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HIGHLIGHTS

• A comprehensive review is presented on the chemical reactions of perovskite films underdifferent environmental conditions and with 
charge transfer materials and metalelectrodes in perovskite solar cells.

• The influence of chemical reactions on device stability is elucidated.

• Effective strategies for suppressing the degradation reactions are specified.

ABSTRACT Lead halide perovskite solar cells (PSCs) have become a prom-
ising next-generation photovoltaic technology due to their skyrocketed power 
conversion efficiency. However, the device stability issues may restrict their 
commercial applications, which are dominated by various chemical reactions of 
perovskite layers. Hence, a comprehensive illustration on the stability of perovs-
kite films in PSCs is urgently needed. In this review article, chemical reactions 
of perovskite films under different environmental conditions (e.g., moisture, 
oxygen, light) and with charge transfer materials and metal electrodes are sys-
tematically elucidated. Effective strategies for suppressing the degradation reac-
tions of perovskites, such as buffer layer introduction and additives engineering, 
are specified. Finally, conclusions and outlooks for this field are proposed. The 
comprehensive review will provide a guideline on the material engineering and 
device design for PSCs.
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1 Introduction

As one of the sustainable clean energy sources, photovoltaic 
technology has been developed vigorously in recent dec-
ades. Among them, lead halide perovskite solar cells (PSCs) 
stand out due to their rapidly increasing power conversion 
efficiency (PCE), and are currently considered as the most 
encouraging and promising candidate for the next generation 
photovoltaic technology [1–7]. In a PSC, the active light-
harvesting materials are generally metal halide perovskites 
with a structural formula of  ABX3 (A: monovalent cation, 
 CH3NH3

+, HC(NH2)2
+,  Cs+; B: divalent metal cation, 

 Pb2+,  Sn2+; X: halide anion,  I−,  Br−,  Cl−) [8–11], which 
are responsible for converting the incident sunlight into free 
carriers in the devices, therefore playing a crucial role in the 
conversion of energy. The extraction of free carriers depends 

on the electron/hole transport layers (ETL/HTL) that sand-
wich the perovskite layer and transport charge carriers to 
corresponding electrodes. Therefore, typical configurations 
of PSCs involve conductive glass/ETL/perovskite/HTL/
electrode (n-i-p) or conductive glass/ HTL/perovskite/ ETL/
electrode (p-i-n), as shown in Fig. 1 [12–16].

PSCs show advantages over commercially available 
solar cells in terms of low cost and little energy consump-
tion in device fabrication. As the dominating share of 
the photovoltaic industry, monocrystalline silicon solar 
cells suffer from high fabrication cost, high-temperature 
preparation, bulky active layer and long payback time. In 
contrast, PSCs can be fabricated by solution methods at 
low temperature with very low fabrication cost and little 
material consumption [17–23]. GaAs solar cells, which 
have realized the highest PCE of single-junction solar 

Fig. 1   a Basic structures of PSCs: (i) mesoporous structure with cathode/compact layer  (TiO2)/mesoporous layer  (TiO2 or  Al2O3)/perovskite/
HTL/anode, (ii) conventional structure with cathode/ETL/perovskite/HTL/anode, and (iii) inverted structure with anode/HTL/ perovskite/ETL/
cathode. b Schematic representation of the interfaces in a planar-structured PSC. ➀, ➁, ➂, and ➃ represent ETL/perovskite interface, perovsk-
tite/HTL interface, cathode/ETL interface, and HTL/anode interface, respectively. Reproduced with permission from Ref. [12]. Copyright 2018, 
Wiley-VCH
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cells, are only used in small-area markets such as space 
stations [24], while large-area PSCs (over 60  cm2) with 
PCE over 20.5% have been achieved [25, 26], promising 
their large-area applications. Other thin film solar cells, 
such as copper indium diselenide (GIGS), cadmium tel-
luride (CdTe), and quantum dot solar cells, are subject to 
the slow growth of efficiency [27]. Notably, the certified 
PCE of PSCs has exceeded 25.7% after one decade study, 
owing to the excellent photophysical properties of perovs-
kites [5]. Considering the theoretical Shockley–Queisser 
limit of ~ 31% [28–31], there is still a relatively large space 
for PCE improvement for PSCs. Despite these advantages, 
device stability of PSCs is a critical issue to their com-
mercial applications [32–37]. It has been recognized that 
device stability is closely related to a series of chemical 
reactions between perovskite and ETL/HTL [5, 38–40], 
electrodes or the environment issues (e.g., moisture, oxy-
gen, light) [41–46].

The chemical reactions of lead halide perovskite have 
significant impacts on interfacial defects [47, 48], charge 
transport/extraction [49], and thus photovoltaic perfor-
mance and device stability of PSCs [50–55]. Because of 
the relatively active chemical properties, perovskites may 
react with oxygen [56–59], water [60–63], Lewis acids 
and bases [64, 65] and some metals [66–70], at perovs-
kite/charge transport layer interfaces or grain boundaries 
(GBs). In general, these reactions fall into two catego-
ries: 1) the reactions with species in ambient environment, 
including water, oxygen, and light; 2) the reactions with 
other materials in the device, including HTL/ETL, metal 
electrodes, and alternative modifiers. In order to suppress 
the degradation reactions of perovskites, it’s necessary to 
reduce the reactivity of perovskites through doping addi-
tives or compositional modifications [65, 71–77]. Despite 
significant efforts in additive engineering, the stability of 
PSCs still can’t meet the requirements for commercializa-
tion [78–81]. Physical isolation, another effective strat-
egy for improving device stability, also attracts enormous 
attention simultaneously [82–89]. Some specific materi-
als can serve as buffer layers to reduce the detrimental 
interfacial reactions. For example, the modified ZnO iso-
lation layer with good electrical conductivity between the 
Ag electrode and ETL can effectively suppress the reac-
tion between perovskite and Ag [90]. The hydrophobic 
diketopyrrolopyrrole-based polymers are deposited on 
perovskites surfaces to prevent the perovskites from being 

invaded by water [91]. In conclusion, understanding the 
chemical reactions at the interfaces can help researchers 
find feasible approaches to prevent the degradation of lead 
halide perovskites and improve the stability of PSCs.

In this review, we describe a variety of interfacial chemi-
cal reactions under different conditions, and the reactions 
mechanisms are also summarized. We retrospectively exam-
ined the established understanding of how the interfacial 
reactions affect the defects/traps formation, non-radiative 
recombination, ion migrations, and eventually device sta-
bility. A relatively clear relationship between device sta-
bility and interfacial chemical reactions is revealed in this 
part. According to different chemical reactions mechanism, 
we also review some available strategies for improving the 
chemical stability of perovskites. Finally, potential sugges-
tions on reducing or avoiding the detrimental interfacial 
reactions in device fabrication and commercialization are 
proposed.

2  Interfacial Chemical Reactions

2.1  Environmental Factors

Although encapsulated lead halide PSCs can insulate air, 
the challenge of achieving an ideal encapsulation effect 
makes it necessary to explore how environmental factors 
affect the chemical stability of PSCs. Both pure  MAPbI3 and 
 FAPbI3 are very sensitive to air due to their intrinsic instabil-
ity, which can be demonstrated by their color changes from 
black to yellow in a few minutes, especially in high-humidity 
environments. Studies have shown that water and oxygen in 
the air can react with perovskites through different pathways. 
In addition, ambient light can induce the decomposition of 
perovskites, which will be discussed in this part.

2.1.1  Water‑Induced Reactions

Many studies have revealed that the reactions of lead halide 
perovskites with  H2O can accelerate the degradation process 
and deteriorate the chemical stability of PSCs [60, 61, 92]. 
In order to express the reaction mechanism more concisely, 
all chemical reactions of perovskite in this review are based 
on the archetypal  MAPbI3 unless otherwise stated. Walsh 
et al. proposed the simple acid–base reversible reactions 
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between  MAPbI3 and  H2O as follows [48], and a plausible 
decomposition pathway for  MAPbI3 is shown in Fig. 2a.

By combining Eqs. 2.1-1 and 2.1-2, the whole degrada-
tion process of  MAPbI3 in the presence of  H2O can be gen-
eralized as follows:

CH3NH2 and HI both exist in gas phases at room tem-
perature, and thus the continuous release of gas products 
promotes the reaction to proceed in the forward direction. 

(2.1-1)
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In consequence,  MAPbI3 will completely degrade into  PbI2 
once the open system contains water [93].

Wang et al. further proposed that the degradation prod-
uct HI can continue to decompose into  H2 and  I2 under the 
stimulation of ultraviolet (UV) light [94]. The photoreaction 
process of HI under UV irradiation is illustrated below:

The whole degradation reaction of  MAPbI3 when  H2O 
and UV light coexist is generalized in Eq. 2.1-5 with the 
combination of Eqs. 2.1-3 and 2.1-4. Therefore, the final 
solid products of  MAPbI3 decomposition are  PbI2 and  I2.

Considering that lead halide perovskites are prone to 
absorb  H2O molecule in the air to form a hydrated complex 

(2.1-4)2HI
UV
������������→ H

2
↑ +I

2

(2.1-5)

(

CH
3
NH

3

)

PbI
3

H
2
O+UV

�������������������������������→
1

2
H

2
↑ +PbI

2
+ CH

3
NH

2
↑ +

1

2
I
2

Fig. 2   a Possible decomposition pathway of hybrid halide perovskites in the presence of water. A water molecule, 1, is required to initiate the 
process with the decomposition being driven by the phase changes of both hydrogen iodide, (2, soluble in water) and the methylammonia (3, 
volatile and soluble in water). This pathway results in the formation of a yellow solid, which corresponds to the experimentally observed  PbI2, 
4. Reproduced with permission from Ref. [48]. Copyright 2014, American Chemical Society. b Photographs of  CH3NH3PbI3 films deposited on 
FTO and stored under ambient conditions for several days. c Evolutions of photoelectron spectra of I 3d5/2, Pb 4f, C 1s and O 1s. b, c Repro-
duced with permission from Ref. [97]. Copyright 2016, American Chemical Society. (Color figure online)
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[50, 51, 63], the hydration processes of  MAPbI3 are dis-
played in Eqs. 2.1-6 and 2.1-7, respectively. Notably, the 
decoloring process of black perovskites induced by the 
generation of monohydrated phase  CH3NH3PbI3·H2O is 
reversible [95], and that can be reconverted into  MAPbI3 
again through dehydration process [63]. However, the deg-
radation reactions become irreversible once the dihydrate 
 (CH3NH3)4PbI6·2H2O forms (Eq. 2.1-7). Here, in the hydra-
tion  process, the  [PbI6]4− in the 3D network of  MAPbI3 
decays to a 0D framework of isolated octahedral. Ptasinska 
et al. pointed out that a transient phase  PbI2+x

x− (0 ≤ x < 1) 
forms during the evolution of a hydrated complex under 
ambient conditions [96]. The resulting  PbI2+x

x− is reactive 
when exposed to air and decomposes into lead-containing 
compounds inducing amorphous PbO, Pb(OH)2, and  PbCO3 
(Eqs. 2.1-9, 2.1-10, 2.1-11), which is evidenced by X-ray 
photoelectron spectra (XPS) characterizations in Fig. 2c.
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It’s reported that trapped charges can facilitate the degra-
dation reactions of  MAPbI3 in humid conditions. Ahn et al. 
deposited different polarity ions on the perovskite surfaces 
in humidified nitrogen and discovered that  MAPbI3 is irre-
versibly decomposed to yellow  PbI2 only when moisture and 
charges coexist (Fig. 3a–d) [97]. Figure 3e–l demonstrate 
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Fig. 3   a–d Schematic illustration of perovskite degradation processes (left), e–h top-view (middle) and i–l cross-sectional (right) SEM images 
of perovskite layers (a, e, i) before, (b, f, j) after 6 h, (c, g, k) 12 h and (d, h, l) 18 h by ion deposition in humidified nitrogen. The color change 
from dark brown to yellow in a-d represents the gradual degradation process. Black lines and their widths in a–d represent grain boundaries and 
degradation extent, respectively. Scale bars, 200 nm. m Topography and n surface potential profile of  MA0.6FA0.4PbI2.9Br0.1 film obtained from 
KPFM measurements after deposition of  N2-positive ions. Reproduced with permission from Ref. [98]. Copyright 2016, Springer Nature. (Color 
figure online)
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that the degradation of perovskite starts from the GBs and 
the striking resemblance in kelvin probe force microscopy 
(KPFM) measurements (Fig.  3m and n) indicates that 
charges are preferentially trapped along GBs, which dem-
onstrates that trapped charges can give rise to irreversible 
degradation. The degradation mechanism can be summa-
rized: first, the perovskite material undergoes a hydration 
reaction in humid environment. Next, the organic cations, 
like  MA+, will be deprotonated with the help of the local 
electric field induced by the charges trapped at the defect 
sites. The deprotonation process in the presence of water is 
shown below:

Here TC represents trapped charges. The release of gas 
phase  CH3NH2 will shift the following hydration equilib-
rium reaction to the right side, causing the perovskite to start 
irreversible decomposition:

In addition, oxygen can also accelerate the aging of perovs-
kite in humid conditions, which is attributed to the scaveng-
ing action of  O2 on the  H3O+ proton formed in the afore-
mentioned deprotonation process (Eq. 2.1-12). The overall 
degradation reaction of  MAPbI3 with the participation of  O2 
is shown as follows:

In summary, lead halide perovskite can easily decompose 
into  PbI2,  CH3NH2, HI, and other products in humid con-
ditions with/without other factors (e.g. UV light, trapped 
charges, oxygen). The degradation reaction of  MAPbI3 is 
usually irreversible due to the formed gas products (e.g. 
 CH3NH2, HI) will release into the air. Therefore, protecting 
perovskites from water is crucial to improve the stability of 
PSCs.

2.1.2  Oxygen‑Induced Reactions

Oxygen can induce the degradation of lead halide perovs-
kites under certain conditions [98]. A study found that  O2 
molecules are only physically attached to the perovskites 
surfaces without chemical reactions. Once the adsorbed 
 O2 captures an excess electron to form superoxide  (O2

·−), 
the degradation reactions of perovskites will proceed [99]. 
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Haque et al. reported that  O2 could permeate into the grain 
surface and interior of  MAPbI3, which could also be reduced 
to highly reactive  O2

·− with the help of photo-excited elec-
trons [57, 100]. It’s observed that the  Al2O3/MAPbI3 sys-
tem can produce more  O2

·− than  TiO2/MAPbI3 system. In 
Fig. 4a, the  TiO2 film can accept an electron from the photo-
excited  MAPbI3 because of the favorable energy offset at the 
heterojunction. Therefore, the fewer electrons transferring to 
oxygen leads to a lower yield of  O2

·− for the  TiO2/MAPbI3 
system. Simultaneously, ab initio simulations demonstrate 
the  O2

·− prefer energetically to occupy the iodide vacancies 
sites [101]. The photo-induced  O2

·− formation is the key 
factor for the degradation reactions of  MAPbI3:

CH3NH3PbI3
* carries both photo-induced electrons and 

holes (Eq.  2.1-15), and  O2 captures an electron from 
 CH3NH3PbI3

* to form  O2
·− (Eq. 2.1-16). The study found 

that  MAPbI3 films with large grains degrade more slowly, 
which is attributed to large crystallites containing the fewer 
surface reaction sites. Based on the studies above, Sultana 
et al. discovered that the degradation product  PbI2 (Eq. 2.1-
17) could further react with  O2 to produce lead oxyiodide 
under UV irradiation [38], which can be expressed as 
follows:

The electron is excited from the valence band of  PbI2 to its 
conduction band under UV irradiation (Eq. 2.1-18), which 
then transfers to  O2 molecular to generate  O2

·− (Eq. 2.1-19). 
Finally, the highly reactive  O2

.− further reacts with  PbI2 gen-
erating lead oxyiodide.

It’s reported that  O2
.− will capture an acid proton of the 

 CH3NH3
+ to generate hydroperoxyl radical  (HO2·) once 

approaching the ammonium group (Eq. 2.1-21) [102, 103]. 
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Subsequently, two different reaction mechanisms are pro-
posed to express next degradation process of perovskite. 
The first one is that two  HO2· interact to produce hydrogen 
peroxide  (H2O2) under lights (Eq. 2.1-22). Ultimately,  H2O2 
reacts with  Pb0 on the perovskite surface generating PbO or 
Pb(OH)2 (Eqs. 2.1-23, 2.1-24). It is worth noting that the 
formed PbO has an unexpected passivation effect, prevent-
ing the accumulation of anion vacancies and formation of 
Pb-Pb dimers, which can increase the open-circuit voltage 
(Voc) for inverted PSCs as exhibited in Fig. 4b. The second 
one demonstrates that  HO2· radicals can dissociate into  H2 
and  O2, and the remaining  O2 can serve as a reactant again 
for the continuous degradation process (Eq. 2.1-25).
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2
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Hillhouse et al. reported that  H2O can accelerate the pho-
tooxidation reaction of  MAPbI3 and proposed one plausi-
ble degradation pathway [104].  H2O rapidly undergoes the 
deprotonation reaction to form  HO2· and  HO− in the pres-
ence of  O2

·− (Eq. 2.1-26). As mentioned above, the newly 
formed  HO2· will interact to release  H2 and  O2 (Eq. 2.1-25). 
Unfortunately,  HO− triggers the decomposition of  MAPbI3 
into  PbI2 (Eq. 2.1-27), which subsequently reacts with  H2O 
to generate PbIOH and HI (Eq. 2.1-28) in the following 
steps:

It’s worth noting that  O2
·− more rapidly reacts with  H2O 

(Eq. 2.1-26) than  CH3NH3
+ (Eq. 2.1-21) due to a lower 

activation energy for the whole reaction pathway, which 
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Fig. 4   a Schematic model showing the electron transfer of the photoexcited electrons in the  MAPbI3 layers to oxygen resulting in the formation 
of superoxide. Reproduced with permission from Ref. [101]. Copyright 2015, Wiley-VCH. b Photovoltaic performance characteristics of p-i-n 
PSC treated by  H2O2 via the gas-phase deposition method with urea hydrogen peroxide for 40 s, compared to a control device, measured under 
AM1.5 100 mW/cm2 simulated sunlight. Reproduced with permission from Ref. [103]. Copyright 2019, Elsevier. c Schematic representation 
of the photo-oxidative degradation process of the  MAPbI3 (001) surface. Reproduced with permission from Ref. [108]. Copyright 2019, Royal 
Society of Chemistry
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demonstrates that  H2O can accelerate photooxidative deg-
radation of  MAPbI3.

Except for the degradation products mentioned above like 
 PbI2 and lead oxyiodide, Snaith et al. detected metal lead 
 (Pb0) on the perovskite surface [105] and proposed a plau-
sible formation mechanism of  Pb0 [102]. An iodide ion  (I−) 
abstracts a photogenerated hole  (h+) to produce an iodine 
atom  (I·) (Eq. 2.1-29), which is accompanied by rapid site 
exchange of iodide from a regular to interstitial lattice site. 
Two iodine atoms combine with each other to generate  I2, 
simultaneously leaving two iodine vacancies  (VI·) (Eq. 2.1-
30). Subsequently,  VI· captures an electron to generate Farbe 
center  (VI·e’) (Eq. 2.1-31), which then reduces the  Pb2+ in 
the adjacent site to  Pb+ (Eq. 2.1-32). Finally,  Pb+ undergoes 
a disproportionation reaction to produce  Pb0 (Eq. 2.1-33).

Based on the above research, a photo-oxidative degrada-
tion mechanism of  MAPbI3 is proposed for rapid surface 
oxidation and slow inner hydration [101, 106]. Wang et al. 
reported the three-step degradation process of  MAPbI3 as 
displayed in Fig. 4c [107]. Step I:  O2 on the  MAPbI3 surface 
capture a photogenerated electron from the conduction band 
of  MAPbI3 to form  O2

− (Eq. 2.1-16). Step II:  O2
− rapidly 

oxidizes the  PbI2-terminated surface to produce PbO, result-
ing in a breakage of the Pb–I frameworks and the exposure 
of the MAI-terminated surface. Subsequently, the underlying 
MAI-terminated surface is further oxidized to generate  H2O 
and PbO or the unstable Pb(OH)2. Step III: The oxidation 
products PbO and Pb(OH)2 can act as protective layers to 
inhibit the further oxidation of the internal  MAPbI3. The 
newly produced  H2O molecules from the surface oxidation 
and decomposition of Pb(OH)2 can slowly hydrate with the 
internal  MAPbI3, finally leading to the structural collapse 
of  MAPbI3.

In conclusion, the oxygen-induced reactions of perovs-
kites need the participation of light or water. Firstly,  O2 

(2.1-29)I− + h+ → I∙

(2.1-30)2I∙ → I
2
+ 2VI∙

(2.1-31)VI∙ + e
�

→ VI∙e
�

(2.1-32)Pb2+ + VI∙e
�

→ VI∙Pb
+

(2.1-33)2Pb+ → Pb2+ + Pb0

captures photogenerated electrons generating  O2
−, which 

subsequently introduces a series of decomposition path-
ways under different conditions. Finally, the generating 
degradation products mainly include  CH3NH2,  I2,  PbI2, 
and PbO (or Pb(OH)2).

2.1.3  Light‑Induced Reactions

Unlike oxygen, light can induce the perovskites degrada-
tion without any presence of other environmental factors 
(e.g., water, oxygen). Study demonstrated that UV light 
can induce severe degradation of lead halide perovskites 
[108, 109]. As shown in Fig. 5a, Gao et al. detected  Pb0 on 
the  MAPbI3 surface after about 120 min of UV irradiation 
with a wavelength of 408 nm [110]. The proposed degra-
dation reactions of  MAPbI3 under UV irradiation can be 
generalized in Eqs. 2.1-34, 2.1-35. Figure 5b shows that 
the ratio of  Pb0 remains nearly constant after 480 min of 
UV irradiation, which indicates that the decomposition of 
 MAPbI3 has already saturated.

Yan et al. proposed a possible photodegradation mecha-
nism of  MAPbI3 concerning hot carriers [111]. As shown 
in Fig. 5c, the first step is that  MAPbI3 is excited by light 
(hv > 3 eV) to generate long-lived hot carriers (Eq. 2.1-36). 
Then a hot electron reacts with the  CH3NH3

+ via columbic 
coupling to generate a free proton and release  CH3NH2 
near surface or GB regions (Eq. 2.1-37). Finally, the free 
protons interact with undercoordinated  I− on the surface, 
generating volatile HI and iodine vacancies (Eq. 2.1-38). 
The release of HI can induce the destruction of Pb-I frame-
work from the corner-shared to the face-shared Pb-I octa-
hedral, causing the degradation of  MAPbI3 into  PbI2.

It’s reported that halide defects have an influence on 
the photostability of  MAPbI3 [112]. Petrozza et al. found 

(2.1-34)
(

CH
3
NH

3

)

PbI
3

UV
������������→ PbI

2
+ HI ↑ +CH

3
NH

2
↑

(2.1-35)PbI
2

UV
������������→ Pb0 + I

2

(2.1-36)hv(> 3eV) → e−(hot) + h+(hot)

(2.1-37)CH
3
NH+

3
+ e−(hot) → CH

3
NH

2
+ H+ + e−

(2.1-38)I− + H+ → HI ↑ +VI
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that long-living carrier traps associated with halide defects 
could trigger photoconversion, which drives both photo-
luminescence intensity enhancement (PLIE) and photo-
luminescence intensity decrease (PLID). In Fig. 5d and 
e, PLIE and PLID processes are proposed to explain the 
observations. The timescales involved in PLID and PLIE 
are consistent with the reported ionic activities, such as 
ion/defect annihilation and migration rates [113, 114]. 
Generally, vacancies (e.g., VPb) and interstitial halogen 
(e.g.,  Ii) defects dominate in the perovskites. VPb is only 
moderately active as a trap, while  Ii can remarkably trap 
both electrons and holes via (+ /0) and (0/ −) transitions. 
When the probability of encountering  I0 species is very 
low, the light-induced PLIE is associated with annihilation 
of the  Ii

−VI
+ Frenkel pair:

(2.1-39)I+
i
∕I−

i
....V+

I
+ e−

light
���������������→ I0

i
∕I−

i
....V+

I

light
���������������→ I0

i

+ pristine material

The PLID mechanism is proposed to be a bimolecular 
reaction boosted by increasing the encountering prob-
ability of  I0 species, occurring near the film surface filled 
with long-lived traps:

The two processes may coexist and compete in the per-
ovskite material. If traps densities are adequately low, photo-
induced PLIE will be a dominant effect. However, photo-
induced PLID will play a key role when high-density traps 
appear near the film surface that may act as a reservoir for 
photogenerated species, eventually causing perovskites deg-
radation. Therefore, passivating under-coordinated surface 
sites can prohibit defect formation and hence enhance the 
photostability of perovskites.

(2.1-40)2I0
i

light
→ I

2

Fig. 5   a Pb 4f7/2 decomposition and b metallic Pb fraction during laser irradiation. a, b Reproduced with permission from Ref. [111]. Copy-
right 2017, American Chemical Society. c Schematic representation of photodegradation mechanism. 1) Hot carrier generation, 2) deprotona-
tion and release of MA gas, and 3) formation of HI gas and  VI. Reproduced with permission from Ref. [112]. Copyright 2018, Royal Society of 
Chemistry. d, e, Photoluminescence enhancement and quenching mechanisms. Ion dynamics in  MAPbI3 thin film promoting PLIE in d, when 
the probability of  I0 species encounters is small and Frenkel pair annihilation is boosted by electron trapping, and PLID in e, when the probabil-
ity of  I0 species encounters is high, boosting  I2 molecule formation. d, e Reproduced with permission from Ref. [113]. Copyright 2019, Springer 
Nature
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2.2  Charge Transport Layers

In addition to the aforementioned degradation reactions 
induced by environmental factors, the chemical stability of 
lead halide PSCs can be affected by charge transport layers, 
including ETL and HTL. Generally, the interfacial chemical 
reactions are not desirable, which could lead to destroyed 
structure and reduced charge transport/extraction. However, 
for certain charge transport layers such as Cl-containing 
 SnO2, interfacial reactions have been demonstrated to be 
beneficial for charge transport and chemical stability of 
PSCs. Considering the diversity of charge transport mate-
rials, a variety of interfacial reactions and their effects on 
device stability have been reported in literature. Therefore, 

the chemical reactions in PSCs induced by charge transport 
layers are elucidated in this session.

2.2.1  ETL‑Induced Reactions

TiO2 has been widely used as an electron transport material 
in the early study of PSCs [36, 115–121]. Belmonte et al. 
reported that  TiO2 interacts with  MAPbI3 mainly through 
binding  I− in  MAPbI3 to undercoordinated  Ti4+ in  TiO2 [49, 
122]. Notably, this Ti-I-Pb bond is not strong due to the lit-
tle hybridization between  Pbs–p state and  Tid orbital, hence 
the adsorption/desorption of  I− at the interface may occur 
easily. The interactions between  TiO2 and perovskite are 
reversible under both positive and negative biases, as shown 
in Fig. 6a–c. At a positive bias, weakly bonded  I− migrate 

Fig. 6   Diagram representing iodide migration and chemical species present at the interfaces. a At positive-bias iodine ions are forced to 
migrate toward the hole selective contact where the reaction with spiro-OMeTAD+ occurs. The iodide defective layer is formed at the  TiO2/
MAPbI3 interface. b At zero-bias the neutral case appears. c At negative-bias spiro-OMeTAD only partially returns to its oxidized, conductive 
state. Iodide ions accumulate at the  TiO2/perovskite interface. a-c Reproduced with permission from Ref. [49]. Copyright 2016, Wiley-VCH. d 
Scheme showing the reversible chemistry reactions process occurring at the solid-state  TiO2/CH3NH3PbI3 interface. Reproduced with permis-
sion from Ref. [124]. Copyright 2017, American Chemical Society. e Degradation scheme of  CH3NH3PbI3 perovskite solar cells during light 
exposure test:  TiO2/CH3NH3PbI3. Reproduced with permission from Ref. [125]. Copyright 2014, American Chemical Society
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towards the hole transport layer contact and hence I vacan-
cies remain at  MAPbI3/TiO2 interface, and the positive 
charges are compensated by electrons injection and accu-
mulations at  TiO2. In contrast, excess  I− may accumulate at 
 MAPbI3/TiO2 interface under a negative bias. The Ti-I-Pb 
bonds easily accommodate excessive defect or ion charges 
in a highly reversible manner to generate capacitive currents. 
However, it’s worth noting that this reversible interaction 
has a negligible effect on the photovoltaic performance and 
chemical stability of PSCs.

Studies on film’s current response to  I2 vapor have 
revealed that reversible chemical reactions occur at TiO2/
I2 and MAPbI3/I2 interfaces [123]. Rand et al. discovered 
the pathways for  I2 passivation of  MAPbI3 surface defects 
from the photoconductivity data of  MAPbI3 films. Accord-
ing to the current response of  TiO2 film to  I2 vapor pressures, 
they proposed a plausible reaction mechanism between  TiO2 
and  I2. As shown in Eqs. 2.2-1, 2.2-2, and 2.2-3,  TiO2 and 
 MAPbI3 surfaces undergo strong reversible reactions with 
 I2 gas, respectively. Combining these three reactions, the 
chemical interaction between  TiO2 and  MAPbI3 can be gen-
eralized in Eq. 2.2-4.

I− in  MAPbI3 is adsorbed on the  TiO2 surface and deplete an 
electron on  TiO2, leaving a free electron as well as a trap on 
the  MAPbI3 surface (Fig. 6d). The energy level of the trap 
would determine whether the electron is captured or freely 
transmitted. Therefore,  MAPbI3 may be chemically reduced 
by  TiO2 due to the differences in work function. In addition, 
the newly formed traps on the  MAPbI3 surface will make a 
difference to carrier density and recombination rate, which 
could deteriorate the device stability.

TiO2 was also reported to catalyze  MAPbI3 decomposi-
tion in the presence of light [124]. In Fig. 6e,  TiO2 extracts 
an electron from  I− under light irradiation generating  I2 
(Eq. 2.2-5), which deconstructs perovskites crystal and 
reduces their chemical stability. As mentioned in 2.2.1 part, 

(2.2-1)e−
MAPbI

3

+ trap0
MAPbI

3

⇌ trap−

(2.2-2)trap− +
1

2
I
2
⇌ I−

adsorbed(MAPbI
3
)

(2.2-3)e−
TiO

2

+
1

2
I
2
⇌ I−

adsorbed(TiO
2
)

(2.2-4)

e−
TiO

2

+ I−
adsorbed(MAPbI

3
)
⇌ I−

adsorbed(TiO2)
+ e−

MAPbI
3

+ trap0
MAPbI

3

 CH3NH3
+ can be deprotonated to generate  CH3NH2 and  H+ 

in humid conditions. The presence of  I2 and  H+ will accel-
erate the reaction (Eq. 2.2-6) to proceed forward, further 
destroying the perovskite structure.

TiO2 acts as a catalyzer rather than a reagent in the reac-
tions with perovskites, which accelerates the degradation 
process of perovskites to some extent. Therefore, reducing 
the catalytic performance of  TiO2 is an effective way to 
improve the photovoltaic performance and chemical stabil-
ity of  TiO2-based PSCs.

It’s reported that ZnO ETL can also interact chemically 
with perovskites [125–129]. Anta et al. proposed that an 
acid–base reaction could occur at the ZnO/perovskite inter-
face [130], triggering the decomposition of perovskite into 
 PbI2 in humid conditions. In addition, this interaction could 
cause redissolution of the ZnO substrate, whose morphology 
changes from spherical nanoparticles to aciculate particles 
(Fig. 7a).

Additionally, the deprotonation reaction between ZnO 
and perovskite can cause the thermal degradation of per-
ovskite. Kelly et al. found that the basic hydroxyl groups 
and residual acetate ligands exist on the ZnO surface through 
the Fourier transform infrared spectroscopy (FTIR) spectra 
analysis (Fig. 7b), which can be eliminated or reduced by 
high-temperature calcination of ZnO films (Fig. 7c) [131]. 
Otherwise, the hydroxide or residual acetate ligands will 
react with  CH3NH3

+ destroying the crystal structure of 
perovskite, which is evidenced in Fig. 7d and e [132]. And 
this decomposition process of  MAPbI3 can be expressed as 
follows:

As shown in Eqs. 2.2-7 and 2.2-8, the whole degradation 
reactions are the deprotonation process of  CH3NH3

+, and 
 CH3NH3OH easily decomposes into  CH3NH2 gas and  H2O 
under heat. The decomposition of  CH3NH3OH can promote 
the reaction (Eq. 2.2-7) to proceed forward continuously, 
which accelerates  MAPbI3 degradation. It’s reported that 
 MAPbI3 decomposes easily to form HI in humid condi-
tions [94], which subsequently reacts with ZnO resulting in 

(2.2-5)2I−
TiO

2
+light

�����������������������������������→ I
2
+ 2e−

TiO
2

(2.2-6)I− + I
2
+ 3H+ + 2e−
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2

⇌ 3HI ↑

(2.2-7)OH−+CH
3
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3
→ CH

3
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3
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3
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reduced electron mobility of ZnO and deteriorative chemi-
cal stability of PSCs. This neutralization reaction can be 
presented in the following reaction [127]:

SnO2 is widely used in PSCs owing to its good electron 
transport ability and chemical stability. However, the inter-
actions between the Cl-containing  SnO2 and perovskite still 
exist. Recently, Seok et al. reported that a  FASnClx interlayer 
at a  SnO2/perovskite interface could be formed by an inter-
facial reaction between Cl-bonded  SnO2 and Cl-containing 
 FAPbI3 perovskite (Fig. 8a and b) [5], which is related to 
the easy formation of Sn-based perovskites in the presence 
of  Cl−,  FA+ and  Sn2+ [133, 134]. The coherent interlayer 
reduces the interfacial charge recombination and enhances 
charge transport/extraction, achieving stable PSCs with a 
high PCE of 25.8% (Fig. 8c and d). However, Sn-Cl bonds 

(49)2HI + ZnO → ZnI
2
+ H

2
O

did not form when the Cl-containing  FAPbI3 solution was 
applied on a pure  SnO2 surface. In comparison, Cl-bonded 
 SnO2 can interact with  Cl−-free  FAPbI3 precursor to form 
Sn-I bonds by  Cl−–I− exchange. In addition, Pang et al. also 
discovered the spontaneous ion-exchange reaction between 
 Cl− and  I− at the  SnOx-Cl/MAPbI3 interface (Fig. 8e and 
f), which could effectively passivate the physical contact 
defects. The diffusion of  Cl− in the  MAPbI3 films promoted 
the grain longitudinal growth and decreased the GB density 
[135]. It is worth noting that the reactions between  SnOx–Cl 
and perovskite effectively passivate the interface defects, 
thereby improving the photovoltaic performance and chemi-
cal stability of the PSCs.

Fullerene derivatives, like phenyl-C61-butyric acid methyl 
ester (PCBM) and [6, 6]-Phenyl-C71-butyric acid methyl 
ester  (PC71BM), are another type of popularly used elec-
tron transport materials particularly in inverted PSCs. It’s 

Fig. 7   a SEM of hZnO and  Al2O3 substrates before (left) and after (right) deposition of perovskite layer. Reproduced with permission from 
Ref. [131]. Copyright 2016, Royal Society of Chemistry. b FTIR spectra of ZnO films on glass annealed at various temperatures. c Photographs 
of  CH3NH3PbI3 films deposited on thermally pretreated ZnO layers and heated to 100 °C for the indicated time: top row (left to right): pretreated 
at 25, 100, 200 °C. Bottom row (left to right): pretreated at 300 °C, 400 °C, and  SiO2/CH3NH3PbI3. b, c Reproduced with permission from Ref. 
[132]. Copyright 2015, American Chemical Society. d High-resolution of O 1s XPS core level spectra of ZnO with annealing at 200 °C for 1 h 
in air. e XRD patterns and photographs of perovskite film on annealed ZnO without thermal annealing and annealing at 100 °C for 30 min. d, e 
Reproduced with permission from Ref. [133]. Copyright 2015, American Chemical Society. (Color figure online)
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reported that PCBM undergoes an electron transfer reaction 
with halogens in perovskites to produce PCBM-nX radicals 
[74, 136]. Additionally, halogens favorably interact with  C70 
face rather than O face of  PC71BM through covalent bonds 
[137]. Such strong interactions can suppress Pb-I antisite 
defects and ions migration at perovskite/PCBM interfaces, 
which can lead to improved stability and reduced hysteresis 
of PSCs [138]. However,  C60, another commonly used ETL 
in the inverted PSCs, barely undergoes interfacial chemical 
reactions with perovskites because of its chemical inertness.

2.2.2  HTL‑Induced Reactions

In general, the widely used HTLs in inverted PSCs (i.e., 
p-i-n structure) are mainly poly(3,4-ethylenedioxythio-
phene) polystyrene sulfonate (PEDOT:PSS) [139, 140], 
poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) 
[141–143] and  NiOx [144, 145]. As an inorganic HTL, 
 NiOx is regarded as a promising HTL candidate with the 
advantages of good optical transparency, excellent stability 

and low cost [146, 147]. The interaction between  NiOx 
and perovskite has been studied by many groups. McGe-
hee et al. proposed a surface-assisted electron transfer-
proton transfer (ET-PT) reaction mechanism at the  NiOx/
perovskite interface [148]. They deposited various per-
ovskite precursors (MAI, MABr, MACl, CsI, and  PbI2 in 
acetonitrile solvent, respectively) onto  NiOx surface and 
observed that only MAI could bleach  NiOx film, which 
demonstrates that  Ni≥3+ sites can oxidize  I− only in the 
presence of a proton donor but neither  Br− or  Cl− because 
of their much higher oxidation potentials. In conclusion, 
 Ni≥3+ defect sites can act not only as Lewis acid to oxidize 
 I− but also as Brønsted base to deprotonate  CH3NH3

+. The 
perovskite solution was deposited on the various HTLs 
(PTAA, poly-TPD, and  NiOx) to detect the differences in 
the perovskite films through XRD analysis. It’s observed 
that  PbI2 accumulates at the  NiOx/perovskite interface or 
scatters throughout PTAA-based perovskite. However, 
only the interfacial  PbI2 can block the extraction of holes 
resulting in the Voc loss of PSCs. The whole reaction can 
be shown in Fig. 9a.

Fig. 8   a ToF-SIMS depth profiles for the perovskite and Cl-bonded  SnO2 on FTO. b Simulation of the formation of the  FASnClx interlayer 
between perovskite and  SnO2. c J-V curves of the best-performing device, measured in reverse (red solid line) and forward (blue dashed line) 
modes. d Maximum power point tracking measured for the PSC fabricated using Cl-bonded  SnO2 and Cl-containing  FAPbI3. a-d Reproduced 
with permission from Ref. [5]. Copyright 2021, Springer Nature. e UV-vis spectra of  SnOx-Cl, MAI,  SnOx-Cl+MAI, and  SnI4, respectively. f 
XRD pattern of  SnOx-Cl + MAI and reference  MA2SnI6 powder samples, providing the feasibility of the ion-exchange reaction. e, f Reproduced 
with permission from Ref. [136]. Copyright 2019, Wiley-VCH. (Color figure online)
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According to reaction Eq. 2.2-10, the resulting A-site defi-
cient in this region increases interface recombination and 
reduces chemical stability of PSCs. The study found that 
1–5 mol% excess A-site cations were incorporated into 
the perovskite precursor solution to prevent the reaction 
above. Therefore, the formation of  PbI2 layer at the  NiOx/
perovskite interface is inhabited, and the Voc was improved 
by > 200 mV as shown in Fig. 9b.

Wang et al. reported that trivalent nickel compound 
(NiOOH) on  NiOx HTL surfaces can be reduced to nickel 
iodide  (NiI2) by soaking the  NiOx HTLs in hydroiodic acid 
(HI) during roll-to-roll printing of flexible PSCs [144], as 
shown in Fig. 9c and d, which can enhance  NiOx/perovs-
kite interface contact and ameliorate the work function of 
 NiOx film. The reaction process is shown below:

(2.2-10)
(CH

3
NH

3
)PbI

3
+ Ni≥3+Ox ↔ Ni≥2+OxH + PbI
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2
O

3
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2
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2
O + I

2

Subsequently,  I− in  NiI2 can coordinate with Pb in perovskite 
to form a Pb-I bond, inducing an orderly growth of perovs-
kite lattice and enhancing the crystallinity of the perovskite 
film. Consequently, flexible PSCs with improved PCE as 
well as remarkable chemical stability were achieved (Fig. 9e 
and f).

In addition to  NiOx, the commonly used HTLs are 
PEDOT:PSS and PTAA in inverted PSCs. We note that 
PEDOT:PSS and PTAA are rarely reported to react with 
perovskites. However, PEDOT:PSS has been shown to cor-
rode ITO due to its acidic composition, which can react 
with  In2O3 [13, 139, 149, 150]. As a consequence, the dis-
sociated indium ions can diffuse into the perovskite layer 
and then deteriorate device performance and stability [151, 
152].

The normal PSCs (i.e. n-i-p structure) using 
2,2’,7,7’-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9’-
spirobifluorene (spiro-OMeTAD) as HTL have achieved 
efficiency records, however, the instability of spiro-
OMeTAD itself and its additives limits their commercial 
applications [153]. Therefore, the interfacial reactions 
between perovskite and spiro-OMeTAD under various 
conditions have been investigated to improve the device 

Fig. 9   a Schematic of the formation process of  PbI2-xBrx at the interface. b Dark and light J-V curves of  Cs0.25FA0.75Pb(Br0.2I0.8)3 perovskite 
solar cells with 0–3 mol% excess A-site. a, b Reproduced with permission from Ref.[150]. Copyright 2020, Elsevier. c Diagram of the passiva-
tion mechanism. d Fabrication procedure for perovskite solar cells by R2R process. e J-V curves of flexible devices (1.01  cm2) with and without 
HI treatment. Inset presents the photograph of flexible perovskite solar cells. f Normalized PCE of encapsulated PSCs based on  NiOx and  NiOx 
(HI) hole-transport layers under ambient condition (25–55% relative humidity and 25–35 ℃) for 30 days. c-f Reproduced with permission from 
Ref. [146]. Copyright 2021, Royal Society of Chemistry
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stability. Sultana et  al. detected the signal of [spiro-
OMeTAD(PbI2)nPbI]+ adducts in the mass spectra and 
found that the interaction between spiro-OMeTAD and 
perovskite was beneficial for PSCs operations [38]. In 
addition, Belmonte et al. reported that  I− is driven towards 
the spiro-OMeTAD HTL and react with the oxidized 
spiro-OMeTAD+ under a positive bias (Eq. 2.2-13) [49]. 
This irreversible reaction turns the spiro-OMeTAD+ into 
neutral molecule, which prevents the oxidation of spiro-
OMeTAD [154] and consequently decreases the conduc-
tivity of HTL. Hence, this process has a negative effect 
on the photovoltaic performance and chemical stability 
of PSCs.

(2.2-13)spiro − OMeTAD+ + I− → spiro − OMeTAD − I

Besides, several common additives such as Lithium 
bis(trifluoromethanesulfonyl)-imide (Li-TFSI) and 4-tert-
butylpyridine (TBP) in spiro-OMeTAD can influence the 
stability of perovskite active layers. Many studies have 
shown that the hygroscopic nature of Li-TFSI can acceler-
ate the degradation of perovskite in humid conditions [155, 
156]. As shown in Fig. 10a and b, TBP can react with  PbI2 to 
form new complexes  [PbI2 ∙ xTBP], which disintegrates the 
perovskite structure and deteriorates the device performance 
[157, 158]. The reaction can be expressed as follows:

Chen et al. explored the decomposition of PSCs under 
operating conditions in the presence of light and  H2O [159]. 
The crystal evolution processes are displayed in Fig. 10c. As 

(2.2-14)PbI
2
+ xTBP → PbI

2
⋅ xTBP

Fig. 10   a The UV-vis absorption of TBP liquid (dark line) and  PbI2 solution in TBP (red line). b Pb 4f7/2 XPS spectra consuming of  PbI2. a, 
b Reproduced with permission from Ref. [159]. Copyright 2014, Royal Society of Chemistry. c Crystal structural evolution from  CH3NH3PbI3, 
 CH3NH3PbI3·H2O and  PbI2 to PbIOH. d FE-SEM images of top views and the cross-section views of relevant phases  CH3NH3PbI3,  PbI2, and 
PbIOH formed in lead halide perovskite solar cell at different stages. c, d Reproduced with permission from Ref. [161]. Copyright 2017, Ameri-
can Chemical Society
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mentioned in Sect. 2.1.1,  MAPbI3 can react with  H2O gener-
ating intermediate  CH3NH3PbI3·H2O in low-humidity condi-
tions [63, 95, 96], which has little effect on the device perfor-
mance. However,  CH3NH3PbI3·H2O can further decompose 
into  PbI2 once exposed to high humidity, destroying the per-
ovskite structure and reducing the chemical stability of PSCs. 
 H2O would further react with axial I of  [PbI6]4− to form 
 [PbI4O2]6− under light irradiation or in the presence of spiro-
MeOTAD. Given that the ionic radius of  I− (2.06 Å) is signif-
icantly bigger than that of  O2− (1.26 Å) [136],  [PbI4O2]6− is 
prone to deform. These deformed  [PbI4O2]6− octahedrons 
further connect with each other to become PbIOH with the 
coordination structure of  [PbI5O3]9−. Figure 10d presents the 
scanning electron microscopy (SEM) images of PSCs at dif-
ferent degradation stages. It’s worth noting that in addition to 
 H2O and light, spiro-MeOTAD is another key factor to stimu-
late the decomposition of  MAPbI3 into PbIOH, indicating 
that spiro-OMeTAD has a crucial influence on the chemical 
stability of PSCs.

Because of the intrinsic thermal instability of organic 
HTLs in normal PSCs, a lot of research efforts are devoted 
to inorganic HTLs [160–162], such as CuSCN, which is 
a promising candidate due to its low cost and durability 
[163–165]. It’s reported that the CuSCN can catalyze the 
thermal degradation process of perovskite films even in the 
absence of moisture and oxygen [82, 166–168], although the 
thermal stability of CuSCN itself is excellent.  CH3NH3I and 
CuSCN can react to form  CH3NH3SCN and CuI as follows:

2.3  Metal Electrodes

Lead halide perovskites not only react with the adjacent lay-
ers like charges transport layers, but also experience chemi-
cal interactions with the top metal electrodes through ions 
migrations. The common metal electrodes, such as aluminum 
(Al), silver (Ag) and gold (Au), can be corroded when in 
contact with hybrid perovskites or air. These metal ions can 
diffuse through charge transport layers into perovskites and 
meanwhile the halide species like  I− can migrate to the metal 
electrode, which result in reactions between metal and halide 
ions. It has been reported that almost all reactions between 
metal electrode and perovskites cause severe performance 
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and stability deterioration of PSCs. Therefore, exploring the 
reactions of the metal electrodes is helpful to have a better 
understanding of the chemical stability issues of PSCs.

2.3.1  Ag Electrode‑Induced Reactions

Ag is prone to suffer from corrosion or contamination in 
contact with lead halide perovskite films. Studies found 
that  I− in perovskites can react with spiro-OMeTAD+ at the 
interface, resulting in a large amount of  I− accumulating 
in the spiro-OMeTAD layer [49, 169]. Strikingly,  I− passes 
through the Spiro-OMeTAD layer and migrates to the Ag 
contact, meanwhile, Ag ions also diffuse into the perovskite 
layer from the top electrode, generating AgI in the PSCs 
[93, 170, 171].

Kato et al. reported that moisture can promote the pro-
duction of AgI and a five-steps mechanism is proposed to 
understand the observations (Fig. 11a) [171], including 
(1) diffusion of  H2O into perovskite through the pinholes 
in spiro-MeOTAD layer; (2)  H2O-induced decomposition 
of  MAPbI3 and production of volatile species containing 
 I− (e.g., HI); (3) Migration of these volatile species to the 
bottom or top Ag layer; (4) Surface diffusion of the volatile 
species containing  I−; (5) AgI formation. The chemical reac-
tion of AgI formation can be expressed as follows:

In addition, thermal treatment can also accelerate the 
formation of AgI in inverted PSCs. In Fig. 11b–d, time-of-
flight secondary ions mass spectroscopy (ToF–SIMS) tests 
revealed that thermal treatment triggered a significant accu-
mulation of  I−,  I2

−, and  CN− ions at the PCBM/Ag interface, 
indicating two crucial facts: the decomposition of  MAPbI3 
and the diffusion of both  I− and  MA+ ions [172]. The for-
mation of AgI accelerates the release of  MA+ and  I− ions 
from the GBs of the perovskite layer and reconstructs the 
grain domains, leading to more defects both in the perovskite 
films and at the interface. Consequently, the PSCs suffer 
from degraded performance due to the formation of AgI.

Ma et al. reported electrochemical corrosion of Ag grid 
electrodes by PEDOT:PSS in flexible PSCs, which is a 
major reason for the low performance and poor chemical 
stability of the devices [41]. This redox reaction involves 
the reduction of the highly conductive PEDOT:PSS layer 
and the oxidation of the Ag electrode, which is proposed 

(2.3-1)2HI + 2Ag → 2AgI + H
2
↑
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to be three steps including (Fig. 11e): (1) Ag electrode 
easily loses an electron to form  Ag+ with the aid of acidic 
PEDOT:PSS layer; (2) PEDOT:PSS layer receives an elec-
tron and is reduced; (3)  Ag+ enters into the perovskite 
precursor solution and reacts with  I− to generate AgI.

Therefore, regardless of the structure of PSCs, the cor-
rosion of Ag electrode is usually ascribed to the chemical 
reactions between Ag and the components of perovskites, 
which is achieved through  Ag+ migration or halide ions 
diffusion [173–175]. Eventually the formed AgI impedes 
the charge transport and reduces the photovoltaic perfor-
mance and chemical stability of PSCs.

2.3.2  Au Electrode‑Induced Reactions

Au, an inert metal and a common electrode material [5, 176], 
has been found to react with lead hybrid perovskite in pre-
vious studies [177–181]. Researches show that Au diffuses 
from the electrode across the HTL into the perovskite layer 
under certain conditions such as light soaking [182] or heat 
aging [183], resulting in an irreversible loss in photovoltaic 
performance and chemical stability of PSCs. Tarasov et al. 
proposed the corrosion mechanism of Au electrode based on 
its reaction with iodine-based perovskites [184]. Generally, 
the intensive UV irradiation of perovskite would induce the 

Fig. 11   a Schematic illustration of a proposed mechanism of AgI formation. Reproduced with permission from Ref. [174]. Copyright 2015, 
Wiley-VCH. ToF-SIMS elemental depth profiles b before and c after a thermal treatment at 85 °C for 24 h. d The depth profiles of  Ag-,  I- and 
 CN- after different temperature of thermal treatment. b-d Reproduced with permission from Ref. [175]. Copyright 2017, Wiley-VCH. e The 
possible reaction mechanism of the PH1000-involved electrochemical corrosion of Ag electrode. Reproduced with permission from Ref. [41]. 
Copyright 2018, Wiley-VCH
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release of volatile  I2 and MAI, forming highly reactive polyi-
odide melts with a general formula of MAI-nI2. This MAI-
nI2 could react strongly with Au at room temperature and 
form  [AuI2]− and  [AuI4]− complexes. Consequently, a new 
(MA)2Au2I6 phase is observed on the Au interface, which is 
detrimental to the performance of PSCs.

In addition,  MAPbI3/Au interface can catalyze the perovs-
kite degradation reaction. A type of reduction/oxidation reac-
tion termed underpotential deposition (UPD) involving lead, 
iodine, and hydrogen can occur at the  MAPbI3/Au interface 
[185]. UPD is a surface adsorption reaction that changes the 
oxidation state of ions, and occurs spontaneously at a lower 
voltage than the bulk reaction potential. XPS measurements 
demonstrate that  Pb0

UPD and  I0
UPD form at  MAPbI3/Au sur-

face, and the whole degradation pathway of  MAPbI3/Au can 
be described with the following steps (Fig. 12a): (1)  I− loses an 
electron to form  I0

UPD that absorbs on the Au surface (Eq. 2.3-
3), which induces the decomposition of  MAPbI3 into  PbI2 
and  CH3NH3

+. (2)  CH3NH3
+ captures a free electron to form 

methylamine gas and  H0
UPD simultaneously (Eq. 2.3-4). (3) 

The adsorbed  I0
UPD reacts with  H0

UPD to generate HI,  I2, or 
 H2 gases (Eq. 2.3-5, 2.3-6, 2.2-7). (4) The byproduct  CH3NH2 
reacts with  PbI2 via PbI  (CH3NH2) interphase to form more 

(2.3-2)2MAI − nI
2
+ 2Au

light
���������������→ (MA)

2
Au

2
I
6

HI, imines, and  Pb0
UPD (Eq. 2.3-8). Eventually, the degradation 

reaction of  MAPbI3 will stop when the surface of the Au cata-
lyst is completely covered with  Pb0

UPD. Hence, the detrimental 
interfacial chemical reactions provide a source for defects and 
reduce the chemical stability of PSCs.

Notably, Au not only reacts with perovskite through ions 
migrations but also can be corroded by interaction with 
the inorganic holes transport material CuSCN. It has been 
reported that the reactive thiocyanate anions are prone to 
react with Au electrode under an electrical bias, forming 
an undesired potential barrier for charge carriers [153, 165, 
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Fig. 12   a Proposed noble metal catalyzed degradation at  MAPbI3/Au heterojunctions where the byproducts methylamine and  PbI2 (in red) 
lead to the eventual formation of  Pb0. Reproduced with permission from Ref. [188]. Copyright 2019, American Institute of Physics. b Proposed 
chemical corrosion of Al electrode of p-i-n type PSCs by the diffusion of  CH3NH3I. Reproduced with permission from Ref. [192]. Copyright 
2020, Wiley-VCH. In situ XRD analysis of the degradation of the LED stack with moist air in the dark: c In situ XRD spectra versus time. d 
Integrated XRD peak intensities of key materials versus time. e In situ SEM analysis on the LED stack in an environmental chamber at various 
time points from 0 to 180 min; the last one, SEM image near the boundary of the Al area after 180 min exposure showing that only the area cov-
ered with Al undergoes  H2O-mediated decomposition. c-e Reproduced with permission from Ref. [193]. Copyright 2016, American Chemical 
Society
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186, 187], which may seriously affect the device perfor-
mance and chemical stability.

2.3.3  Al Electrode‑Induced Reactions

Although Al is commonly employed as the top electrode in 
inverted PSCs, Al is chemically unstable due to its easy oxida-
tion by air and reactions with lead halide perovskites [171, 188]. 
For example, Ma et al. found that both  CH3NH3

+ and  I− can 
migrate towards the Al electrode through a  PC61BM layer, 
resulting in the chemical corrosion of the Al electrode and the 
degradation of the perovskite film [189]. In particular,  CH3NH3I 
is highly acidic and can react with Al as shown below:

For the overall degradation of PSC, the chemical corro-
sion of Al electrode can be described in Eq. 2.3-10. The 
reaction process involves the following steps (Fig. 12b) 
including: (1) formation of  CH3NH3I from perovskite 
decomposition, (2) diffusion of  CH3NH3I through the thin 
 PC61BM region, (3) reaction between  CH3NH3I and Al, 
yielding  AlI3,  CH3NH2 and  H2, (4) formation of bubble and 
volcano-like surface defects owing to the release of  H2 gas, 
(5) further decomposition of perovskite due to the  Al3+ dif-
fusion into perovskite layer.

To further investigate the Al-perovskite reactions, Zhao 
et al. employed in situ X-ray diffraction (XRD) analyses 
(Fig. 12c and d) and SEM measurements (Fig. 12e) to study 
the redox reactions between the Al electrode and perovskite 
[190]. The chemical degradation process can be divided into 
three stages. Stage 1: Al reacts with a perovskite in the pres-
ence of moisture, resulting in the reduction of  Pb2+ to  Pb0 
and the crystal nucleation of  MA4PbI6·2H2O, which can be 
expressed as follows:

Stage 2: with the continuous redox reaction between Al 
and  Pb2+, the further loss of  Pb2+ in  MA4PbI6·2H2O will 
lead to the formation of MAI as shown below:
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Stage 3: Once metal Al is completely oxidized to  Al3+, 
further exposure to moisture could cause  Pb0 to reoxidize 
and hydrate forming PbO·xH2O. In addition, volatile MAI 
gradually disappears due to prolonged exposure to air. Here, 
moisture not only promotes ions diffusion but also keeps the 
reactions between Al and  MAPbI3 forward.

3  Strategies for Improving the Chemical 
Stability

Interfacial chemical reaction is a key factor affecting the 
chemical stability of lead halide PSCs. According to the above 
discussion, not all the interfacial reactions in PSCs are det-
rimental to device performance and chemical stability, such 
as the reactions at  SnOx-Cl/perovskite interface. Therefore, 
in order to improve the chemical stability of PSCs, it’s neces-
sary to inhibit unfavorable interfacial reactions. Two effective 
strategies have been proposed to reduce adverse interfacial 
reactions in the past few years. One is to insert a buffer layer 
at the contact interface to block ions migration or the inva-
sion of water and oxygen. At present, many materials, such as 
PMMA [167],  Al2O3 [82], and  Cr2O3 [181], are introduced to 
optimize contact interfaces as a buffer layer. Another approach 
is to employ additives, such as 2-amylpyridine [158] and ionic 
liquids [191], in perovskites to reduce the chemical activity of 
the reactants.

3.1  Buffer Layers

Various buffer layers have been developed to modify the per-
ovskite surface to prohibit the chemical reactions with vari-
ous materials, including air,  NiOx, spiro-OMeTAD, CuSCN, 
 TiO2, ZnO, metal electrode and so on, based on different reac-
tion mechanisms. The effective approaches for these interface 
modifications are detailed as follows.

Air/perovskite interface: The buffer layer, especially poly-
mer materials, can isolate moisture or oxygen and inhibit 
the degradation of lead halide perovskite films. For exam-
ple, hygroscopic polymer poly(ethylene oxide) (PEO) can 
chemically interact with undercoordinated Pb ions on a per-
ovskite surface, passivating defect sites and reducing charge 
recombination loss [192]. In Fig. 13a and b, PEO prevents 
surface hydration reaction of perovskite by absorbing  H2O 
before perovskites do, leading to greatly improved chemical 
stability of PSCs. A number of hydrophobic polymers, such 
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as polystyrene [193], PTzDPPBTz [91] and carbon-based 
materials [194], are also used to protect perovskites from 
 H2O. In Fig. 13c, Trichloro(3,3,3-trifl uoropropyl)silane was 
introduced between a perovskite layer and  C60 ETL, which 
reacts with a tiny amount of  H2O existing in the perovskite 
film to form silanols [193]. Then these silanols can automati-
cally cross-link through forming Si–O–Si (siloxane) bonds 
to make the insulating layer protect the underlying perovs-
kite film from water erosion.

It has been reported that low-dimensional materials cov-
ering perovskite surfaces can effectively insulate  O2 and 
improve the perovskite film quality [58]. For example, 
Kanatzidis et al. inserted a 1D thiazole ammonium lead 
iodide  (TAPbI3) interfacial layer between the perovskite and 

HTL, which serves to passivate the three-dimensional (3D) 
perovskite film and prevent oxygen invasion [195], leading 
to an improvement of device efficiency as well as enhance-
ment of chemical stability.

NiOx/perovskite interface: The interfacial redox reac-
tion between  Ni3+ in  NiOx and MAI salt will generate 
 PbI2-rich holes extraction barriers, which can lower Voc 
and accelerate perovskite degradation by deprotonating 
precursor amine and oxidizing iodide to interstitial iodine 
[148]. A modifier layer, trimethylolpropane tris(2-methyl-
1-aziridinepropionate) (SaC-100), was used to modify the 
 NiOx/MAPbI3 contact interface [83]. Results reveal that 
N and O atoms in SaC-100 can passivate the uncoordi-
nated  Ni3+ and  Pb2+ defects in  NiOx and  MAPbI3 through 

Fig. 13   a Schematic illustration of polymer PEO thin film assembled on the perovskite structure. b Operational stability test for evolution of 
PCE of  FA0.87Cs0.13Pb(I0.87Br0.13)3 devices without and with PEO, continuously measured under xenon-lamp simulated fullspectrum AM 1.5, 
100 mW  cm-2 equivalent irradiance in air (humidity ~50 RH%) without any ultraviolet filter, held at maximum power point during ageing, and 
tested at 0.03-s time intervals. a, b Reproduced with permission from Ref. [195]. Copyright 2018, Royal Society of Chemistry. c Schematic dia-
gram showing the cross-link process of fluoro-silane layer on the perovskite film. Reproduced with permission from Ref. [196]. Copyright 2016, 
Wiley-VCH. d The corresponding redox potential of  I-/I3

-and the homo levels of P3HT, PDCBT, and spiro-MeOTAD. e The unencapsulated 
device photostability tests under continuous one sun illumination in a home-built chamber filled with  N2. d, e Reproduced with permission from 
Ref. [199]. Copyright 2017, AAAS
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producing Lewis adducts, respectively. In addition, the 
reaction between  NiOx and  MAPbI3 is suppressed in the 
presence of SaC-100, which is helpful for improving the 
conductivity of  NiOx and inhibiting the degradation of 
 MAPbI3 films.

Spiro-OMeTAD/perovskite interface: Buffer layer materi-
als can not only resist the invasion of air, but also block the 
undesired contacts between adjacent layers. For example, 
Wang et al. reported an effective buffer layer montmoril-
lonite (MMT), which was inserted between perovskite and 
spiro-OMeTAD to prevent TBP from reacting with  PbI2, 
because MMT can interact with TBP and build its interca-
lated structure by hydrogen bond. Consequently, the effi-
ciency and chemical stability of PSCs are largely improved 
simultaneously [157].  I2 deriving from perovskite tends to 
react with HTLs, such as Spiro-OMeTAD, whose HOMO 
level is close to the oxidation potential of  I−/I3

− (~ − 5.0 eV). 
In Fig. 13d, depositing a polythiophene derivative with a 
lower HOMO level approaching − 5.3 eV on the perovskite 
surface can effectively suppress  I−/I3

− reaction, resulting in 
PSCs with enhanced efficiency and stability (Fig. 13e) [196].

CuSCN/perovskite interface: In order to promote the 
chemical stability of PSCs with CuSCN HTLs, it’s neces-
sary to insert a buffer layer between perovskite and CuSCN. 
Snaith et al. not only introduced mesoporous  Al2O3 at the 
perovskite/CuSCN interface to reduce the contact area of 
CuSCN with perovskite, but also encapsulated the com-
plete cell with PMMA to prevent degradation products from 
release [82]. It has been found that if an electrical bias is 

applied on the PSC, an electrical potential-induced reaction 
between Au and  SCN− would occur, leading to poor opera-
tional stability of PSCs. Therefore, a thin reduced graphene 
oxide (rGO) interlayer was introduced between CuSCN and 
Au electrode to migrate the degradation reaction [165]. In 
addition,  Cu2O [197] and Cs:NiOx [198] interfacial layers 
were also used to reduce these detrimental interfacial chemi-
cal reaction for PSCs.

TiO2/perovskite interface: Ito et al. performed light irra-
diation tests of PSCs with/without a  Sb2S3 inserted layer 
between  TiO2 and  MAPbI3 [124]. For the device without 
 Sb2S3, the black  MAPbI3 layers completely decompose to 
yellow  PbI2 by losing HI and  CH3NH2. On the other hand, 
the device with  Sb2S3 can deactivate the reaction of  I−/I2 at 
the surface of  TiO2, so the  MAPbI3 layer is stable and dura-
ble against light exposure as shown in Fig. 14a.

ZnO/perovskite interface: A thin layer of MgO and 
protonated ethanolamine were in sequence deposited on 
the ZnO surface to resolve the poor chemical stability 
of ZnO-based device [199]. Moreover, 1,2-ethanedithiol 
[200], poly(ethylenimine) [132] and graphene oxide quan-
tum dots [126] can also play the same role.

Metal/perovskite interface: The chemical instability of 
PSCs induced by metal electrode corrosion can be sup-
pressed by interfacial modifications.  I− in the perovskite 
can migrate to an Al electrode through PCBM layer to 
react with Al, forming aluminum iodide at the Al/per-
ovskite interface. A bathocuproine (BCP) buffer layer 
has been reported to insert the interface between the Al 

Fig. 14   a Variation of photoenergy conversion efficiencies of solar cells during light exposure (AM1.5, 100 mW  cm-2) without encapsulation 
in air for 12 h. Reproduced with permission from Ref. [125]. Copyright 2014, American Chemical Society. Composition depth profiles of the 
perovskite devices by SIMS: b with only PCBM as ETL; c with PCBM/ZnO bilayer as ETL. b, c Reproduced with permission from Ref. [204]. 
Copyright 2015, Elsevier. d Schematic energy level diagrams of cells with PCBM/Ag and PCBM/AgAl. Reproduced with permission from Ref. 
[206]. Copyright 2016, Elsevier. (Color figure online)



 Nano-Micro Lett. (2023) 15:8484 Page 22 of 34

https://doi.org/10.1007/s40820-023-01046-0© The authors

electrode and  PC61BM [189]. Test results support that 
this buffer layer can block the  CH3NH3I migration and 
hence prevent the Al electrode from chemical corrosion 
by  CH3NH3I, improving the chemical stability of the 
PSCs. Qiu et al. introduced a ZnO layer between PCBM 
and an Al electrode to prevent perovskite from reacting 
with Al, ToF–SIMS characterizations demonstrated that 
ZnO layer can effectively inhibit the diffusion of  I− ions 
(Fig. 14b and c) [201].

Cr/Cr2O3 interlayer provides a buffer to shield top Ag 
electrodes from chemical corrosion caused by HI liber-
ated from the  MAPbI3 degradation [181, 202]. Compared 
with pure Ag, an AgAl alloy electrode shows much higher 
stability in aging tests, which is related to  AlOx formed at 
the PCBM/AgAl interface during thermal evaporation and 
aging [203]. In Fig. 14d, this  AlOx interlayer can suppress 
the migration of Ag atoms to the active layer, strengthen 
the metal contact with PCBM and prevent moisture 
encroachment. In addition, nanostructured carbon lay-
ers, including N-doped graphene, PCBM and carbon 
quantum dots, were inserted between a perovskite layer 
and an Ag electrode to block  I− and Ag diffusion [204]. 
The degradation reaction of perovskite by ions migration 
was ultimately inhibited, and thus the chemical stabil-
ity of PSCs was greatly enhanced. Moreover, a graphene 
barrier between CuSCN and Au can inhibit  I− migration 
and perfectly block Au diffusion, as shown in Fig. 15a–c 
[205], successfully restraining undesired chemical reac-
tions between  I− and the Au electrode. Many groups intro-
duced stable buffer layers through interfacial reactions to 
reduce ions migration [206]. For example, hexamethyl-
disilathiane is deposited on a perovskite surface to react 
with  Pb2+ and form stable PbS buffer layer, which can 
effectively suppress  I− diffusion and prevent corrosion 
of metal electrodes [207].

3.2  Additives Engineering

Water-induced reactions: Various additives have been dem-
onstrated to change the physical or/and chemical properties 
of metal halide perovskites and thus improve the moisture-/
oxygen-/light- stability of the materials [208]. For example, 
a fluorinated additive named 1,1,1-trifluoro-ethylammo-
nium iodide (FEAI) was introduced into  MAPbI3 to reduce 
the moisture-induced degradation reactions, because the 

hydrophobic  CF3-terminal group on the perovskite surface 
resist the invasion of moisture [209]. Zhao et al. employed 
hygroscopic polyethylene glycol (PEG) scaffold to fabricate 
moisture-stable perovskite films because the omnipresent 
PEG molecules can absorb  H2O efficiently. The resulting 
compact moisture barrier around perovskite crystal grains 
can prevent water from penetrating into the films [210]. The 
additive ethyl 2-cyanoacrylate (E2CA) can spontaneously 
polymerize into a compact polymer once exposed to mois-
ture as shown in Fig. 15d and e, blocking the penetration 
channels of moisture due to its hydrophobic nature [211]. 
Moreover, poly(4-vinylpyridine) (PVP) [212], poly(ethylene 
oxide) (PEO) [192], and trimethylolpropane triacrylate 
(TMTA) [213] can also be used as additives to reduce the 
reactions between perovskite and  H2O.

Oxygen-induced reactions: Snaith et al. introduced the 
ionic liquid 1-butyl-3-methylimidazolium tetrafluorobo-
rate (BMIMBF4) into perovskite precursor and found that 
 [BMIM]+ cations were bound to the surface sites, hence 
suppressing the surface degradation reactions induced by 
oxygen or moisture adsorption (Fig. 15f) [214]. The thiourea 
has been demonstrated to form Pb–S bonds on the outermost 
layer of perovskite, which efficiently suppressed the absorp-
tion of oxygen and prevented the formation of superoxide 
[215].

Light-induced reactions: The solid ionic additive 1-butyl-
1-methylpiperidinium tetrafluoroborate  ([BMP]+[BF4]−) was 
adopted to enhance the photostability of PSCs under full-
spectrum sunlight [191]. It’s reported that the generation 
of  I2 under illumination is one of the main factors causing 
the photo-degradation of perovskites [216]. The interstitial 
 I− ions capture the holes to become neutral interstitial iodine 
atoms, and these neutral atoms need to diffuse and combine 
to produce  I2 [112].  [BMP]+[BF4]− therefore suppressed the 
photochemical reactions of perovskite by reducing the sur-
face defects, such as interstitial pairs and iodide vacancies, 
and retarding diffusion of neutral iodine interstitials.

CTL-induced reactions: The additives can also inhibit 
undesirable reactions occurring at charges transport layer/
perovskite interfaces. Han et  al. used a new additive 
2-amylpyridine (2-Py) to replace TBP in Spiro-OMeTAD 
and found that the corrosion of perovskite was suppressed 
[158]. The existence of the amyl chain at the ortho-position 
of pyridine in 2-Py is vital to restrain the perovskite degrada-
tion reaction, which is attributed to the following aspects: 
1) the amyl chain near the nitrogen atom can reduce the 
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coordination ability of pyridine; 2) the steric hindrance from 
the o-substitution of pyridine prevents it from penetrating 
the perovskite. In addition, 2-Py can increase the dissolution 
and dispersion of Li-TFSI compared with TBP, which has 
a positive effect on the conductivity of the Spiro-OMeTAD 
HTL. Other additives, like  TiO2 nanoparticles (NPs)-mod-
ified CNT (CNT:TiO2) [217], graphene oxide (GO) [218], 

and 1,6-diazidohexane (N3) [219] can also be introduced 
into spiro-OMeTAD to minimize the TBP-PbI2 complex 
formation and hence improve the chemical stability of the 
perovskite/HTL interface.

Metal electrode-induced reactions: It has been reported 
that the ions migration can initiate the degradation of 
devices [113, 220], which can be efficiently inhibited by 

Fig. 15   The iodide ion  (I-) and Au diffusion in CuSCN/Au and CuSCN/GRP (3)/Au PSCs. a Schematic of the diffusion process during the light 
illumination under an applied electrical bias and dark state without the bias. Cross-sectional STEM images of CuSCN/Au b and CuSCN/GRP 
(3)/Au PCSs c after 3 cycles of continuous light illumination (12 h) and dark state (12 h). The scale bar is 200 nm. The EDX scan (I and Au) 
along the vertical lines (a´, b´, and c´) are also provided. a-c Reproduced with permission from Ref. [208]. Copyright 2020, Elsevier. d Chemical 
structure and moisture induced polymerization of E2CA with marked functional groups: C=C (red), C≡N (olive) and C=O (cyan). e Schematic 
illustrations of spontaneous grain polymerization in  MAPbI3-E2CA films. E2CA chemically anchors to GBs with C=O and C≡N groups and 
spontaneously polymerizes to a polymer at GBs when exposed in moisture air. d, e Reproduced with permission from Ref. [214]. Copyright 
2019, Elsevier. f XRD patterns of pristine and aged samples of control film and film containing  BMIMBF4 (0.3 mol%) on NiO/FTOcoated glass 
substrates. The stars represent the decomposition product of  PbI2 in the films. The insets show images of the aged samples (around 2.8 cm × 
2.8 cm) after 72 h of light-soaking at 60-65 °C. Reproduced with permission from Ref. [217]. Copyright 2019, Springer Nature. (Color figure 
online)
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some additives with special functional groups. For exam-
ple, caffeine with two conjugated carboxyl groups interacts 
strongly with  Pb2+ ions to slow down the perovskite crystal 
growth and thus produce high-quality films [221]. In Fig. 16, 
the Energy-dispersive X-ray spectra (EDX) mapping shows 
that Ag can diffuse into the whole perovskite region and 
 I− ions also migrate through the PTAA layer in the control 
device, while there is no obvious indication of such simi-
lar ions migrations in the caffeine-incorporated device. The 
caffeine significantly suppresses ions migration, and hence 
the chemical stability of PSCs is effectively enhanced. Chen 
et al. employed the methimazole (MMI) to form the MMI-
PbI2 complex in situ at the GBs, and these surface patches 
can also effectively suppress Ag diffusion and simultane-
ously retard  I− migration [222].

The multifunctional additive of dipentaerythritol pen-
taacrylate (DPPA) can impede  I− movements due to syner-
gistic effects of its functional groups [223]. The  CH2=CH 
groups in DPPA crosslink at GBs and block the channels 
of ions migrations. And the -OH groups in DPPA can bond 
with  I− in the perovskite through hydrogen bond interaction, 
chemically immobilizing these migrated  I−. In addition, the 
polystyrene (PS) [224] and PCBM [74] can also obstruct 
ions migrations across GBs and dissociated ions can only 
move around their original sites. Therefore, the problem of 
chemical stability induced by ions migration can be well 
solved.

4  Conclusions and Outlook

Although lead halide PSCs have already achieved a high cer-
tified PCE up to 25.7% through a low-cost and simple fab-
rication process, the long-term stability still lags far behind 
the commercial application standard. Therefore, the top pri-
ority is to explore the degradation mechanism of lead halide 
PSCs in more depth, which is helpful for achieving high-effi-
ciency and stable devices. As one of the most important fac-
tors influencing the photovoltaic performance and chemical 
stability of PSCs, interfacial chemical reactions due to envi-
ronment conditions, interface contacts and metal electrode 
are systematically elucidated in this paper. Their reaction 
mechanisms as well as influence on interface defects, non-
radiative recombination and degradation process are summa-
rized. Up to now, there is no unified theory that generalizes 
all interface reactions. For example, lead halide perovskites 
degrade easily to form  PbI2 and other lead-containing com-
pounds once exposed to humid environment.  O2 capture 
photo-induced electrons to generate superoxide  O2

·− with 
the aid of light, which can induce quick degradation of lead 
halide perovskite films. In addition, some chemical reactions 
at charge transport layers/perovskite interface can produce 
undesirable interfacial defects and reduce charge transport 
capacity of ETL or HTL, eventually deteriorate the chemical 
stability and photovoltaic performance of PSCs. It’s note-
worthy that Cl-containing  SnO2 ETL can react friendly with 
lead halide perovskites to passivate the interface defects and 
improve the device efficiency. The interfacial reactions are 

Fig. 16   a-f Energy-dispersive X-ray spectra (EDX) mapping of the aged pure PVSK device a Ag, b I, and c Pb, and the aged caffeine-contain-
ing PVSK device d Ag, e I, and f Pb. g, h EDX line scans of g aged pure PVSK device and h aged caffeine-containing PVSK device. Repro-
duced with permission from Ref. [224]. Copyright 2019, Elsevier. (Color figure online)
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induced by ions migrations, for example,  I− can diffuse into 
a metal electrode and simultaneously metal ions can also 
migrate through the perovskite, which corrode the metal 
electrode and decrease the operational lifetime of PSCs.

At present, various buffer layers or additives have been 
employed to suppress the detrimental interfacial reactions 
and optimize the device performance as well as long-term 
stability. Therefore, it’s necessary to investigate the chemi-
cal properties of additives or buffer layer materials in depth, 
because their different functional groups may play com-
pletely different roles in the photovoltaic performance. The 
fluorine-containing additives can improve the hydrophobic 
properties of lead halide perovskite films, and effectively 
reduce the humidity-induced degradation of PSCs. The det-
rimental  I2 in the lead halide perovskite easily induces the 
shallow charge traps and accelerates the light-decomposition 
of perovskite. The hydrazine functional group can reduce 
these  I2 in perovskite precursor solutions to  I−, which signifi-
cantly improve the light stability of perovskites. In addition, 
more attentions should be paid to benign chemical reaction 
in PSCs and thus we can make use of these reactions to 
further improve the efficiency and stability of PSCs. For 
example, the organic long chain amine (e.g. phenylethyl-
amine, butylamine) can react with  PbI2 to form stable 2D 
perovskite on the bulk perovskite surface, contributing to the 
decreased non-radiative recombination and enhanced water 
resistance of 3D perovskite films. Investigating novel and 
stable charge transport layer and electrode materials is also 
of significance for the chemical stability of PSCs. Future 
molecular design of charge transport materials should con-
sider the energy level alignment, high carrier mobility and 
stability. The cheap and chemically stable carbon electrode 
might be an alternative to reduce the cost and deterioration 
for lead halide PSCs. It’s expected that rational management 
of interfacial chemical reactions in the whole PSCs will lead 
to substantial performance enhancement, paying the way for 
the commercialization of PSCs in the future.
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