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HIGHLIGHTS

• The latest progress on the integration of flexible mechanical sensing platforms with machine learning (ML) is reviewed.

• The advantages, challenges, and future perspectives of the application of ML to intelligent flexible mechanical sensing technology 
are discussed.

• The fundamental working mechanisms and common types of flexible mechanical sensors are reviewed.

ABSTRACT To realize a hyperconnected smart society with high productivity, 
advances in flexible sensing technology are highly needed. Nowadays, flexible sens-
ing technology has witnessed improvements in both the hardware performances of 
sensor devices and the data processing capabilities of the device’s software. Signifi-
cant research efforts have been devoted to improving materials, sensing mechanism, 
and configurations of flexible sensing systems in a quest to fulfill the requirements 
of future technology. Meanwhile, advanced data analysis methods are being devel-
oped to extract useful information from increasingly complicated data collected 
by a single sensor or network of sensors. Machine learning (ML) as an important 
branch of artificial intelligence can efficiently handle such complex data, which can 
be multi-dimensional and multi-faceted, thus providing a powerful tool for easy 
interpretation of sensing data. In this review, the fundamental working mechanisms 
and common types of flexible mechanical sensors are firstly presented. Then how 
ML-assisted data interpretation improves the applications of flexible mechanical 
sensors and other closely-related sensors in various areas is elaborated, which includes health monitoring, human–machine interfaces, 
object/surface recognition, pressure prediction, and human posture/motion identification. Finally, the advantages, challenges, and future 
perspectives associated with the fusion of flexible mechanical sensing technology and ML algorithms are discussed. These will give 
significant insights to enable the advancement of next-generation artificial flexible mechanical sensing.
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1 Introduction

In the new era of smart society, flexible electronics with 
various functionalities have experienced bloom develop-
ments with the rapid progress of the Artificial Intelligence 
of Things (AIoT) and fifth-generation (5G) communica-
tion technology [1–4]. Flexible and stretchable mechani-
cal sensors as one important part are attracting extensive 
research as they possess the capability to quantify external 
mechanical stimuli such as pressure, strain, shear force, and 
vibration, via electrical signals [5–8] (Fig. 1). Compared 
to traditional rigid sensors, flexible mechanical sensors can 
even be deformed into any shapes to conform with the sur-
face of human skin, robotic/prosthesis, and smart devices, 
endowing them with smart sensing abilities. Meanwhile, 
flexible mechanical sensors have also been developed with 
other novel characteristics, notably optical transparence to 
function in a visually imperceptible manner [9–12]. Hence, 
a wide range of applications have been established, such as 
health/motion monitoring [13–17], human machine interface 
(HMI) [18–20], and smart home [1, 21], among others.

As fundamentals, different sensing mechanisms have been 
developed from piezoresistive and capacitive sensors with 
high sensitivities, to piezoelectric and triboelectric sensors 
with a distinct advantage of zero power consumption. Based 
on these mechanical sensors, different physical parameters 
are recorded to perceive external stimuli with different sens-
ing properties such as sensitivities, working range, linearity, 
and robustness, thus can be utilized in different scenarios. 
Moreover, to accomplish an intelligent sensing system that 
can not only detect but also analyze and make decisions, 
advanced data processing methods are correspondingly 
fused with flexible mechanical sensing technology. In par-
ticular, ML algorithms have been widely reported to conduct 
a more complicated and comprehensive analysis of the col-
lected raw data of flexible sensors to effectively extract use-
ful information [19, 22–24], far beyond the interpretability 
of conventional approaches. The trained models in ML have 
been used to classify, identify and predict values based on 
the designated tasks of the single sensor or multiple/multi-
modal sensors in the target application.

Lately, several reviews have covered related topics on 
the integration of flexible mechanical sensors with ML. 

However, most are dedicated to specific sensor types or 
applications such as self-powered mechanical sensors [25], 
stretchable sensors [26], piezoelectric acoustic sensors [27], 
flexible sensors for heart monitoring [28], and tactile sensors 
for HMI [29] and soft robots [30]. This review is aimed at 
providing a comprehensive survey of the common flexible 
mechanical sensor types and how the emerging ML algo-
rithms impact the broad applications of flexible mechanical 
sensing. Firstly, we introduce various sensing mechanisms 
of flexible mechanical sensors, including both the conven-
tional and recently emerging ones (Table 1) with representa-
tive calculation formulas to uncover the underlying physi-
cal changes. Then, the common mechanical sensor types to 
perceive pressure, strain, vibration, and shear stress with 
their main applications and typical design strategies are 

Fig. 1  An overview of stimuli, mechanisms, and ML-assisted data 
processing of flexible mechanical sensing technology. Mechanical 
stimuli: pressure [15] (Copyright (2019) The Authors), strain [23] 
(Copyright (2020) Springer Nature), vibration [31] (Copyright (2022) 
The Authors), and shear force [32] (Copyright (2020) American 
Chemical Society). Mechanisms: piezoresistive, piezocapacitive/ion-
tronic, and triboelectric/piezoelectric [33] (Copyright (2021) Wiley–
VCH). ML-assisted data processing: array integration [34] (Copy-
right (2019) Springer Nature), multimodal sensing [35] (Copyright 
(2020) The Authors), and data decoupling [36] (Copyright (2020) 
Wiley–VCH). Sensing process [37] (Copyright (2022) Elsevier) and 
analyzing process [20] (Copyright (2021) Wiley–VCH)
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presented. Thirdly, how ML-assisted data analyzing meth-
ods contribute to various applications of flexible mechanical 
sensing technology is elaborated, including health monitor-
ing, HMI, object/surface recognition, pressure prediction, 
and human posture/motion identification. Lastly, we sum-
marize the advantages and challenges of integrating flex-
ible mechanical sensing technology with ML algorithms, to 
promote the advancement of intelligent flexible mechanical 
sensing and other closely-related applications.

2  Working Mechanisms

2.1  Piezoresistive Effect

Flexible piezoresistive sensors are built on the piezoresis-
tive effect, which refers to the phenomenon that the resist-
ance of material will change due to the variation of material 
geometry or resistivity when the material is loaded [38–40]. 
Since resistance change can be easily measured, flexible 
piezoresistive sensors gain great popularity and it is easy 
to integrate them into flexible electronic systems. These 
sensors also work well in array configuration since there is 
less crosstalk among adjacent units. In addition, they excel 
in simple device structures, wide pressure sensing ranges, 
and easy fabrication processes. But several drawbacks of 
these sensors should not be ignored including hysteresis 
and temperature sensitivity [41–44]. The underlying mech-
anisms of the piezoresistive effect can be induced by both 

the piezoresistive effect of the intrinsic materials and the 
resistance change caused by structures, as described in the 
following sections.

2.1.1  Piezoresistive Effect in Metal Conductors

Although most flexible piezoresistive sensors are realized 
through heterogeneous conductive media for large 
deformability and piezoresistivity [46], here we start with the 
piezoresistive effect in metal conductors and semiconductors 
to understand the basic mechanisms. First, let’s take a 
metal conductor with a cylindrical bar shape as an example 
[39]. While an electric field � is applied longitudinally to 
this conductor, its isotropic electrical resistance R can be 
determined by the resistivity � , the length L, and the cross-
sectional area A as:

Once the conductor is mechanically deformed under an 
applied tensile force, its resistance changes as:

Then dividing by R and considering Poisson’s ratio ν will 
produce:

(1)R =
�L

A

(2)dR =
�R

��
d� +

�R

�l
dl +

�R

�A
dA

(3)
dR

R
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d�

�
+

dl

l
(1 + 2v)

Table 1  Summary of piezoresistive, piezocapacitive, piezoelectric, iontronic, triboelectric, and piezoelectric sensing mechanisms of flexible 
mechanical sensors

Mechanisms Advantages Disadvantages

Piezoresistive Easy to be integrated; Work well in array configuration; 
Simple device structures; Wide pressure sensing ranges; Easy 
fabrication processes

Hysteresis; Sensitive to temperature

Piezocapacitive Low power consumption; Good dynamic response; Insensitive 
to temperature and humidity; Excellent proximity sensing 
ability under non-contact situations

Vulnerable to electromagnetic noises; Parasitic coupling 
with the surroundings; Complicated data measurement 
and processing

Iontronic Ultra-high sensitivity; High noise immunity; High resolution 
and spatial definition; Suitable for static and dynamic stimuli

Inferior electrochemical stability of iontronic materials; 
Limited material longevity

Triboelectric Self-powered; Great dynamic force-sensing ability; High 
power output; Non-contact sensing ability; Wide selection of 
materials

Unsuitable for static mechanical loads

Piezoelectric Self-powered; Great dynamic force-sensing ability; Fast 
response time; Excellent high-frequency response for 
vibration measurements

Unsuitable for static mechanical loads; Require polarization 
process for many piezoelectric materials
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Hence, the longitudinal gauge factor GFl , which repre-
sents the ratio of the change of R to the change of l , can be 
calculated:

2.1.2  Piezoresistive Effect in Semiconductors

The piezoresistive effect in semiconductors is generally 
much stronger than that in metals [40]. Different from 
purely geometrical influence, the piezoresistive effect in 
semiconductors appears at the atomic level [47]. Although 
it is less evident than the former, it also contributes to the 
strain dependence of resistance changes. Thus, typical 
elastic semiconductor materials, such as silicon and gallium 
arsenide, present obvious differences in the gauge factor 
calculated by Eq. (4). The conductivity change is caused 
by the change of concentration (n) and mobility (μ) of free 
electrons due to the lattice deformation. The doping type, 
level, and crystallographic direction may strongly affect 
the gauge factors along the longitudinal and transverse 
directions. The resistivity of the materials (ρ) can be 
calculated by:

where e is the electron charge. Substituting in Eq. (4), we 
obtain the gauge factor

2.1.3  Piezoresistive Effect in Polymer Composites

As one of the mostly studied sensing materials for flexible 
piezoresistive mechanical sensors, conductive filler-doped 
polymer composites present a conduction mechanism 
that can be explained by percolation theory with a 
phenomenological description [48, 49]. Briefly, conductive 
fillers, like metal nanoproducts (e.g., Ag/Cu nanowires 
[50–52]) and carbon-based fillers (e.g., graphene [53], 
carbon nanotube [54], carbon black [55]), are quite isolated 
at low filler concentrations in the polymer matrix, resulting 

(4)GFl =
dR∕R

dl∕l
= 1 + 2� +

1

�l

d�

�
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(6)GF = 1 + 2� −
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in high electrical resistances. As the concentration increases 
to a point, a conductive path spanning the whole polymer 
system is formed due to the contact of conductive fillers, 
along with a drastic increase in electrical conductivity 
(Fig. 2a). This critical point is defined as the “percolation 
threshold”, Pc. The conductivity � of composite polymer 
above the percolation threshold follows [56]:

where P represents the volume fraction of the filler, and 
n is the power of conductivity increase after achieving the 
percolation threshold. The value of n is largely decided by 
the filler properties [57]. Once the composite conductors 
are mechanically deformed, the volume fraction of the filler 
changes, thus leading to a change in conductivities.

2.1.4  Contact Resistance Change

In addition to the interior resistance variation of sensing 
materials, the piezoresistive response of flexible mechanical 
sensors can also be induced by the change in contact 
resistance between the electrode and sensing material or two 
electrode sheets (electrodes serving as sensitive elements 
in some sensors). Various surface/porous microstructures 
have been developed to take advantage of the contact 
resistance change to increase the sensitivities [58–63]. 
Usually, it is difficult to calculate the contact resistance 
considering the practically rough surface with numerous 
spots to form conducting paths of electrons. Here we refer 
to J. A. Greenwood’s theory which simplifies the situation 
by considering the cluster of perfect circular microcontacts 
(Fig. 2b) [64]. Based on this theory, extensive studies dealing 
with various electrical contacts have been conducted. The 
constriction resistance is expressed:

where Rpar. and Rint. represent the electrical resistance of all 
spots in parallel and the interaction among them. ai denotes 
the radius of the spot i , and dij denotes the center distance 
between the spots i and j . The formula can be further 
approximated when the n spots have the same size:
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2.1.5  Crack‑Induced Resistance Change

Constructing micro/nanoscale cracks of conductive films 
deposited on a soft substrate has also been proved to be an 
effective route to improve the piezoresistive response. A 
wide variety of conductive materials have been investigated 
in this strategy including metal nanofilms [45, 65, 66], 
metal nanowires/nanoparticles [67, 68], carbon-based 
materials [69–71], and conductive polymers [72]. During the 
deformation of the crack-based flexible mechanical sensors, 
these cracks of conductive films experience disconnection 
and reconnection with adjacent parts, changing the electrical 
current paths. Both cut-through [69–71] and non-through 
cracks [67, 72] have been exploited in flexible mechanical 
sensors. For a transverse crack with nanoscale zigzag 
edges (Fig. 2c) [45], the normalized crack conductance is 
calculated by

(10)S =

∑

i Ni�
�

�i − �
�

∑

i Ni

where � denotes averaged crack gap displacement and 
Ni denotes the number of crack asperity height �i.� is the 
Heaviside step function. For conductive films with multiple 
similar transverse cracks, it can be inferred that the crack-
induced resistance (R = 1/S) change is in proportion to the 
crack density with other parameters fixed.

2.2  Piezocapacitive Effect

Flexible piezocapacitive mechanical sensors record 
capacitance change caused by deformation/deflection of a 
component electrode under the applied mechanical stimulus, 
resulting in the separation gap change of the capacitor sensor. 
The capacitive sensing mechanism endows these flexible 
sensors with the advantage of low power consumption, good 
dynamic response, and low susceptibility to temperature 
and humidity change compared to piezoresistive sensors. 
Uniquely, some piezocapacitive sensors present excellent 
proximity sensing ability under non-contact situations 
[73–76]. However, they are vulnerable to electromagnetic 
noises and the parasitic coupling with the surroundings 

Fig. 2  Mechanical sensing mechanisms. a Percolation theory for conductive filler-doped polymer composites. b Contact resistance change anal-
ysis for a simplified case of a set of circular contact spots. c Crack-induced resistance change analysis for a transverse crack with nanoscale zig-
zag edges [45]. Copyright (2014) Springer Nature. d Schematic diagrams for five common sensing mechanisms
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needs to be carefully investigated and addressed, making it 
difficult in measuring and processing the capacitance data, 
especially in an array configuration. The piezocapacitive 
sensing devices are usually made up of two conductive 
parallel electrodes, separated by an insulating medium. 
Suppose A , d , and � representing the effective overlapping 
area, separation distance, and permittivity of the medium, 
respectively, the capacitance of the device is calculated by:

2.3  Iontronic Sensing

A brand-new mechanical sensing mechanism known as 
iontronic sensing has been developed over the past decade 
[77–81]. Although similar to piezocapacitive sensors in 
signal sources to record capacitance change, iontronic 
sensors are built on the electrolytic-electronic interface 
where the electrical double layer (EDL) forms with the super 
capacitive nature, thus causing ultrahigh sensitivity and 
high noise immunity for the pressure sensing technology. 
The significant capacitance change is attributed to both 
the EDL formation and the change of contact area as the 
pressure is increased. The unique sensing mechanism with 
excellent properties also enables high resolution and spatial 
definition, and perception for both static and dynamic 
stimuli, via thin and flexible device architectures. However, 
the electrochemical stability of iontronic materials to resist 
temperature and humidity variations and the limited material 
longevity of the device constructs need to be resolved. Based 
on the deformation mode to increase the interfacial area, 
the existing iontronic pressure sensors can be divided into 
the following categories: (1) bending-dominated model; (2) 
elasticity-dominated model, and (3) combination of the first 
two [82].

An ionic material in film format is a common example 
of the structural bending model. The film iontronic sensor 
consists of a built-in spacer layer, which separates the 
electrode film and ionic film under a threshold pressure. 
As the applied pressure exceeds it, the two functional films 
come into contact and then the contact region between them 
continues to expand. The thin-plate deformation theory 
can be adopted to analyze the mechanical behaviors of the 
electrode film within the small deflection limit. Assuming 
that the top electrode contacts with the ionic film under 

(11)C =
�A

d

applied pressure (P), the equivalent bending plate can be 
taken as a plate with a decreased surface area. Thus, the EDL 
capacitance of an iontronic sensor with a square membrane 
(CEDL) can be determined [83]:

where UAC denotes unit area capacitance; a and h represent 
the side length of the film sensor and the spacer’s height, 
respectively. D and N stand for the flexural rigidity and a 
geometrical constant of the boundary conditions of the top 
electrode membrane.

2.4  Triboelectric Effect

Noticeably, most of the above mechanical sensors require 
an externally supplied power source, which largely limits 
their practical applications. Alternatively, this problem 
can be solved by utilizing the conversion of mechanical to 
electrical energy, and the corresponding sensors based on 
two mechanisms, namely triboelectric and piezoelectric 
effects, have been developed. For the triboelectric sensors, 
triboelectric charges are produced due to the coupling 
effect of contact electrification and electrostatic induction 
when two different materials come into frictional contact 
[84–86]. Triboelectric nanogenerators (TENGs) have been 
widely investigated for self-powered flexible mechanical 
sensors, in which the generated electrical output signal 
is influenced by both the magnitude and frequency of the 
external mechanical stimuli. Therefore, these sensors are 
mostly suitable for dynamic force sensing and can hardly 
detect static mechanical loads as they transfer charges only 
during the contact and release of two different materials with 
opposite charges. Triboelectric sensors have high power 
output even at low-frequency mechanical stimuli, non-
contact sensing ability, and a wide material selection since 
the triboelectric effect occurs in various materials.

Two basic modes among others have been applied to 
flexible mechanical sensors, namely contact-separation mode 
and contact-sliding mode. For a device structure based on 
the first mode with two material layers as the metal–insulator 
triboelectric pair, the external pressure value is detected via 
the open-circuit voltage and the transferred charge density, 
whereas the rate of the pressure being applied is monitored 

(12)CEDL = UAC ⋅ a

(

a −
4

√

hD

NP

)
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by the pulse-like short-circuit current peak [87]. Under the 
open-circuit condition, the voltage VOC increases linearly 
as the applied pressure is withdrawn since the vertical gap 
distance between them ( d ) increases:

where � , �0 represent the triboelectric charge density 
and permittivity of vacuum. Considering the materials 
resilience of the triboelectric pressure sensor as the spring-
entangled structure with a material elastic modulus of k , the 
relationship between the applied pressure and d is:

Thus, we can obtain the change of open-circuit voltage 
decided by the magnitude of the applied pressure:

2.5  Piezoelectric Effect

The piezoelectric effect that has been applied in piezoelectric 
mechanical sensors is the direct piezoelectric effect, 
which defines the phenomenon whereby the deformation 
of certain dielectrics under an external force induces 
charge accumulation and thus voltage on two sides of the 
dielectric. The principle of the direct piezoelectric effect is 
illustrated in Fig. 2d. Once a tensile/compression external 
force is applied to a crystal in a certain direction, electric 
polarization occurs inside the crystal, and results in electric 
charges of + and − signs at its two surfaces simultaneously 
[88]. Reversibly, the removal of the applied external force 
automatically restores the crystal to its uncharged state. 
The direction of the electric charge polarity aligns with the 
applied external force, and the generated charge amount of 
the crystal is proportionally decided by the magnitude of the 
external force. Similar to triboelectric sensors, piezoelectric 
sensors are also only suitable for dynamic force sensing 
and not applicable to static mechanical loads due to the 
underlying variation-dependent sensing mechanism. Due 
to the instantaneous formation of a piezoelectric potential 
upon deformation, these sensors exhibit a fast response 
time and an excellent high-frequency response for vibration 
measurements. But it is necessary to conduct a polarization 
process for many piezoelectric materials to induce their 

(13)VOC =
�⋅d

�
0

(14)p =
k⋅x

S
=

k∙(d0−d)
S

(15)
VOC,0 − VOC

VOC,0

=
d0 − d

d0
=

S

k ⋅ d0
⋅ p

piezoelectric response by applying DC voltage for modifying 
the randomly oriented domains [89, 90].

3  Mechanical Sensing Types

3.1  Flexible Pressure Sensors

Pressure is one of the most common mechanical stimuli 
that need to be sensed in nature and humans. A large com-
munity of flexible pressure sensors has been developed as 
the detection of pressures ranging from several pascals to 
hundreds of kilopascals is required for various applica-
tions (Fig. 3a).

Commonly measurable pressures can be divided into four 
ranges including subtle-pressure (1–1 kPa), low-pressure 
(1–10 kPa), medium-pressure (10–100 kPa), and high-pressure 
regimes (> 100 kPa). The subtle-pressure regime (1–1 kPa) 
covers pressures created by weak interaction and many small 
object weights. For example, putting a pencil on a flat sur-
face causes a pressure of around 300 Pa and a layer of pencil 
shavings induces a pressure of about 40 Pa [80], and a water 
droplet generates a pressure of about 13 Pa [101]. A sensitive 
response in the subtle-pressure region is critical for developing 
pressure sensors assembled in highly sensitive touch screen 
devices. Many pressures induced by gentle manipulation of 
items and intra-body pressures of humans (e.g., intraocular 
pressure and intracranial pressure) usually fall within the 
low-pressure regime (1–10 kPa). Pressure sensors showing 
excellent performance in this regime are receiving consider-
able attention for applications in e-skin and health monitoring/
diagnosis systems [101–103]. The medium-pressure regime 
(10–100 kPa) concludes atmospheric pressure at high altitudes 
and average plantar pressure during standing still. A higher 
value of plantar pressure distribution during human motions 
can easily exceed this range and thus flexible pressure sensors 
still working well when reaching the high-pressure regime 
(> 100 kPa) are preferred in monitoring the plantar pressure 
for motion and gait analysis [91, 104, 105]. Typical design 
strategies of flexible pressure sensors include exploiting porous 
structures (Fig. 4a-d) and surface microstructures (Fig. 4e, f) 
to perceive pressure stimuli with high sensitivities. The hol-
low-sphere microstructure of conducting polymer thin film in 
Fig. 4b was developed by Bao’s group to realize an unprec-
edented sensitivity of 133  kPa−1 along with a low detection  
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limit of 0.8 Pa, surpassing the subtle-pressure-sensing proper-
ties of human skin [106].

3.2  Flexible Strain Sensors

A flexible strain sensor is used to measure the deforma-
tion of objects. Flexible strain sensors play an important 
role in monitoring human body motions in different posi-
tions (Fig. 3b), which can be divided into two categories: 
(1) motions with large skin deformation, including bend-
ing movements of fingers, wrists, arms, legs, and spinal; 
(2) motions with small skin deformation, including subtle 
movements of the face, chest, and neck which are directly 
related to emotional expression, breathing, speaking/swal-
lowing activities, respectively. The latter kind of sensor to 
detect small deformation is sometimes also referred to as 
flexible pressure sensors as it is hard to distinguish whether 
the pressure or the strain stimulus dominates in giving rise 
to the electrical signal change of the sensors. Flexible strain 

sensors are usually attached directly to human skins or on 
clothes and they enable wide applications, such as recording 
hand gestures [23, 54, 112–114], capturing body movements 
[115–117], analyzing facial expressions [37, 94, 118, 119], 
diagnosing throat diseases [95, 120], and monitoring skin 
sclerosis [121]. Typical design strategies of flexible strain 
sensors include developing thin films (Fig. 5a–c) and 2D 
patterns (Fig. 5d–f).

3.3  Flexible Vibration Sensors

Flexible sensors that are sensitive to vibrations are of great 
importance for detecting dynamic mechanical stimuli in 
various real-world applications (Fig. 3c) such as structural 
health monitoring [126–129], environmental monitoring 
[45, 99, 130], acoustic signals recording [18, 19, 27, 131], 
and medical use [96, 132, 133]. Among different sources 
of vibration, the natural physiological activity of humans 
induces mechanical waves propagating through the tissues of  

Fig. 3  Common applications of four types of flexible mechanical sensing including a pressure sensing [91–93] (Copyright (2017) The Authors, 
Copyright (2020) The Authors, Copyright (2020) The Authors), b strain sensing [23, 94, 95] (Copyright (2015) American Chemical Society, 
Copyright (2020) Springer Nature, Copyright (2020) Wiley–VCH), c vibration sensing [96–98] (Copyright (2017) Elsevier, Copyright (2019) 
The Authors, Copyright (2016) The Authors), and d shear stress sensing [32, 99, 100] (Copyright (2021) Elsevier, Copyright (2019) American 
Chemical Society, Copyright (2020) American Chemical Society)
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the body. And capturing corresponding signals with different 
amplitudes and frequencies hence reveals important informa-
tion for disease diagnosis and healthcare applications [96]. 
The vibration signals can be detected via direct impact or 
acoustics, such as those measured by a stethoscope. Flex-
ible vibration sensors exhibiting a sensitive response over 
a low-frequency range (0–100 Hz) have been applied in 
monitoring body orientation (about 0–0.1 Hz), respiration 
(about 0.1–0.5 Hz), pulse (about 0.4–2 Hz), and changes in 
body motion (about 0.5–2 Hz) [134, 135]. Flexible vibra-
tion sensors for collecting and recognizing human voices are 
required to work well in the fundamental voice frequency 
range (80–255 Hz) and the standard telephony bandwidth 
(300–3400 Hz) [19, 97, 136]. Although these sensors for 
low-frequency sensing are also often referred to as flexible 
pressure sensors, vibrations features including frequency, 
amplitude, and acceleration are paid more attention to when 
using the term ‘vibration sensors’. Flexible vibration sensors 

with an ultra-high operating frequency range from several 
kHz to several MHz are highly desirable for ultrasonic-based 
structural health monitoring [98, 137–139]. Typical design 
strategies of flexible vibration sensors include designing sus-
pended membranes (Fig. 6a–d) and vertical arrays of micro/
nanowires (Fig. 6e, f).

3.4  Flexible Shear Sensors

Flexible sensors to perceive shear stress (Fig. 3d) play an 
important role in monitoring fluidic dynamics [141–143], 
the biomedical field [144, 145], and robotics [146–149]. 
Real-time shear-stress information is critical in estimating 
the airflow situation on the surface of aircraft to adjust the 
flight control correspondingly. For example, a 1D array 
of flexible shear sensors has been developed to detect the 
leading-edge flow separation point of unmanned aerial 

Fig. 4  Typical design strategies of flexible pressure sensors. a Hierarchically porous graphene structures [107]. Copyright (2019) American 
Chemical Society. b Conducting polymer films with hollow-sphere microstructures [106]. Copyright (2014) Springer Nature. c A melamine 
foam as the flexible scaffold of sensing materials [108]. Copyright (2020) Elsevier. d Cross-interlocked nylon fabrics coated by PEDOT:PSS 
[109]. Copyright (2022) IEEE. e Porous elastomer with surface micropillar arrays [110]. Copyright (2021) Springer Nature. f Conical surface 
microstructures on sensor electrodes [111]. Copyright (2021) American Chemical Society
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vehicles to guide the independent flight control of pitch-
ing, rolling, and yawing via force imbalance [141–143]. 
Similarly, shear-stress monitoring in blood vessels pro-
motes the understanding of the relationship between blood 
flow and vascular disease [145]. The increasing demand 
for measuring shear stress in the medical community can 
also be found in the significance of analyzing interfacial 
forces between the human body and external objects, such 
as measuring the friction by flexible sensors between 
a prosthesis and a stump to check its fitness [100, 144]. 
Moreover, tactile sensors with the capability of sensing 
shear stress can provide robotics with direct information on 
textures or slip detection [146–150]. Flexible shear sensors 
have been realized by various sensing mechanisms includ-
ing piezoresistive [151–153], piezocapacitive [148, 154], 
piezoelectric [146, 155], triboelectric [156, 157], magnetic 
[158], ferroelectric [159], or optic shear sensors [144, 160]. 

Typical design strategies of flexible shear sensors include 
using a bump on the sensor’s surface with four distributed 
underlying sensing elements (Fig. 7a, b) and deformable 
surface/internal microstructures (Fig. 7c, d) to perceive 
shear stimuli.

3.5  Flexible Multimodal Sensors

Flexible sensors that are capable of perceiving and decoupling 
different types of stimuli including forces, temperature, 
humidity, etc., are currently one of the research focuses 
for a wide range of applications including robotics, health 
monitoring, and HMI [161–166]. Compared with sensors 
for a single stimulus, flexible and multimodal mechanical 
sensing platforms have a distinct advantage of capturing 
comprehensive information of pressure, strain, vibration, 

Fig. 5  Typical design strategies of flexible strain sensors. a Thin films of aligned single-walled carbon nanotubes (SWCNT) [54]. Copyright 
(2011) Springer Nature. b Thin films of graphene-nanocellulose composites [122]. Copyright (2013) Wiley–VCH. c Transparent films of sand-
wich-structured PDMS/AgNW/PDMS nanocomposites [123]. Copyright (2014) American Chemical Society. d A serpentine layout of PVDF 
[124]. Copyright (2019) American Chemical Society. e A serpentine layout of hollow Ag-microspheres/carbon nanoparticles/Eco-flex compos-
ites [37]. Copyright (2022) Elsevier. f Auxetic metamaterial structures regulated SWCNT network on PDMS thin film [125]. Copyright (2018) 
Wiley–VCH
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shear, and other mechanical stimuli to realize complicated 
tasks, whereas cross-sensitivity must be diminished for 
accurate measurements. For example, tactile sensors capable 
of sensing normal pressure and shear stress at the same 
time are essential parts of e-skins to provide robotics with 
information for complex object recognitions and dexterous 
object manipulation [146–150]. Constructing the array 
layout of identical sensing units, integrating different sensing 
units, and developing novel materials with multiple sensing 
mechanisms are all effective approaches to decouple different 
mechanical signals [167].

4  ML‑Assisted Data Interpretation

ML is defined as a computer program that possesses the 
ability to acquire knowledge by extracting features from 
raw data and using the gained knowledge to answer real-
world problems. When ML is introduced to flexible sensing 

technology, it profoundly impacted this field by adding a 
strong tool for processing and analyzing data from a single 
sensor or multiple/multimodal sensors. Supervised learning 
and unsupervised learning are the most commonly used ML 
algorithms in dealing with flexible mechanical sensing data. 
For supervised learning, a group of input data with their 
given outputs is utilized to train ML algorithms, which can 
perform classification or regression tasks (predict a discrete 
class label or continuous quantity). By comparison, unsu-
pervised learning only has unlabeled training datasets and 
is always used to cluster datasets into a group. The com-
mon ML algorithms for these purposes have been shown 
in Fig. 8.

SVM, tree-based algorithms, and neural network-based 
algorithms are the three mostly used ML algorithms. 
SVM is widely favored in classification problems as it 
produces notable correctness with great simplicity. It is 
very productive in dealing with high-dimensional spaces 
and requires small sample size. SVM is effective for both 

Fig. 6  Typical design strategies of flexible vibration sensors. a An ultrathin polymer film and a hole-patterned diaphragm structure [97]. Copy-
right (2019) The Authors. b A channel-crack-sensing membrane on a cavity substrate [129]. Copyright (2021) American Chemical Society. c A 
freestanding hybrid nanomembrane on a holey PDMS film and micro pyramid-patterned PDMS film [140]. Copyright (2018) The Authors. d A 
thin PZT membrane on a printed circuit board with a curved shape hole [136]. Copyright (2018) Elsevier. e ZnO nanowire arrays sandwiched by 
two electrodes [133]. Copyright (2013) Springer Nature. f Cilium arrays on cracked metal layers [134]. Copyright (2020) American Chemical 
Society
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nonlinear and linear discrimination. However, SVM is not 
suitable for large data sets. And it also does not execute 
well when dataset is incomplete or noisy. DT works well in 
both classification and regression problems, and it is very 
intuitive and can be easily understood. DT needs less efforts 
for data preprocessing since neither data normalization 
nor missing value treatment is required. One of the most 
common disadvantages of DT is that it can easily overfit. DT 
algorithm also has the disadvantage of instability since it is 
sensitive to small changes in the data. This makes it highly 
susceptible to data drifts and unsuitable to be used over long 
periods. This limitation can be solved by other tree-based 
algorithms such as RF, but they lose interpretability.

ANN is the most popular ML algorithm since it has 
enhanced learning ability and adaptive nature. It is capable 
of comprehensively learning very complicated relationships. 
Besides, ANN has strong robustness to noise and fault 
tolerance. But it takes huge sets of data and lots of time 
to train an ANN. How the results are achieved is difficult 
to understand. It is also difficult to determine the proper 
network structures with many parameters, which are decided 
through experience and trial and error. DNN is an advanced 
ANN (also known as shallow neural network) to possess 
multiple hidden layers between the input and output, which 
allow it to extract richer data features from more complicated 
relationships and ultimately improve the accuracy of 
classification/prediction. Compared with traditional ANN, 

DNN requires larger amounts of training data and much 
higher computing power. CNN and RNN are two classes of 
DNN. CNN is effective in automatically capturing spatial 
features whereas RNN has been developed to capture time-
series information from the input data. LSTM is a modified 
version of RNN, which makes it easier to learn long-term 
dependencies.

There is a general process of ML techniques used for data 
interpretation of flexible mechanical sensors. Based on the 
recorded sensor signals and the ultimate goal of intelligent 
sensing systems, an appropriate ML model should be 
designed above all. Once the ML model is initially built 
up, the collected raw data commonly require preprocessing 
before they are transformed into features that can be used 
for ML analyses. The general preprocessing methods 
contain removing outliers, denoising, transformations, 
normalizations, and so forth. This step is critical since 
improper preprocessing may also lead to the loss of some 
informative features of raw data. Then the obtained dataset 
should be divided into three subsets, namely the training 
set (usually 60%), validation set (usually 20%), and test 
set (usually 20%) [168]. The training set of data is used 
to determine the parameters of the selected ML model. 
Validation data set is applied to evaluate the model fit on 
the training set and accordingly tune the hyperparameters 
of the model. In some cases, the validation set is ignored 
and thus training set occupies about 80% of the total dataset. 

Fig. 7  Typical design strategies of flexible shear sensors. a A bump with four distributed underlying capacitive sensing elements [148]. Copy-
right (2008) IEEE. b A bump with four distributed underlying resistive sensing elements [152]. Copyright (2019) The Authors. c A surface pil-
lar vertically sandwiched by two electrodes [146]. Copyright (2018) The Authors. d Interlocking arrays of nanofibers [153]. Copyright (2012) 
Springer Nature
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After the final ML model is determined by the training and 
validation set, its performance is reported by the test data 
set. Take the ML model for classifications as an example, the 
accuracy evaluated by the test data set can be displayed in a 
confusion matrix. The following sections are the integration 
of flexible mechanical sensing technology with ML-assisted 
data interpretation for various applications, out of which 
some representative works are listed in Table 2.

4.1  Health Monitoring

Flexible mechanical sensing systems that couple intimately 
to the human skin is becoming a popular tool for conveni-
ent, real-time, and continuous detection of numerous physi-
ological signals, which have been widely analyzed by ML 
algorithms for further understanding of our health status. 
ML-assisted signal analyses in human pulse monitoring 
by wearable pressure sensing systems is a typical exam-
ple. Reportedly, Chen et al. developed a textile triboelec-
tric sensor for monitoring arterial pulsatility and used the 
ML technique to predict blood pressure from the recorded 
pulse signals, as shown in Fig. 9a [14]. Pulse wave features 
were extracted as inputs for a supervised feedforward neu-
ral network, which generates two outputs, namely systolic 
and diastolic blood pressure. The estimated values present 
small mean deviations of 2.9% and 1.2%, respectively, from 

the values measured by commercial cuffs. Similarly, Yang 
et al. employed three different ML algorithms, namely RF 
regression, GBTD regression, and Adaboost regression, 
to estimate systolic and diastolic blood pressure from the 
measured pulse-wave signals of the proposed devices [15]. 
Among these algorithms, the RF regression-based algorithm 
proved the best performance. Moreover, Lin et al. adopted 
ML technology based on a dynamic time warping (DTW) 
algorithm for the classification of pulse wave patterns by 
a wearable piezoelectric pulse sensing system (Fig. 9b), 
which is critical in pulse diagnosis since pulse waves usu-
ally remain periodically steady for each person and obvious 
change implies underlying health issues [13]. The classifica-
tion results show high similarity between the pulse waves of 
the same volunteer, indicating stability in their pulse features 
for the test period. In contrast, the highest dissimilarity was 
demonstrated between different volunteers’ pulse waves, 
proving the excellent precision and stability of the pulse 
sensing system to collect health data from different users 
in the long term. Similar to pulse monitoring, Chen et al. 
developed an on-mask respiratory monitoring system by tex-
tile triboelectric sensors and used CNN-based ML technique 
(Fig. 9c) to recognize different respiration patterns for real-
time respiratory diagnosis [169].

Synergistically, when integrated with ML methods, simul-
taneous measurements of different sensors can be combined 

Fig. 8  The general process of ML techniques for data interpretation. (b) Common ML algorithms for classification, regression, clustering, and 
dimensionality reduction. LDA: Linear Discriminant Analysis. LR: Logistic Regression. NB: Naive Bayes. DT: Decision Tree. ET: Extra Tree 
(Extremely Randomized Tree). RF: Random Forest. SVM: Support Vector Machine. kNN: k-Nearest Neighbor. ANN: Artificial Neural Network. 
DNN: Deep Neural Network. CNN: Convolutional Neural Network. RNN: Recurrent Neural Network. LSTM: Long Short-Term Memory. Ada-
boost: Adaptive Boosting. GBDT: Gradient Boosting. LinearR: Linear Regression. PCR and PCA: Principal Component Regression/Analysis. 
GMM: Gaussian Mixture Model. HCA: Hierarchical Clustering Analysis. EM: Expectation Maximization
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to automatically proffer useful health information. Lipomi 
et al. integrated the strain sensor and surface electromyogra-
phy (sEMG) electrodes on the neck to provide data for the 
ML algorithms based on L1 distance in identifying different 
swallowed objects/volumes [16, 17]. These works hold great 
promise for various applications such as swallowing function 
monitoring, nutrition science, and sports medicine. Zang 
et al. designed a multimodal epidermal electronic system 
placed on the chest and a palm for simultaneous detection 
of electrocardiogram and respiration rate, as well as galvanic 
skin response, with the obtained signals analyzed by the 
DT algorithm to determine the mental fatigue levels [170]. 
Moreover, Jeong, Rogers, and Xu proposed a continuous on-
body sensing system to detect COVID-19-related symptoms 
and linked the data with other testing results for the develop-
ment of ML techniques to assess COVID-19 infection and 
recovery [35]. By contrast, ML can also help recognize dif-
ferent stimuli from the signals of a single multifunctional 

sensor. Sahatiya et al. adopted ET to decouple strain, pres-
sure, and breath stimuli from the collected data of the devel-
oped  SnS2 QD/PVA sensor, which is multifunctional and 
water soluble to offer promising opportunities in flexible and 
eco-friendly transient medical electronics [171]. Especially, 
Lu et al. considered the patients’ privacy when using the ML 
to classify health conditions based on the electrocardiogram 
(ECG) data in the body sensor network, and thus exerted 
selective encryption schemes to protect them against illegal 
classification on the attacker side [190].

4.2  HMI of Voice Communication

ML algorithms have also been brought into HMI of voice 
communication by integrating with various flexible acoustic 
pressure sensors to strengthen their functionalities. To 
acquire the entire human speech frequency range, Lee et al. 
proposed a seven-channel flexible piezoelectric acoustic 

Fig. 9  a Blood pressure estimation using a textile triboelectric sensor assisted by ML techniques [14]. Copyright (2021) Wiley–VCH. b Pulse 
wave differentiation using a wearable piezoelectric sensing system assisted by ML techniques [13]. Copyright (2021) Wiley–VCH. c Respiration 
pattern differentiation using an on-mask triboelectric sensor network assisted by ML techniques [169]. Copyright (2022) Wiley–VCH
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sensor for speaker identification by ML algorithms based on 
a GMM followed by EM, and the multi-channel sound inputs 
were demonstrated to provide abundant voice information 
[18]. Thereafter, the same group further broadened the 
resonant bandwidth of the piezoelectric acoustic sensors 
by adopting a biomimetic frequency band control method, 
which also improved the sensitivity in a miniaturized 
dimension for accurate biometric authentication via the same 
ML algorithms [19]. In addition to speaker recognition, 
Chen et al. designed a flexible acoustic sensor based on 
microparticle vibrations and surface triboelectrification, 
thereby enabling the recognition of not only speakers but 
also simple voice commands as the collected data was 
processed by the DTW algorithm [20]. Han et al. fabricated 
flexible piezoresistive pressure sensors and integrated 
them with the single-layer perceptron model algorithms to 
perform music recognition [131].

Moreover, ML has also assisted intelligent silent recog-
nition when combined with flexible sensors on the skin at 
locations of faces and necks, which have great potential in 
helping patients that are losing their voice. Lin et al. devel-
oped a pressure sensor of resistive type to detect the throat 
movements of saying different instructions without the real 
sounds coming out, and CNN was adopted to recognize 
the recorded signals [173]. Recently, Yu et al. developed 
a silent speech interface by using crystalline silicon-based 
strain sensors on the face, and combined a CNN algorithm to 
realize the recognition of 100 words at a high accuracy rate 
(87.53%) [172]. Lee et al. proposed unique sEMG sensors on 
the jaw and face to collect from three muscle channels and 
finally realized silent speech recognition of simple instruc-
tions (Fig. 10b) by LDA algorithms [191]. Similarly, Huang 
et al. adopted four-channel sEMG sensors on the face and 
LDA algorithms but recognized up to 110 words covering 
daily vocabularies [174].

4.3  HMI of Hand Gesture Identification

ML-assisted data analyses have also facilitated HMI appli-
cations of different sensing arrays attached on/near human 
hands or in the forms of smart gloves to recognize hand 
gestures for sign language translation, understanding grasp 
action, VR/AR control, etc. As shown in Fig. 11a, Chen 

et al. proposed a simple design of five stretchable strain sen-
sors of triboelectric mechanism attached to human fingers 
to monitor each finger motion and utilized SVM to translate 
the detected signals of hand gestures of American Sign Lan-
guage into speech [23]. Similarly, Lee et al. combined five 
superhydrophobic triboelectric textile sensors on fingers and 
CNN to realize the recognition of several gestures in VR/AR 
applications (Fig. 11b) [175]. Especially, Li et al. designed 
six resistive strain sensor units covering the main tendons 
of the hand back to sense their deformation, which provided 
information for the SVM method to recognize twelve typi-
cal precision-grasping gestures [192]. To get more detailed 
information on hand motion in each part, more flexible 
sensors have been demonstrated. Park et al. fabricated 15 
stretchable resistive strain sensors on finger joint regions 
and utilized ANN for translating hand sign language [176]. 
Thean et al. developed 16 bimodal capacitance sensors dis-
tributed close to the joints of the human palm and integrated 
a LSTM network to achieve both static and dynamic hand 
gesture recognition [193].

Different from the above on-hand sensor arrays, Ko et al. 
developed a single resistive skin sensor detecting minute 
skin deformations of the wrist and analyzed its signals by 
DNN algorithms to determine dynamic hand motions [177]. 
The sensor is also reported to be capable of extracting gait 
motions when attached on pelvis. Wang et al. proposed a 
wristband-style mechanical device based on a hybrid sen-
sor array with 8 triboelectric and piezoelectric sensors to 
capture mechanical information regarding hand movement 
and adopted LDA algorithms for gesture recognition [178]. 
Rabaey et al. realized gesture recognition by monitoring 
electrical muscle activities of the forearm, of which the 
entire circumference was wrapped by a large-area, high-den-
sity sEMG electrode array with 64 channels, and a neuro-
inspired hyperdimensional (HD) computing algorithm was 
adopted to realize in-sensor adaptive learning and real-time 
inference [24]. Further, beyond merely taking advantage of 
flexible sensing technology, multimodal fusion was proposed 
by Chen et al. by integrating visual data with somatosensory 
data from five stretchable resistive strain sensors on fingers 
to classify hand gestures (Fig. 11c) [114]. A sparse neural 
network was used for data fusion and recognition at the fea-
ture level, thus achieving a recognition accuracy as high as 
100%.
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4.4  Object/Surface Recognition

The acquirement of tactile maps on hands has also been 
processed by the ML method to identify objects and infer 
their properties. Matusik et al. developed a tactile glove with 
uniformly distributed 548 piezoresistive sensors, of which 
the array data was analyzed by CNN (Fig. 12a) to identify 
individual objects and estimate their weight [34]. It should 
be noted that a linear model was compared with the CNN 
in predicting weight, proving that the latter performs better 
over the entire weight range. The CNN presents an aver-
age prediction error of 56.88 g whereas the linear algorithm 
possesses 89.68 g. The relationship between the object 
weight and tactile signals is complex and it is significant 
to introduce ML algorithms. Besides, ML is also effective 
for dealing with signals of hybrid sensor systems. Lee et al. 
proposed a smart soft gripper integrated with a tactile TENG 
sensor array and a length TENG sensor for each finger, and 
the collected data was processed by an SVM-based analytic 

platform for gripped object recognition [179]. Similarly, Rus 
et al. also fabricated a dual-modality sensing glove, which 
consists of 16 resistive strain sensors and 6 resistive pressure 
sensors, to monitor data for both hand pose reconstruction 
and object identification by ANN algorithms [194]. Further, 
Zhu et al. developed quadruple tactile sensors on a robotic 
hand to perceive thermal conductivity, contact pressure, as 
well as object and environment temperature simultaneously 
and independently [180]. The multimodal sensing informa-
tion was fused by a feedforward ANN to achieve precise 
recognition of object size, shape, and material.

Different from the above flexible tactile sensing arrays 
distributed over hand, artificial fingertip tactile sensors have 
been assisted by ML to distinguish different materials merely 
based on their surface textures. Most early tactile sensors are 
embedded into a flexible artificial finger, which is sometimes 
even designed with biomimetic fingerprints on the surface 
to enhance tactile sensitivity in some works. Oddo et al. 
developed an array of four microelectromechanical systems 

Fig. 10  a HMI applications of voice communication enabled by the flexible piezoelectric pressure sensor and ML techniques [27]. Copyright 
(2019) Wiley–VCH. b HMI applications of silent speaking enabled by the flexible sEMG sensors and ML techniques [191]. Copyright (2020) 
The Authors
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(MEMS) tactile microsensors in polymeric packaging, 
which is similar to human Merkel mechanoreceptors of the 
human finger, with a kNN classifier to differentiate simple 
textiles with periodic texture [195]. Sammut et al. utilized 
randomly distributed strain gauges and piezoelectric sensors 
embedded in silicone to provide information for several 
ML algorithms for comparison to identify widely different 
materials and the same material of different textures [196]. 
The result shows that boosting on naive Bayes tree achieves 
the best performance among others. Loeb et al. fabricated 
a multimodal tactile sensor with a piezoresistive pressure 
sensor to measure tactile vibration and impedance sensing 
electrodes to measure force, and Bayesian exploration was 

used for textural property identification including traction, 
roughness, and fineness [197]. Peters et  al. proposed a 
bioinspired artificial fingertip consisting of two piezoelectric 
sensors for acquiring tactile signals and used SVM to 
discriminate material texture based on different surface 
roughness [198].

Recently, intrinsically flexible film tactile sensors based 
on flexible mechanical sensing technology have been devel-
oped to mimic the tactile functions of human skins for sur-
face texture identification and thus can be applied on the 
surface of a prosthetic hand. Joen et al. presented a flexible 
piezoresistive pressure sensor and utilized an LSTM network 
to recognize patterns of current change of the sensors when 

Fig. 11  a HMI applications of sign language translation enabled by a stretchable strain sensor array on fingers and ML techniques [23]. Copy-
right (2020) Springer Nature. b HMI applications of VR control enabled by smart gloves and ML techniques [175]. Copyright (2020) The 
Authors. c HMI applications of hand gesture recognition enabled by analyzing visual data and somatosensory data from stretchable strain sen-
sors on fingers via ML techniques [114]. Copyright (2020) Springer Nature
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rubbing different textures [199]. In an attempt to mimic the 
slow adaptive (SA) and fast adaptive (FA) mechanoreceptors 
in finger skin, Chun et al. proposed a tactile sensor consist-
ing of a piezoresistive sensor array and a TENG sensor for 
pressure- and vibration-sensitivity (Fig. 12b), which were 
both combined to provide information for ANN algorithms 
to classify different fabrics possessing complex patterns with 
aperiodic roughness [181]. It should be noted that the com-
bination of SA and FA sensor signals was proved to improve 
the classification rate, compared to using a single signal 
kind. Later, Chun et al. further reported a neural tactile 
sensing system with artificial SA and FA mechanoreceptors 
using piezoresistive and piezoelectric particle-based sensors, 
and ANN algorithms were still adopted to classify different 
fabrics [182]. Tee et al. [32] also presented a piezoresis-
tive sensor with vibration sensitivity and combined kNN to 

process its signals for texture recognition. Then, the same 
group developed a 100-array tactile piezoresistive e-skin as 
an FA sensor and formed a tactile image by aggregating FA 
responses of every sensor element to be used for texture 
classification via CNN [22]. Compared to commonly slid-
ing or exploratory motions for texture detection, the tactile 
sensors in arrays realized fast and reliable classification of 
textile surface textures through a one-touch event. Similarly, 
Luo et al. also proposed a bioinspired tactile sensor array for 
multipixel sensing, which allows rich information about the 
environment to be captured based on the triboelectric effect. 
The feedforward ANN was adopted for the recognition of 
objects placed on its surface, but instead of using surface 
texture features, the intrinsic properties of their materials 
in gaining or losing electrons were utilized as a valuable 

Fig. 12  a Object recognition and weighing enabled by a smart glove and ML techniques [34]. Copyright (2019) Springer Nature. b Texture rec-
ognition realized by SA- and FA-mimicking sensors and ML techniques [181]. Copyright (2019) American Chemical Society
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feature (leading to the difference in the contact electrifica-
tion effect), as well as the weight and shape of the object 
[200].

4.5  Pressure Prediction and Position Recognition

ML-assisted signal analyses have been applied in the e-skin 
and other kinds of large-area pressure-sensing devices for 
pressure prediction and position recognition. On one hand, 
ML offers an effective way to process the complicated rela-
tionship among signals of multiple sensors and remove 
the crosstalk between them. As shown in Fig. 13a, Park 
et al. [183] proposed a parallel signal processing scheme 
for a pressure-sensing system, which was inspired by the 
human somatosensory system and realized by CNN-based 
cognition. The pressure signals of the three sensors were 

uniquely combined into a single output signal pattern, which 
was similar to that of tactile sensors combined with artifi-
cial synaptic devices, and then subsequently processed by 
CNN to identify the pressure applied to each sensor. Dif-
ferently, Kim et al. used a flexible tactile sensor array as a 
Braille reader and predicted the designated letters from the 
acquired electrical signals based on SVM [184]. It was stated 
that a translational movement of the Braille letter does not 
affect the recognition and obviously, there is still room for 
improvement to work even under rotation.

On the other hand, ML facilitates a simple array-free 
structure design of large-area pressure sensing platforms 
while still maintaining accurate pressure distribution 
estimations or improves the pressure sensing resolution 
from sensor arrays. Sohn et al. developed bulky macroscale 
electronic skin by employing a single-layered piezoresistive 
MWCNT-PDMS composite without array patterns [185]. 

Fig. 13  a Pressure prediction and position recognition of a pressure-sensing platform, which is inspired by the human somatosensory system 
and realized by flexible LC pressure sensor arrays and ML-based cognition [183]. Copyright (2019) Wiley–VCH. b Impact positioning of the 
flexible sensing skin for the flying perception of aircraft, realized by a piezoelectric sensor array and ML techniques [99]. Copyright (2021) Else-
vier
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The resistance changes were measured at the edge of the 
whole e-skin by multiple probe terminals, of which the 
data were input into DNN to estimate the pressure value 
and location. After that, they proposed a similar bulk sheet 
made of a piezoresistive carbon nanotube (CNT)-Ecoflex 
composite to be used as a smart keypad [186]. Wang et al. 
realized non-array tactile sensing technology based on 
electrical impedance tomography (EIT) and subsequently 
used a deep learning method to post-process the originally 
constructed conductivity images to enhance the spatial 
resolution of sensor tactile perception [201]. Further, Shen 
et al. present a soft tactile sensor with a 60-fold super-
resolved accuracy enhanced by ANN algorithms [158]. The 
sensing data of neighboring units were fed into two neural 
networks as inputs to estimate the x and y coordinate of the 
load location, respectively.

Further, ML was reported to be used in the monitoring and 
positioning of dynamic force, which is more complicated 

since the transmission of the mechanical waves was induced 
to affect the surrounding areas of the applied impact force. 
Huang et al. adopted ML methods in the impact monitoring 
of the flexible sensing skin for the flying perception of 
aircraft (Fig. 13b) [99]. The output signals of a piezoelectric 
sensor array were collected, from which the time domain and 
frequency domain features were extracted to finally predict 
the impact position by CNN. But, regrettably, the value of 
impact was not estimated in this work.

4.6  Human Posture/Motion Identification

ML-assisted signal analyses have also provided various 
mechanical sensing arrays in wearable electronics or intel-
ligent electric apparatus with the ability to further extract 
rich information about their environment and users. On one 
hand, the fusion of flexible sensing technology and artificial 

Fig. 14  a Classification of human poses, motions and other interactions with the environment by conformal tactile textiles and ML techniques 
[187]. Copyright (2021) Springer Nature. b Sitting posture identification of a smart seat cushion enabled by flexible piezoresistive pressure sen-
sor arrays and ML techniques [189]. Copyright (2021) American Chemical Society. c Individual recognition of a smart mat enabled by flexible 
triboelectric pressure sensor arrays and ML techniques [21]. (2020) The Authors
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intelligence has advanced the development of wearable elec-
tronics to perceive the human body’s posture and motion. 
Matusik et al. designed and fabricated conformal tactile tex-
tiles based on piezoresistive fiber pressure sensors (Fig. 14a) 
to classify humans’ sitting poses, motions, and other bodily 
interactions with the environment [187]. Using their sensing 
vest, not only different poses including sitting, standing, and 
reclining but also various contacted surfaces with the human 
body were successfully distinguished via t-distributed sto-
chastic neighbor embedding (t-SNE). Using their sensing 
socks, the change of sole pressure distribution over time can 
be obtained to estimate the person’s pose by CNN. Similarly, 
Yang et al. also built several distributed insole pressure sen-
sors of piezoresistive type to obtain the lower limb joint 
angles for gait phase analyses by the kNN algorithm [202]. 
Ferber et al. developed wearable sensors of 3D linear accel-
erations on the lower back, lateral thigh, and lateral shank of 
an individual to track subject-specific gait patterns via a one-
class SVM [203]. Flexible strain sensing threads attached to 
the person’s neck was proposed by Sonkusale et al. to collect 
data for head motion classification and nine ML algorithms 
were compared for their application, among which linear 
SVM demonstrated the highest testing accuracy [204]. Dif-
ferently, Fink et al. used digital temperature sensors in fib-
ers to detect signals as inputs for a CNN, finally realizing 
the classification of four distinct activities including sitting, 
standing, walking, and running [188]. The inference was 
based on the fact that different human activities result in 
different temperature–time patterns of the human body.

On the other hand, flexible pressure sensors followed by 
ML-based data analysis show great promise in smart build-
ing/home applications. Tang et al. developed a smart chair 
with six distributed piezoresistive sensors to recognize seven 
different health-related sitting postures by ANN [205]. Lee 
et al. realized a smart seat cushion with a large-area 8 × 8 
piezoresistive pressure sensor array to monitor sitting pos-
tures (Fig. 14b) using two ML methods, i.e., RF and ANN 
[189]. Other related works of smart chairs/cushions combin-
ing ML algorithms for human sitting posture recognition 
could also be found in the literature [206–209]. Similarly, 
Lee et al. proposed a smart toilet with a triboelectric pres-
sure sensing array attached to its seat to achieve user identi-
fication using CNN algorithms based on different pressure 
distributions of individual users’ seating manner [1]. The 
same group also built smart mats with triboelectric pres-
sure sensing array and utilized CNN-based data analytics for 

individual recognition since walking gait pattern varies from 
individual to individual to general unique output signal [21], 
as shown in Fig. 14c. It is stated that the smart floor system 
can still maintain a high accuracy of recognition even when 
the user passes through the mat array in different ways.

5  Conclusion and Outlook

With the development of diversified sensing mechanisms, 
highly-enhanced sensing performance, more functions, and 
device miniaturization, the flexible electronics are fast-
moving with large amounts of data and high-level features. 
The insufficient capacity of conventional data processing 
techniques to analyze big sensing data becomes apparent 
as it usually takes manual intervention, complicated steps, 
and long handling time. The flexible sensing technology 
can be expedited by incorporating ML methods, which can 
effectively deal with high-dimensional and nonlinear data to 
discover the intricate/hidden relationships in large datasets. 
In this review, we offered a glance at the recent progress 
in intelligent mechanical sensing technology from the 
combination with ML-assisted data processing algorithms. 
How the ML technique benefits the flexible mechanical 
sensing can be summarized in three aspects:

• Firstly, ML significantly improves the processing 
efficiency of big sensing data from large sensing arrays 
or/and complex sensing systems over time. The array 
integration of homogeneous sensing data which are 
measured via the same sensing mechanisms can be 
directly combined to derive the desired information. For 
example, 32 × 32 pixels of a large piezoresistive sensor 
array are taken as the input to a CNN for a tactile glove to 
identify the gripped object [34]. Further, the multimodal 
sensing systems with heterogeneous sensing data which 
are measured by different sensing mechanisms can also 
be comprehensively analyzed. Even visual data can 
be integrated with flexible strain sensors on fingers to 
accurately classify hand gesture, which is hard to realize 
without ML due to the mismatch in data dimensionality 
and data density [114].

• Secondly, the coupling with noise or among multiple 
stimuli, and overlapping among adjacent sensors, can 
be reduced or decoupled by ML to provide reasonable 
results with improved accuracy and resolution compared 
with those of conventional data processing techniques. 
For instance, the signal of a multifunctional sensor that 
can respond to strain, pressure, and breath stimuli is 
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decomposed by an ET scheme to obtain every single 
stimulus [171]. Similarly, the common challenge to 
avoid device performance change induced by unwanted 
mechanical deformation such as bending, twisting, and 
stretching can also be solved by using ML for signal 
decomposition. Besides, bulky piezoresistive composite 
without array patterns can even measure the pressure 
value and location by inputting resistance changes at the 
edge into a DNN [185, 186].

• Thirdly, ML mines the hidden relationship between 
sensing signals and informative events. It is surprising 
to find that the detected ECG signal, respiration, and 
galvanic skin responses can collectively offer mental 
fatigue level information [170]. In conclusion, ML 
techniques have been widely proved to be a promising 
solution for improving the capabilities of flexible 
mechanical sensing without the significant update of 
hardware.

On the other hand, despite the rapid advances in the 
integration of flexible mechanical sensing with ML 
algorithms, the development of intelligent flexible sensing 
systems also faces inevitable challenges. Although ML 
endows the system with the ability to automatically 
merge all the information and learn from experience to 
enhance prediction accuracy, ML-assisted processing of 
flexible mechanical sensing data inevitably shares the 
pitfalls of ML algorithms. Firstly, it is often necessary to 
collect large amounts of diversified and rigorously vetted 
training data from the sensing systems to ensure a high 
prediction accuracy of ML model, which is a tedious and 
time-consuming process. For most organic material-based 
flexible sensors which possess intrinsic device-to-device 
variation and poor long-term stability, great difficulties are 
added in combing ML algorithms since the repeatability is 
directly related to model training [172]. Therefore, smarter 
ML algorithms need to be developed for simplified training 
steps and the sensor performance (especially for stability 
and uniformity) should be improved. Secondly, designing 
a proper ML model according to the sensing data and the 
desired outcome is a top priority. Various ML algorithms 
have been developed and each has merits and drawbacks 
to be considered in solving different situations. The 
hyperparameter tuning also must be conducted to find the 
optimal setting. For these two reasons, it should be noted 
that ML-assisted data processing is not always the best 
solution and other methods, such as linear calibrations and 
nonlinear fittings, could show advantages in more simplified 

relationships. Finally, the learning process and decision 
making of ML for flexible sensing data need to be regulated 
by corresponding knowledge and reasoning rules to make 
sure effective outcomes for a given application.

In the future, ML can not only be applied in the data 
processing of flexible sensor systems, but it would also 
further impact the design phase of flexible sensing systems 
concerning both the configuration [210] and materials 
[211–213]. Using inverse design realized by ML, an ideal 
material with desirable functionalities and an optimal 
sensing configuration with compact sensor implementations 
can be found, leading to a new generation of intelligent 
flexible sensing systems with powerful sensing performance 
[214]. Multimodal sensing platforms would be formed by 
integrating flexible mechanical sensing with chemical 
and biological sensing to provide more comprehensive 
information [167], where ML is expected to play an 
important role in both the complicated design process and 
data analyzing. On the other hand, in-sensor processing 
of flexible sensing signals by ML to provide real-time 
analyses is expected to be widely realized as it possesses 
advantages over wireless transmitting raw data to external 
computational devices, offering reduced communication 
link bandwidth and radio power requirements [24]. Personal 
data security can also be improved by locally processing 
the signals. With the continuous efforts on the improvement 
of sensors, microprocessor units, computing techniques, 
wireless communication, and AIoT [215–218], we believe 
that ML-enhanced flexible mechanical sensing can further 
improve our life quality to higher levels, ranging from health 
monitoring, HMI, motion/gesture identification, e-skin, to 
other related areas.
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