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Intelligent Recognition Using Ultralight 
Multifunctional Nano‑Layered Carbon Aerogel 
Sensors with Human‑Like Tactile Perception
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HIGHLIGHTS 

• The tactile performance of ultralight multifunctional sensors can reach the level of human tactile perception.

• An individual sensor can provide multiple tactile sensations: pressure, temperature, materials recognition, and 3D location. Therefore, 
it is no longer necessary to integrate multiple sensing modules with different functions, which greatly simplifies system complexity 
and reduces energy loss.

• The tactile system with multimodal learning algorithms has universality and can accommodate object recognition tasks in various 
application scenarios (e.g., Mars and Kitchen).

ABSTRACT Humans can per-
ceive our complex world through 
multi-sensory fusion. Under lim-
ited visual conditions, people can 
sense a variety of tactile signals 
to identify objects accurately and 
rapidly. However, replicating this 
unique capability in robots remains 
a significant challenge. Here, we 
present a new form of ultralight 
multifunctional tactile nano-lay-
ered carbon aerogel sensor that 
provides pressure, temperature, material recognition and 3D location capabilities, which is combined with multimodal supervised learn-
ing algorithms for object recognition. The sensor exhibits human-like pressure (0.04–100 kPa) and temperature (21.5–66.2 °C) detection, 
millisecond response times (11 ms), a pressure sensitivity of 92.22  kPa−1 and triboelectric durability of over 6000 cycles. The devised 
algorithm has universality and can accommodate a range of application scenarios. The tactile system can identify common foods in a 
kitchen scene with 94.63% accuracy and explore the topographic and geomorphic features of a Mars scene with 100% accuracy. This 
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sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing, recognition and 
intelligence.

KEYWORDS Multifunctional sensor; Tactile perception; Multimodal machine learning algorithms; Universal tactile system; 
Intelligent object recognition

1 Introduction

The human body is a masterpiece of nature’s ingenuity, 
with a wealth of sensory organs to perceive our world 
[1–4]. A key factor to the advanced perception of a range 
of external stimuli is multisensory fusion, which allows 
humans to interact with the surrounding environment flex-
ibly and identify objects precisely. Replicating this abil-
ity in robots to provide to multifunctional object recog-
nition represents a significant challenge [5]. In general, 
robot vision technologies have made substantial progress 
in rapidly recognizing objects [2, 6–10], and some have 
even been commercialized. However, vision systems are 
often accompanied by complex and bulky equipment. In 
addition, in specific environments such as in the dark, in 
visual blind spots (corners, gaps, and obstructions) [7, 11]; 
or in extreme weather conditions such as in a haze, dust 
storms, fog, and heavy rain, the accuracy of the visual rec-
ognition function can decrease dramatically, or even fail 
completely. As a result, there is a critical need to develop 
portable and multifunctional tactile systems for robots that 
can compensate for the deficiencies of vision systems.

Multifunctional tactile systems have been used to assist 
robots in object recognition [12–16]. However, the use 
of conventional unimodal machine learning algorithms 
leads to limitations in recognition capability in complex 
scenes. Other researchers have developed haptic systems 
with multimodal algorithms, that combine complementary 
information, to perform recognition tasks in challenging 
environments [11, 17, 18]. While this approach can take 
full advantage of the multiple sensing modes of haptic 
systems and achieving more robust inference results, it 
often requires sophisticated integration of multiple sensing 
modules to attain multifunctional characteristics, leading 
to partitioned sensing and identification. Therefore, there 
is a need to integrate versatility within individual sensing 
units [19] to provide full spatial resolution for the robot. 
Table S1 provides a detailed comparison of the sensing 

performance, algorithm architecture, and object recogni-
tion capabilities of recently reported multifunctional tactile 
systems. From the material point of view, some research-
ers have prepared multifunctional sensor devices based 
on nanomaterials such as nanowires and MXene [20–23]. 
However, the multifunctional sensing capabilities of these 
sensors are hardly comparable to the perception of human 
skin. Thus, it is difficult to apply it to actual intelligent 
scenarios such as robotics and artificial intelligence. How-
ever, nano-layered carbon aerogel materials have great 
advantages in multifunctional sensing properties and smart 
applications. The nano-layered microstructure provides 
excellent mechanical, piezoresistive and electrical proper-
ties of the sensor. Thereby, the device can perceive pres-
sure and temperature like human skin. In addition, aerogel 
is an extremely low-density material. Therefore, aerogel-
based sensors have a very small weight, which is more 
conducive to flexible integration and wearability in actual 
applications. An ability to reduce the size and weight of 
individual sensors and constructing universal multimodal 
algorithms are also vital factors to establish a widely appli-
cable multifunctional haptic recognition platform. More 
interestingly, the multifunctional haptic platform is univer-
sal and can be applied to different intelligent scenarios. In 
daily life, healthy, nutritious and tasty meals are vital for 
everyone, but cooking by yourself is very time and energy-
consuming. Therefore, the development of a kitchen robot 
that can cook autonomously is a current research hotspot. 
Among them, independently distinguishing and selecting 
ingredients is the difficulty in developing a new generation 
of kitchen robots [24–26]. Therefore, the aid of precise 
tactile recognition capabilities will provide new ideas in 
the field of kitchen robots. Furthermore, during the explo-
ration of Mars, there are urgent international challenges to 
explore the information on topography and landforms and 
to identify water sources [27–35]. Therefore, it is an inno-
vative and compelling solution to endow the Mars rover 
with multifunctional tactile recognition capabilities.
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In this article, we combine a multifunctional tactile nano-
layered aerogel sensor (MTAS) and a multimodal deep 
learning algorithm to establish a universal haptic platform 
for robots (Fig. 1). At the front end of the system, a flexible 
MTAS is integrated into the surface of the robot to collect 
a variety of sensing signals (Fig. 1a). At the back end of 
the system, a multimodal deep learning algorithm is able 
to generalize the fusion of signals to recognize objects with 
minimal modification (Fig. 1e). Via this approach, robots 
can achieve human-like tactile perception to accurately iden-
tify objects in intelligent scenes without relying on the visual 
conditions.

2  Experimental Section

2.1  Materials

Graphene oxide (GO) powders, product number XF002-2, 
were purchased from Nanjing XFNANO Materials Tech Co., 
Ltd. Cellulose nanocrystals (CNCs, suspension, 8.0 wt%) 
were purchased from Guilin Qihong Technology Co., Ltd. 
The silicone elastomer (Ecoflex 0020), used with a 1:1 ratio 
of part A to part B, was purchased from Shanghai Smart-
tech Co., Ltd.

2.2  Preparation of Nano‑layered Carbon Aerogel

The nano-layered carbon aerogel was manufactured as fol-
lows: (i) Preparation of GO/CNCs suspension. Firstly, the 
GO suspension (1 mg  mL−1) was prepared by dispersing 
the GO powder in distilled water, stirring thoroughly, and 
sonicating until the GO powder was well dispersed with-
out precipitation. Then, the CNCs (8.0 wt%) were added 
to the GO suspension according to a 1:4 solid-content-
ratio of GO to CNCs, and a homogeneously dispersed 
GO/CNCs suspension was obtained by thorough stirring 
and sonication. (ii) A pre-designed 3D-printed mold (Fig. 
S2b, individual mold size: 10 mm × 10 mm × 5 mm) was 
fixed to the side wall of a steel box (Fig. S2c and Note S1). 
Using a pipette gun, 0.5 mL of the GO/CNCs suspension 
was injected into the mold separately to avoid introducing 
air bubbles. (iii) Liquid nitrogen was quickly poured into a 
steel box and directed to freeze the GO/CNCs suspension 

for 30 min. The GO/CNCs ice crystals were formed when 
the GO/CNCs suspension in the mold was completely fro-
zen. (iv) The GO/CNCs ice crystals were placed in a freeze 
dryer for 3–5 days to the obtain GO/CNCs aerogel (size: 
10 mm × 10 mm × 5 mm). (v) The aerogel was annealed in a 
tube furnace under an  N2 atmosphere. First, the temperature 
was increased from room temperature to 200 °C at a rate of 
5 °C  min−1 and maintained for 2 h; then, the temperature 
was increased from 200 to 700 °C at a rate of 3 °C  min−1 
and maintained for 2 h [36]; finally, a rGO/CNCs nano-
layered carbon aerogel (size: 9 mm × 9 mm × 4 mm) was 
obtained after natural cooling.

2.3  Fabrication of the Multifunctional Tactile 
Nano‑layered Aerogel Sensors

First, the rGO/CNCs nano-layered carbon aerogel was cut 
into cubes with dimensions of 4 mm × 4 mm × 2 mm (Fig. 
S2e–g). Second, part A and part B of the Ecoflex elastomer 
were added to the beaker in a 1:1 ratio and mixed sufficiently. 
After draining any air bubbles, the uniformly mixed Ecoflex 
was poured into the mold. Then, the Ecoflex was cured in an 
oven at 80 °C for 2 h. After cooling down and demolding, 
the flexible supporting layer of the multifunctional sensor 
was produced (external size: 5 mm × 5 mm × 3 mm). Third, 
as the upper and lower electrodes of the multifunctional sen-
sor, copper sheets were cut to 4 mm × 4 mm and connected 
to the wires with conductive silver paste. Fourthly, a poly-
ethylene (PE) film was cut into 10 mm × 10 mm and used as 
a triboelectric layer for the multifunctional sensor. Fifth, one 
copper electrode was fixed to the Ecoflex supporting layer 
to act as the sensor’s lower electrode, and the other copper 
electrode was fixed to the center of the PE triboelectric layer 
to act as the sensor’s upper electrode. Sixth, the PE tribo-
electric layer with the upper electrode, nano-layered carbon 
aerogel, and Ecoflex support layer with the lower electrode 
was assembled, and the interface between the PE electrifi-
cation layer and Ecoflex support layer was firmly bonded 
by acrylic glue. The sensor was then fully encapsulated to 
protect the nano-layered carbon aerogel from the external 
environment. Finally, a multifunctional nano-layered car-
bon aerogel tactile sensor with a core functional area of 
5 mm × 5 mm × 3 mm was prepared.
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Fig. 1  Concept and design of a multifunctional tactile system for intelligent identification. a A conceptual diagram of the MTAS sensing system integrated into 
a robot hand to provide robots with haptic perception capabilities. Right: hierarchical structure and multifunctional sensing features of MTAS. From top to bot-
tom, the polyethylele (PE) electrification layer, the upper electrode, the rGO/CNCs nano-layered carbon aerogel, the lower electrode, and the Ecoflex elastic sup-
port layer. b Photograph of the ultralight MTAS floating on a dandelion. c Scanning electron microscopy (SEM) images of the nano-layered carbon aerogel with 
an ordered structure. d Comparison of the pressure sensitivity, temperature detection range, algorithm dimensions, and sensor size of the MTAS and previously 
reported state-of-the-art tactile sensors. e Multimodal supervised learning algorithm architecture and application scene of MTAS haptic system. The algorithm 
shows excellent robustness and universality, applying to kitchen, space applications, and more intelligent scenarios
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2.4  Characterization and Measurements

The morphology of GO/CNCs aerogels and rGO/CNCs 
carbon aerogels were characterized by field emission scan-
ning electron microscopy (FEI, Nova NanoSEM 450) at a 
5 kV acceleration voltage. Evaluation of the multifunctional 
sensing performance was achieved with a system consisting 
of a mechanical testing stage (IMADA, MX2-500N) and a 
force gauge (IMADA, ZTA-5N). An infrared thermographic 
camera (PI400, Optris) was used for temperature monitor-
ing. The electrical signal of MTAS was measured with a 
digital source meter (Keithely, 2611B). The integration of 
the 7-axis robotic arm (SIASUN, SCR3) and the 6-axis 
force/torque transducer (ATI, 9105-TW-Nano43-R-5-EC8) 
provided a stable measurement environment for intelligent 
recognition systems in multiple scenarios.

2.5  Multifunctional Sensing Signals Acquisition

Figure S3a shows the test circuit diagram, acquisition mode 
and output signals for multifunctional sensing (pressure, 
temperature, triboelectricity). Pressure: The pressure sens-
ing performance test collected current signals at a bias volt-
age of 0.1 V through a dual-electrode mode. Temperature: 
The temperature sensing performance test collected current/
voltage signals in self-powered mode via dual-electrode. 
Triboelectricity: The triboelectric sensing performance test 
collected voltage signals in self-powered mode through a 
single-electrode. The sensing characteristics were system-
atically assessed by loading a 1 GΩ resistor in the external 
circuit. We selected a fluorinated ethylene propylene (FEP) 
film as the test material for the fundamental triboelectric 
performance (PE was used as the triboelectric layer for 
MTAS). In summary, the collected multifunctional signals 
are input into a multimodal supervised learning algorithm 
for object classification and recognition.

2.6  Multimodal Machine Learning Approach

Since our data was a time-variant signal, 1D convolution 
was used to extract feature. ReLU was used as the activa-
tion function. Max pooling layer was used to down sam-
ple the feature map. By stacking the above operations, the 
signal features were extracted. As shown in Fig. S4, the 

temperature/pressure signal and triboelectric signal were 
processed by the similar network with different neuron 
numbers per layer due to the different signal dimensions. 
During the fusion process, the extracted temperature/pres-
sure feature map and the extracted triboelectric feature map 
were concatenated and fed into a fully connected neural net-
work with three layers for classification. The dropout layer 
randomly sets input units to 0 with 0.5 rate at each step dur-
ing training time, which helped to prevent overfitting. This 
enhanced the generalization ability of the neural network 
for scalable sensory data fusion, and considered the noise 
present in the signal.

During the training stage, we sampled 64 data as one 
batch. At each training step, we sampled a batch size of data 
to update the network parameters. An Adam algorithm was 
used as the optimizer to update the network parameters. The 
learning rate was set to 5 ×  10–4 for the Adam optimizer and 
the weight decay was set to 1 ×  10–5 to prevent overfitting; 
the hyperparameters could be slightly different in different 
scenarios. The cross entropy loss was used as the loss func-
tion and the Epoch number was set to 200, which means 
the learning algorithm will work through the entire training 
dataset 200 times. For each epoch, the network was evalu-
ated with recognition accuracy on the test set. The network 
was well trained and convergent after 200 epochs and the 
recognition performance remained stable.

2.7  Unimodal Machine Learning Approach

We implemented two unimodal learning approaches to clas-
sify objects. Initially, the sensor signal such as pressure/tem-
perature and triboelectric voltage were processed through 
several convolutional layers to extract feature maps, with a 
polling layer to down sample the feature maps. Subsequently, 
the output of the CNN was connected to a fully-connected 
neural network with three layers, to classify the object’s 
type. For the temperature-only/pressure-only network, the 
triboelectric extraction CNN network was removed and 
only the temperature/pressure feature map was connected 
to the three fully-connected layers to classify objects. For the 
triboelectric-only network, the temperature/pressure extrac-
tion CNN network was removed, in a similar manner to the 
temperature-only/pressure-only network.
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3  Results and Discussion

As an important sensing element, the MTAS exhibits three 
remarkable advantages of, (i) sensing multifuncitonality, (ii) 
an ultra-lightweight nature and (iii) universality of applica-
tion. Based on an ultralight reduced graphene oxide/cellu-
lose nanocrystals (rGO/CNCs) carbon aerogel, the MTAS 
simultaneously provides both sensing multifunctionality 
and an ultralight nature, two generally mutually competitive 
features that are vital for sensing applications. In terms of 
multifunctionality, an individual MTAS is able to sense pres-
sure, temperature and triboelectricity independently. As a 
result, it is no longer necessary to integrate multiple sensing 
modules on a robot surface, which greatly simplifies system 
complexity and reduces energy loss [4, 11, 12, 17, 37]. In 
terms of an ultra-lightweight mass, the MTAS can readily 
float on a dandelion (Fig. 1b) and its weighs only 64.5 mg 
(Fig. S2a). Based on the ultralight MTAS platform, the 
mass of a robot tactile system can be dramatically reduced, 
which is beneficial for large-scale integration. In terms of 
universality, MTAS tactile system has been applied to the 
home (kitchen) and space (Mars) scenes, demonstrating its 
prominent universality and application potential for a range 
of intelligent scenarios.

3.1  Design of Multifunctional Tactile Nano‑layered 
Aerogel Sensor Haptic System for Intelligent 
Identification

The right image of Fig. 1a shows the hierarchical structure of 
the MTAS, where detailed preparation details are described 
in “Methods”. The aim of the larger upper area of the pol-
yethylene (PE) electrification layer is to provide superior 
material identification capability. The wavy layered rGO/
CNCs carbon aerogel is a multifunctional sensing core. Fig-
ure 1c shows the microscopic morphology of the rGO/CNCs 
nano-layered aerogel with a wavy layered ordered structure 
because of the unique directional freezing and annealing 
technique (Note S1 and Fig. S2b–g). Because annealing 
leads to inhomogeneous stress distribution in the flakes, 
which induces wrinkling of relatively flat GO/CNCs flakes 
(the bottom of Fig. 1c) into rGO/CNCs flakes with a folded 
wavy morphology (the top of Fig. 1c). From a mechanical 
standpoint, the wavy lamellar structure after crumpling can 

provide a more stable elastic structure. Thanks to the stress 
can be well-dispersed out-plane, and the carbonized CNC 
gives stronger interconnections between the rGO layers, 
ensuring the stability of the in-plane structure [36]. Subse-
quently, the microstructure of nano-layered aerogel in differ-
ent orientations and excellent mechanical properties are ana-
lyzed in depth, see Note S1 and Figs. S1–S2. Copper films 
are used to provide electrical connections. The lower Ecoflex 
elastomer support layer is molded into a hollow box shape, 
which together with the PE layer, completely encapsulates 
the sensing core, providing all-around protection and sup-
port for the nano-layered carbon aerogel from the external 
environment interferences. In addition, the MTAS acquires 
multifunctional signals in different acquisition modes; see 
Method and Fig. S3a. The signals can be easily decoupled 
and the logic of decoupling multifunctional signals is shown 
in the flow chart (Fig. S3b).

Figure 1d demonstrates the significant advantages of the 
MTAS in all aspects of multifunctional sensing performance, 
algorithm design, and device size [13, 15–17, 37–39]. Over-
all, MTAS has the best multifunctional sensing performance, 
demonstrating high sensing capability in both pressure and 
temperature. Multimodal machine learning algorithms can 
combine multiple dimensions of input data features, dra-
matically improving recognition accuracy and demonstrat-
ing outstanding universality in multiple recognition tasks. 
The small size of the individual sensing units provides high 
resolution for multifunctional tactile sensing.

The framework of multimodal machine learning algo-
rithm (Figs. 1e and S4) includes two Convolutional Neural 
Networks (CNN) for extracting tactile information sepa-
rately from time-variant tactile signals, and a three-layer 
fully connected neural network (0.5 dropout rate) which 
concatenates the extracted information for ultimate catego-
rization. Compared to Very Deep Convolutional Networks, 
that assist in processing tactile information [11], our 1D 
Convolutional Network is much smaller in size and can 
be readily applied to devices with limited computational 
resources. Moreover, scene-related feedback is added to 
the learning framework to explicitly adjust the weight ratio 
of multifunctional signals (Note S2), ensuring a high rec-
ognition rate in challenging scenes. The multimodal learn-
ing framework was successfully applied to a kitchen home 
scene and Mars planet scene with 94.6 and 100% accu-
racy. This indicates that the robust architecture provides 
MTAS tactile system with excellent universality to handle 
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wider range of object recognition tasks. Furthermore, on 
comparing our approach with unimodal learning methods 
(see Methods), the multimodal approach obtained more 
accurate recognition results, verifying the importance of 
multimodal fusion.

3.2  Pressure Sensing Property and Mechanism 
of MTAS

Figure 2a illustrates the pressure sensing mechanism that 
is based on the piezoresistive effect. The conductive wavy 
multilayer skeleton provides the rGO/CNCs nano-layered 
carbon aerogel with a high degree of spatial compress-
ibility. On applying pressure to the system, in Fig. S5a, 
the conductive skeleton is compressed and becomes 
more compact, thereby producing additional conductive 
pathways in the MTAS (Fig. 2a). As a result, the MTAS 
resistance decreases with an applied compressive load, 
and the detection current increases. The current–voltage 
(I–V) curves exhibit a typical linear correlation (Fig. S5b), 
indicating that the MTAS forms a favorable ohmic contact. 
With increasing pressure, the slope of the I–V curve gradu-
ally increases, which implies a decrease in resistance and 
echoes the mechanism outlined in Fig. 2a.

From Fig. 2b, the response of the MTAS is in the pres-
sure range of 0.04–100  kPa is superior to the human 
tactile perception [17, 24]. This means that the MTAS 
can operate at pressures over 3873 times its own weight, 
thereby exhibiting a stress resistance comparable to that 
of an ant colony [25]. In addition, the curve is divided 
into two stages, a first stage (below 40 kPa), where the 
normalized current increases dramatically, and an excel-
lent pressure sensitivity of 92.22  kPa−1 is achieved (Note 
S3). In the second stage (above 40 kPa), the relative cur-
rent is gradually saturated as the microstructure is fully 
compacted. During this high-pressure phase, the Ecoflex 
elastomer support layer shares most of the pressure for 
aerogels, preventing the collapse of the nano-layered 
aerogel microstructure and any other damage. Moreover, 
owing to the resolution limitation of the force gauge, the 
minimum detectable force of MTAS is 0.04 kPa (Fig. 2b). 
Thus, in Fig. S5d and Note S4, four actual objects were 
selected to investigate the minimum pressure that MTAS 
can detect in daily life, a 117 mg (~ 30 Pa) Vitamin C pill. 
The response time and recovery time of the MTAS are 

11 and 14 ms (Fig. S5c), indicating that the MTAS can 
respond to pressure at the millisecond level, much like 
human haptics [17, 19].

The stress–strain curve of the MTAS at a high strain of 
90% for 700 compression cycles, exhibits a typical cres-
cent shape; see Fig. 2c. In addition, the narrower hyster-
esis return line indicates that the MTAS has a small energy 
dissipation during a compression cycle. In particular, the 
stress–strain curve after 200 cycles (Fig. 2c inset) is almost 
indistinguishable from the initial curve, demonstrating the 
excellent fatigue resistance of the MTAS. Finally, the cyclic 
stability of the MTAS is demonstrated in Note S5.

3.3  Performance and Mechanism of MTAS 
for Self‑powered Temperature Sensing

The temperature sensing mechanism of MTAS is based on 
the thermoelectric effect (Fig. 2d), since a homogeneously 
dispersed electrically conductivity rGO component in a 
nano-layered carbon aerogel provides excellent thermal and 
electrical properties [26, 40]. The temperature difference 
between the upper and lower surfaces of the MTAS drives 
inner carriers to move from the hot side to the cold side, 
and the temperature difference is converted into an elec-
trical signal. Therefore, the MTAS can sense temperature 
in a self-powered way, since no external electrical energy 
source is necessary. We constructed a system to evaluate 
the temperature sensing performance of the MTAS (see Fig. 
S6a and Note S6). The MTAS is able to sense temperature 
sensitively in both voltage and current modes (Fig. 2e) and 
the corresponding temperature profiles and their real-time 
infrared images (Fig. S6c) indicate that the MTAS can detect 
temperatures in the range of 21.5–66.2 °C. Theoretically, 
a wider temperature detection range is possible (Note S7). 
The safe range tolerated by human hand is approximately 
20–50 °C [41, 42], indicating that the MTAS has a tempera-
ture sensory range comparable to human touch. Note S7 pro-
vides additional details on temperature sensing capabilities.

Furthermore, the temperature sensing function can dis-
tinguish materials with different heat transfer character-
istics (Fig. 2f). According to the evaluation system (Note 
S8 and Fig. S7a), we tested the heat transfer properties of 
11 lamellar materials (Figs. S7–S12). We calculated the 
heat transfer sensitivity of materials and compared it with 
an individual MTAS device. A single device displayed 
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Fig. 2  Multifunctional sensing performance and mechanism characterization of MTAS. a Schematic of the piezoresistive effect. b Sensitivity 
of pressure sensing and normalized current response (relative current, ΔI/I0) at different pressures. Error bars represent the standard deviations 
based on three tests. c Stress–strain curves of MTAS at 90% compressive strain for 700 cycles. Inset: stress–strain curves for the first and  200th 
cycles. d Schematic of the thermoelectric effect. The thermoelectric effect can convert a ΔT into an electrical signal, implementing self-driven 
temperature sensing. e Voltage and current response of temperature sensing at different ΔT (the corresponding  Tc is the range of 21.5–66.2 °C). 
The temperature sensitivity was calculated by a linear fit with a voltage sensitivity of 7.1 μV/°C and a current sensitivity of 15.6 nA/°C. Error 
bars are s.d. from three tests. Real-time temperature is monitored by an infrared camera throughout. f The histogram of the heat transfer proper-
ties of 11 materials (Cu, Fe, Nylon, PTFE, NBR, FEP, ABS, PET, PMMA, Kapton, and Wood). Size: 10 mm × 10 mm × 1 mm. g electron-cloud-
potential-well model based on the contact electrification effect. h Influence of contact pressure and maximum separation distance (d) on the 
triboelectric performance. Error bars are s.d. from five samples. i Robustness testing of MTAS triboelectric sensing performance. j Triboelectric 
signals characteristic of 11 materials. Strictly controlled experimental variables (contact force 0.1 N, pressure 4 kPa, contact separation speed 
300 mm min.−1, d = 15 mm, room temperature ~ 22 °C, humidity ~ 33%) and used anhydrous ethanol to remove the effect of the initial surface 
charge before testing. Inset: Electronegativity ranking of the 11 tested materials (the same regularity was given three times on different days)
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the highest sensitivity since direct contact reduces heat 
loss. Metals such as Cu and Fe have the highest sensitiv-
ity among the 11 materials tested, which corresponds to 
their superior thermal conductivity. Polymeric materials 
are located in the middle range of sensitivity. Due to the 
presence of a large number of hollow structures, wood has 
the lowest temperature sensitivity, due to the poor heat 
transfer performance and makes it an ideal material for 
thermal insulation [43]. Therefore, a MTAS can identify 
material types by judging the heat transfer properties of 
the material itself.

3.4  Systematic Evaluation of the Material Identification 
Characteristics of MTAS

Based on the contact electrification effect (Fig. 2g and Note 
S9) which is prevalent between various interfaces in nature 
[44, 45], the MTAS is able to collect triboelectric signals 
from various free-moving objects by utilizing a flexible 
material identification function. The triboelectric mecha-
nism of operation of a MTAS during a contact-separation 
cycle is shown in Fig. S13a and Note S10. The triboelectric 
signals gradually improve as the contact pressure increases 
until it reaches saturation at 4 kPa (Figs. 2h and S14), with 
the same overall response for all maximum separation dis-
tances (d). Consequently, a contact pressure of 4 kPa (0.1 N) 
was implemented for all subsequent triboelectric tests, both 
for safety reasons and for achieving relatively high output 
signals. Notably, due to the fully encapsulated design, the 
MTAS has excellent triboelectric stability, with no perfor-
mance loss in 6000 cycles tested at 4 kPa pressure (Fig. 2i), 
thereby demonstrating the outstanding robustness of the 
MTAS. Further triboelectric performances are characterized 
in Fig. S13b–d and Note S11.

Examination of the triboelectric function in more detail, 
the MTAS can gather the specific triboelectric signals gen-
erated by objects based on their ability to gain or lose elec-
trons, including characteristic information such as signal 
direction, amplitude and waveform [13, 38, 46]. We selected 
11 materials (Fig. S13e) for triboelectric testing. The charac-
teristic waveforms (Fig. 2j) of five materials are from nega-
tive to positive, while other six materials are from positive 
to negative. The amplitudes of triboelectric signals gener-
ated by the 11 materials are also different. This is attributed 

to the difference in electronegativity between the polyeth-
ylene (PE) triboelectric layer and the materials under test. 
The greater the difference in electronegativity, the greater 
amplitude of output signals [44, 45]. Accordingly, the elec-
tronegativity of the 11 materials is ranked in Fig. 2j. The 
material closer to the green (left) side is more electronega-
tive relative to PE, while the material closer to the purple 
(right) end is more electropositive relative to PE, which is 
basically consistent with the triboelectric series [44, 45]. It 
is worth considering that the contact-based sensing method, 
and the specific triboelectric signals of objects, allow the 
MTAS to be utilized as a tactile recognition tool. Combining 
computer technologies, such as machine learning, can allow 
the multifunctional sensible capability to be applied to more 
intelligent scenarios.

3.5  Multimodal Object Recognition System in Kitchen 
Scene

The MTAS can be applied to a kitchen scene in a home 
by combining it with a multimodal learning algorithm 
(Fig. 3a). This vividly demonstrates the logical concept 
of a kitchen robot that integrated with MTAS to recognize 
food by touch, which provides a viable approach for devel-
oping kitchen robots without human assistance (Note S12). 
The MTAS kitchen robot hand can independently distin-
guish and select ingredients based on its tactile recognition 
capabilities. This can reduce the workload in the kitch-
ens and provide more customized services for humans. In 
particular, in kitchens with smoke and steam, the tactile 
recognition function of MTAS can circumvent the failure 
of traditional visual recognition system.

In order to maintain food freshness and prolong stor-
age time, food is stored in different areas according to 
its appropriate storage temperature (Note S13). Thus, the 
robot can collect temperature information regarding a food 
surface when it grasps foods in the kitchen. Based on the 
above traits, we used the temperature sensing and material 
identification of the MTAS to achieve multimodal fusion 
recognition of food. We constructed a programmable test 
system for automating data acquisition, which can exclude 
artificially signal interference (Note S14), including the 
MTAS, robot arms and measured food (various types of 
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Fig. 3  MTAS-based multimodal object identification system in kitchen (home) application. a Concept diagram of a kitchen robot integrated 
with MTAS intelligence system to identify food. b Triboelectric recognition dataset for 18 food (10 cycles). c Confusion matrix for multimodal 
identification of 18 foods in kitchen scenarios. d Variation curves of training and testing accuracy with training steps. Inset: Variation curves of 
loss with training steps. e Histogram of accuracy comparison between unimodal approach and multimodal approach



Nano-Micro Lett.           (2024) 16:11  Page 11 of 15    11 

1 3

representative foods in the kitchen, Fig. S15a and Note 
S14).

The multimodal learning dataset of 18 foods in a kitchen 
scene were collected by multipoint sampling (Note S15). 
This strategy captures more complete information regard-
ing the food surface and provides the robot with more flex-
ible food recognition capabilities. Figures 3b and S15b plot 
the triboelectric and temperature recognition signals for 10 
cycles of 18 foods, respectively. The collected learning data 
is pre-processed (Note S16) and input into the neural net-
work. Since the dataset contains data from different posi-
tions of food, we randomly select 70% positions as training 
data and 30% positions as testing data. In the training stage, 
we sample 64 data samples from dataset as a single batch, 
and update the network at each training step. The training 
and testing accuracy rate continually increases and the loss 
continues to decrease throughout 3000 steps and remains 
stable for a higher number of training steps (Fig. 3d). The 
confusion matrix indicates the final accuracy of 94.63% for 
multimodal recognition of 18 foods (Fig. 3c), and most food 
can be recognized with 100% accuracy. In addition, two uni-
modal learning approaches were implemented to classify 18 
foods (Fig. S25 and Note S17), and both approaches have 
lower accuracy than our multimodal supervised learning 
approach. Figure 3e demonstrates the comparison of rec-
ognition results between the multimodal algorithm and two 
unimodal algorithms, which demonstrates that multimodal 
sensing and fusion can significantly improve recognition 
accuracy.

3.6  Multimodal Object Recognition System in Mars 
Scene

More fascinatingly, the MTAS haptic recognition platform 
can be integrated into a Mars rover to explore the topo-
graphic and geomorphic features of Mars by remote control 
(Fig. 4a). This provides an inspiring blueprint for explora-
tion of a planet suitable for human settlement. Most areas 
of Mars are shrouded in suspended dust with low visibility 
since large-scale sandstorms, surface winds, fog and other 
extreme weather are also suddenly encountered [27, 28], 
which can lead to failures of visual identification systems. 
Hence, it is crucial to develop Mars rovers with tactile rec-
ognition, which are not affected by the extreme climate.

Based on the above idea, we built a test platform to simu-
late the exploration of Mars (Fig. 4b), and the MTAS was 
integrated into the contact rod at the front of a robot arm. 
We designed a Mars micromodel (Fig. 4c) to simulate the 
topography and landforms of Mars (mountains, rocks, land, 
deserts, and dry rivers), which refer to the real Mars environ-
ment (Note S18) [29, 30]. When exploring the topographic 
and geomorphic features, the topography of the micromodel 
is first reconstructed (Figs. 4d and S26a), then the sampling 
points (geomorphic feature points) are identified based on 
the 3D simulated map, thus identifying the landforms of 
the feature points by the multimodal learning algorithms 
(detailed process in Note S19). The multimodal learning 
dataset of four landforms of the micromodel was collected 
by multipoint sampling (Note S20). Figure 4e shows the 
signal waveforms of eight feature points for landform identi-
fication (Note S21), indicating that pressure and triboelectric 
signals of different landforms are distinguishable.

The multimodal recognition framework in Mars scene is 
analogous to that in the kitchen scene (Fig. S29), indicat-
ing that our algorithm can be readily generalized to different 
cases by fine-tuning the network and training (Note S22 and 
Table S2). Pre-processed learning data (Note S16) is input to 
the multimodal neural network and the dataset for the micro-
model is similarly divided between training and test data in 
a 7:3 ratio. The learning process reaches convergence and 
remains stable after approximately 300 steps for the training 
dataset and 100 steps for the testing dataset (Fig. 4g). The 
confusion matrix for multimodal recognition of micromodel 
indicates a final accuracy of 100% (Fig. 4f), indicating that all 
landforms can be recognized correctly. In addition, unimodal 
learning approaches are also implemented to classification. 
The pressure-only network performed better when classifying 
stone, while the triboelectric-only network achieved higher 
accuracy when classifying lake, sand and soil (Fig. S26b–e and 
Note S23). The multimodal network fuses both information 
and obtains the highest accuracy for all objects (Fig. 4h), thus 
verifying the importance of multimodal sensing and fusion.

Notably, the MTAS demonstrates outstanding robustness 
and waterproofing (Note S24) as a result of the fully encap-
sulated structure. Moreover, the MTAS has a unique signal 
waveform with respect to contact with water (Fig. S32), which 
is completely different from the signals of other objects (Note 
S25). Therefore, the MTAS has the potential to explore water 
resources on Mars, which is an essential basis for humans to 
judge whether Mars is habitable. Although stable liquid water 



 Nano-Micro Lett.           (2024) 16:11    11  Page 12 of 15

https://doi.org/10.1007/s40820-023-01216-0© The authors

Fig. 4  MTAS-based multimodal object identification system in Mars space application. a Conceptual diagram of a Mars rover integrated with 
MTAS intelligence system to identify Martian topography and landforms. b Photographs of an automated intelligent system for collecting 
machine learning data from a Mars micromodel. It consists of a seven-axis robotic arm, a six-axis force control device, a touch rod, MTAS, and 
a Mars micromodel. c A micromodel simulating the topographic and geomorphic features of Mars. The number markers represent the distribu-
tion of 8 feature points for micromodel landforms identification. The 8 feature points are evenly distributed. Feature points 1 and 2 correspond 
to rocks, feature points 3 and 4 correspond to rivers, feature points 5 and 6 correspond to soils, and feature points 7 and 8 correspond to sands. 
d Topographic reconstruction simulation map (top view, pixel points: 5184) of the Mars micromodel with Matlab curve fitting. e Characteristic 
signals for pressure identification and triboelectric identification of different landforms. f Confusion matrix for four types of landforms multi-
modal recognition in the Mars scene. g Variation curves of training and testing accuracy with training steps. Inset: Variation curves of loss with 
training steps. h Histogram of accuracy comparison between unimodal approach and multimodal approach
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has yet to be found, there is much evidence for the presence of 
hydrous minerals, polar ice caps, and water activity [31–35]. 
Consequently, continuing the search for liquid water resources 
is a significant and compelling task for Mars exploration.

4  Conclusions

This work can inspire further research directions that can 
focus on two potential trends. Firstly, the MTAS can be 
integrated into intelligent identification systems with a 
higher distribution density. This will contribute to a more 
complete tactile mapping for more accurate recognition. 
Secondly, Mars frequently has rampant sandstorms and 
sand, dust, and dirt often cover the solar panels or cam-
era lenses of space vehicles, preventing them from pow-
ering themselves and transmitting data and images back 
to Earth. As dust particles are electrostatically charged, 
the MTAS and other triboelectric devices can utilize its 
triboelectric properties to clean surfaces, including solar 
panels and lenses.

In conclusion, we have designed an ultralight and multi-
functional tactile nano-layered aerogel sensor (MTAS) based 
on a wavy-layered carbon aerogel, which is combined with a 
multimodal supervised learning algorithms to provide mul-
tiple tactile sensations to robots. The MTAS combines three 
remarkable merits of sensing multifuncitonality, an ultralight 
nature and universality of operation. The multifunctionality 
of pressure, temperature, and triboelectric sensing and ultra-
lightweight nature (65 mg) are both important features for 
sensors. The MTAS has a human-like [17, 19, 24] pressure 
detection range (0.04–100 kPa) and response time (11 ms), 
and a pressure sensitivity of 92.22  kPa−1, with excellent tri-
boelectric durability for 6000 cycles. The temperature sens-
ing range (21.5–66.2 °C) is comparable to human hands [41, 
42]. The MTAS is able identify the inherent properties of 
material, namely heat transfer characteristics and electron 
gain/loss capability. In addition, each MTAS can act as an 
independent sensing element to provide multifunctional 
sensing abilities, without the need to integrate different sens-
ing modules.

We combined the MTAS with a task-independent univer-
sal training framework to provide robust object recognition 
results in both home (kitchen) and space (Mars) scenarios. 
The MTAS tactile system was able to identify 18 common 
foods with 94.63% accuracy and explored topographic and 

geomorphic features with 100% accuracy, with the ability to 
explore the resources of Mars. Our new approach reduces 
the complexity of traditional robotic haptic recognition sys-
tems, and empowers robots with versatile tactile perception 
and object recognition in low visibility conditions, thereby 
opening up extensive opportunities to develop future society 
toward heightened sensing, recognition and intelligence.
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