting in a novel 
wastewater treatment system [139]. Experiments showed 
that 50 mL of 5-ppm aqueous solution of methyl orange 
(MO) was completely degraded after 3 h under the aid 
of 20 mg of pristine FEP powder and ultrasound. It also 
proved that contact electrocatalysis can effectively enrich 

the variety of catalytic mechanisms and broaden the range 
of material options for catalysts [144].

5  Highlighting Unique Applications 
of Contact Electrification in Other 
Interfaces

The problem of easy merging and difficult separation at the 
liquid–liquid interface contact is still limited by the inad-
equacy of existing technology and there is a lack of practical 
applications [145]. Chen et al. established an L-L TENG 
for liquid energy harvesting using the interaction between 
liquid droplets and separate liquid films [92]. As shown in 
Fig. 10, a droplet with a volume of about 40μL generates 

Fig. 10  Applications of TENG based on contact electrification at other interface
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a peak power of 137.4 nW, and the output power can be 
further increased by using a multi-membrane system. In 
addition, negligible friction at the L-L interface results in 
minimal energy loss compared to the solid–solid or liq-
uid–solid interfaces, allowing for the collection of mechani-
cal energy including in raindrops, irrigation currents, and 
microfluids without blocking or capturing moving objects 
[1]. Wang et al. introduced a lubricant layer between the 
ferromagnetic fluid and the substrate to form a liquid–liq-
uid frictional-electric interface, thus pushing the limits of 
motion velocity measurement for TENG as a velocity sensor 
and demonstrating its potential application as a self-powered 
water/liquid level sensor [146]. Taking inspiration from the 
phenomenon of electrostatic charges and lightning genera-
tion in suspended droplets within clouds, Fan Wang et al. 
devised an innovative approach using acoustic levitation 
to suspend and rub liquid droplets against air. This process 
resulted in the acquisition of a positive charge on the droplet 
surface through contact electrification (CE) at the liquid–air 
interface [94]. Zhang et al. investigated the electrostatic pro-
cess of microdroplets at the gas–liquid interface. A series 
of work on microdroplet catalytic reactions is carried out 
using a unique home-built field-induced droplet ionization 
mass spectrometry methodology. Experiments on spontane-
ous oxidation of dozens of organic molecules shows that the 
electrification at the gas–liquid interface is of great value in 
the field of microdroplet catalysis [147].

Due to the rapid development of industry and fuel vehi-
cles in cities, atmospheric pollution caused by particulate 
matter or volatile organic compounds (VOCs) has become a 
serious threat to human health. The static electricity gener-
ated by the interface between solids and gases can be used 
to achieve gas treatment and purification. Li et al. combine 
TENG and photocatalytic technology to remove pollutants 

from indoor air. The TENG is able to generate a strong elec-
tric field of over 1100 V on the filter network, doubling the 
degradation efficiency of both RhB and formaldehyde in the 
same amount of time [90]. A porous elastomeric PDPU with 
ultra-high static surface potential and excellent compress-
ibility was designed to generate electrical energy through 
periodic compression. This self-healing elastomer can be 
adhered to other substrates and is compatible with substrates 
including textiles, shoes, computer mouse devices and key-
boards to harvest mechanical energy during the compressive 
motion [91].

5.1  Expand the Scope of Application Based on CE 
at Different Interface

TENG controlled by functionalized interface structures of 
different natures are widely used in multiple areas. However, 
the degree of exploitation of different interfaces in different 
application scenarios varies due to their respective charac-
teristics [148]. Table 1 illustrates the degree of application 
of different interface CE in common fields. TENG have great 
advantages as passive devices in the field of self-powered 
energy packs [149, 150], and all interface CEs are capa-
ble of energy supply in the field of wearable energy packs 
[98]. However, for the manufacture of implantable energy 
packs, solid shape stability and plasticity are necessary to 
ensure device safety and stability, making devices based on 
solid–solid CE the most widespread [96]. While solid–liquid 
CE can also be realized using blood and tissue fluids in the 
human body. Research in the biomedical field also focuses 
more on solid–solid and solid–liquid interfaces. In the field 
of blue energy, the abundance of water in the ocean makes 
solid–liquid CE dominant [151, 152]. Self-powered sensors 
are a universal application for CE at different interfaces. 

Table 1  Application degree of various interface CE in common fields

Solid–solid Solid–liquid solid–gas Liquid–Liquid Liquid–gas

Wearable energy package √ √ √ √ √
Implantable energy package √ √
Blue energy harvesting √ √ √
Diversified sensor √ √ √ √ √
Data acquisition/transfer √ √
Biomedicine √ √
Electrocatalysis √
Air purification √ √ √
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Self-powered sensors based on solid–solid interfaces can 
be used to monitor [153] a variety of human movements 
for signal transmission [154] and integrated with smart 
IoT devices [155], while those based on solid–liquid and 
solid–gas interfaces are more commonly used to monitor 
environmental conditions. In addition, TENG based on spe-
cialized interfaces offer an enhanced capability for precise 
sensing in specific conditions. Additionally, CE processes 
at the solid–solid and solid–liquid CE can be used for data 
processing [156]. It can be observed that solid–solid CE, 
which has been studied the longest and has the best underly-
ing theory, also has the most application scenarios. However, 
other states of matter have their own strengths, such as the 
unique application of solid–liquid CE in catalysis [140], and 
interfaces containing gases have a unique advantage in air 
purification [157].

Despite the existing technical challenges, contact electri-
fication at different interfaces is already demonstrating great 
vitality in some emerging applications. In the future, CE at 
different interfaces will certainly develop their own charac-
teristics and enable a wider variety of applications [158]. 
Figure 11 illustrates possible future directions. For example, 
CE at liquid–liquid interfaces offer unlimited possibilities 
for monitoring chemical reactions and detecting changes in 
liquid composition, while the challenge of achieving rapid 
consolidation and separation at liquid–liquid interface 
remains due to the limitations of existing technology. And 
the unresolved issue of measuring electrical signals dur-
ing liquid–liquid contact separations [159]. Recently, the 

development of inflow-liquid-switching porous nanofiber 
membranes and Liquid–liquid phase separation in biology 
have opened up the possibility of rapid consolidation and 
separation at liquid–liquid interface. Liquid–gas CE can be 
used to assess and enhance air and water quality. Addition-
ally, solid–gas CE is expected to enable holographic projec-
tion techniques and used to separate different gases if effec-
tive methods for controlling the erratic diffusion of gases can 
be found. Research on high-pressure solid–liquid TENG is 
also in a booming phase. Solid–solid CE, which is the most 
widely researched, may help in the manufacture of precision 
instruments and further stimulate the development of CE at 
other interfaces.

6  Conclusions and Prospects

Based on the previous studies of TENG with various 
interfaces, this work provides an overview of the mecha-
nisms, modification methods, and applications of CE at 
solid–solid, solid–liquid, solid–gas, liquid–liquid, and 
liquid–gas interfaces, respectively [29]. The charge gen-
eration in the TENG device is primarily the result of the 
combined effect of electron transfer and ion transfer [87]. 
And the dominant mechanism is different for different 
interfaces. The cross-referencing and complementary stud-
ies of different interfaces can promote the development of 
TENG [160]. Multiple factors influence charge transfer, 
variations in the available materials, processability, and 

Fig. 11  Applications areas to be further developed
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environmental stability across different interfaces are dis-
cussed in details, in order to guide a universal approach 
for interfacial modification [161]. Furthermore, through 
various modification methods, breakthroughs in enhanc-
ing surface charge density and TENG device power can 
be expected. TENG devices based on CE have excellent 
design and potential for green energy development and 
can be tailored to practical applications in different envi-
ronments due to the characteristics of different interfaces 
[162].

Despite significant progress in understanding CE between 
different interfaces at laboratory and pilot scales, there 
remain several challenges that need to be addressed. Stud-
ies targeting CE at solid–gas, liquid–liquid, and liquid–gas 
interfaces are still in their early stages. There is still no clear 
answer as to what is the determining factor in charge genera-
tion. Due to the intrinsic properties of triboelectric nanogen-
erators [163], only surface charges can be generated, result-
ing in low output performance. Solutions for charge escape 
are still required. In addition, the amorphous [164] nature 
of liquids and gases hinders modifications for specific inter-
face surfaces and charge density enhancement. Inadequate 
development of computational systems and circuit manage-
ment also makes it difficult to implement TENG devices for 
multifunctional applications. At the same time, the above 
factors are also obstacles in the way of commercialization 
of TENG [165].

Through a comprehensive review of previous research, 
we summarize and propose several potential optimization 
methods, hoping to facilitate the development of CE.

(1) Novel designs and strategies need to be delved to elu-
cidate and enhance interfacial effects, and researches 
can draw inspiration from other inter-object reaction 
processes. Further explorations are also required to 
determine how these effects can be applied to modify 
interfacial CE.

(2) In the quest for novel synthetic materials, researchers 
also can leverage the potential of natural materials to 
achieve cost-effectiveness and biological benefits, while 
minimizing the use of hazardous and non-biodegrad-
able chemicals, and mitigating environmental impact. 
Development of composite materials with functionality 
can be explored, harnessing the unique advantages of 
diverse power generation methods such as piezoelec-
tric, photoelectric, thermoelectric, and magnetoelectric. 
By combining these methods, materials with additional 
special properties will be produced.

(3) To achieve the desired TENG device, a range of modi-
fication methods spanning from the atomic to macro-
scopic level are required. Sub-microstructural modi-
fications and leverage existing micro–nanoprocessing 
techniques should be focused on to achieve further 
microstructural changes. For instance, chemical vapor 
deposition and magnetron sputtering are techniques 
capable of forming nanoscale films or coatings on 
substrates. On the other hand, plasma etching, photo-
lithography, and electron beam exposure techniques 
excel in creating high-resolution graphics and mapping 
microfabricated structures. All of these methods have 
the potential to enhance CE at interfaces. Integration of 
existing film processing and textile technologies [166], 
such as co-extrusion, coating, and splitting, can offer 
novel strategies for processing triboelectric materials.

(4) From a macroscopic device structure perspective, power 
management circuits and charge pumps can enhance 
the output performance of TENGs, with charge replen-
ishment methods like electric pumps being employed 
to suppress charge dissipation. Furthermore, the design 
of TENGs should be application-oriented. Interdisci-
plinary cooperation should also be emphasized in the 
promotion of TENG technology [167].

The wide range of materials and structural designs can 
be used in interface CE for clean energy conversion and 
more efficient energy storage and release. We hope that 
our review will offer valuable guidance for future interface 
designs, enabling a wider range of practical applications and 
unprecedented performance.
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