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HIGHLIGHTS

• This review summarized the fabrication strategy using circularly polarized light as a chiral source to construct chiral materials.

• The potential applications of chiral nanomaterials driven by circularly polarized light in different fields are summarized, explained 
by representative examples.

• The potential challenges of circularly polarized light-enabled chiral materials are outlined and future research directions are outlooked.

ABSTRACT For decades, chiral nanomaterials have been extensively studied 
because of their extraordinary properties. Chiral nanostructures have attracted a 
lot of interest because of their potential applications including biosensing, asym-
metric catalysis, optical devices, and negative index materials. Circularly polarized 
light (CPL) is the most attractive source for chirality owing to its high availability, 
and now it has been used as a chiral source for the preparation of chiral matter. In 
this review, the recent progress in the field of CPL-enabled chiral nanomaterials is 
summarized. Firstly, the recent advancements in the fabrication of chiral materials 
using circularly polarized light are described, focusing on the unique strategies. 
Secondly, an overview of the potential applications of chiral nanomaterials driven 
by CPL is provided, with a particular emphasis on biosensing, catalysis, and photo-
therapy. Finally, a perspective on the challenges in the field of CPL-enabled chiral 
nanomaterials is given.
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1 Introduction

Circularly polarized light (CPL) could be a possible reason 
for the single handedness of biomolecules. Linearly polar-
ized (LP) light is composed of left- and right-circularly 
polarized (LCP and RCP) light with equal intensity [1, 2]. 
The electromagnetic fields of LCP and RCP light are mir-
ror images of each other. The optical properties of chiral 
materials are usually characterized by circular dichroism and 
optical rotation. Circular dichroism is the differential absorp-
tion of LCP and RCP light. When LCP and RCP lights pass 
through a medium of chiral material, the interaction of the 
chiral material with LCP light is not equal to that with RCP 
light, thus leading to a difference in light velocity and refrac-
tive index, and this phenomenon generates optical rotation. 
As a chiral source, circularly polarized light has attracted 
considerable attention and has been applied to many fields, 
such as synthesis of chiral molecules, asymmetric cataly-
sis, dynamic control and amplification of molecular chiral-
ity, trigger photochemical reactions, and so on [3–8]. For 
instance, in order to complete chiral symmetry breaking of 
the racemates of the amino acid derivative, the racemates 
were firstly irradiated with CPL (310 nm, 0.3 mW for 70 h) 
to induce the reaction and a small enantiomeric excess (e.e.) 
value was obtained. Then ultrasonic grinding was applied to 

accelerate the process of deracemization due to some sort of 
a ripening mechanism [9].

Nanomaterials with chiroptical activity are known to 
strongly rotate the polarization of linearly polarized light. 
Due to the fast development of chiral nanoscience and 
nanotechnology, many methods have been developed to 
prepare the chiral nanomaterials during the past decades. 
A lot of chiral materials, such as chiral gold nanostructures 
[10, 11], chiral liquid crystal nanostructures [12–15], chiral 
cobalt oxide nanoparticles [16], chiral CdTe nanoparticles 
[17, 18], chiral grapheme quantum dots [19], chiral CdSe 
nanoparticles [20, 21], chiral HgS nanoparticles [22], chiral 
ceramic nanoparticles [23], chiral Te nanowires [24], chiral 
cobalt hydroxide nanoparticles [25], chiral copper sulfide 
nanoparticles [26], chiral nickel sulfide nanoparticles [27], 
chiral Au film [28], and chiral  Fe3O4 film [29], and chiral 
yolk-shell nanorods [30] have been prepared. Using chiral 
biomolecules such as DNAs, amino acids, and proteins as 
the template, the achiral nanomaterials can be assembled 
into chiral nanostructures [31–38]. All these chiral materi-
als were prepared without using circularly polarized light.

In addition, physical vapor deposition (PVD) and glanc-
ing angle deposition (GLAD) have been used to fabricate 
hybrid insulator–metal nanohooks [39] and chiral alu-
minum nanostructures [40], respectively (Fig. 1a–c). But 

Fig. 1  a Scheme of the glancing angle deposition (GLAD). b TEM image and c CD spectra of the chiral Al nanostructures prepared by GLAD 
(reproduced with permission from Ref. [40]. Copyright 2013, Wiley). d Scheme of the wet-chemical method to synthesize chiral HgS nanostruc-
tures. This method could allow the large-scale and cost-effective preparation of chiral nanostructures. e TEM image and f CD spectra of the chi-
ral HgS nanostructures. Scale bar, 100 nm (reproduced with permission from Ref. [42]. Copyright 2017, Nature publishing group)
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these fabrication techniques are multi-step, complicated, 
and requires expensive, sophisticated equipment. Wet-
chemical method, as a simple synthetic strategy, is becom-
ing a promising method to create chiral nanostructures. For 
instance, inspired by the previous work [22, 41], the chiral 
HgS nanocrystals were prepared using D- or L-penicillamine 
molecules for surface reshaping in solution (Fig. 1d–f) [42]. 
For example, three-dimensional chiral plasmonic nanostruc-
tures with intense optical activity have been prepared by 
Luis’s group [10] and Nam’s group [11]. Lots of chiral mate-
rials, such as chiral nematic mesoporous materials [43], chi-
ral liquid crystals [44], chiral helical structures [45, 46], chi-
ral gold nanoclusters [47], chiral biointerface materials [48], 
and chiral plasmonic materials [48–51], have been prepared 
using wet-chemical method. Many comprehensive reviews 
on chiral materials have been published recently [50–63], 
most of them highlighted the synthetic strategy and optical 
properties of chiral materials, as well as their applications.

However, there are rare reviews that focus on the fabri-
cation strategy using CPL as the chiral source to construct 
chiral materials. Given the fast development of this field, 
in this review, we summarize the recent advances of chiral 
materials (including chiral organic compounds and chiral 
inorganic structures) prepared with CPL and discuss their 
multifunctional applications.

2  CPL‑induced Asymmetric Synthesis

2.1  Chiral Nanostructures Fabricated by CPL

Because light can be switched on and off rapidly, it offers 
high spatial and temporal resolution. The specific proper-
ties of CPL can provide a novel, powerful, versatile tool 
for enantioselective photochromism [64], enantiospecific 
desorption [65], chiral induction, symmetry breaking, and 
constructing chiral materials [65–74]. For example, Kim 
et al. applied CPL to a light-induced self-assembly process 
of a triphenylamine (TPA)-containing molecule. Mitsu-
masa IWAMOTO and cooperators reported the synthesis 
of chiral poly(diacetylene) (PDA) film polymerized from 
achiral monomers using CPL [74–77]. Under CPL irradia-
tion, the enantioselective helical stacking of the TPA moie-
ties promoted enrichment of one enantiomer, and produced 
the self-assembled aggregates with supramolecular chirality 
[78]. CPL was also utilized to trigger an enantioselective 

polymerization reaction, producing an optically active poly-
mer from racemic monomers of allyl-(1-((3-(dimethylamino)
propyl)amino)-4-mercapto-1-oxobutan-2-l)carbamate with-
out using any chiral dopant or catalyst (Fig. 2a, b) [66]. CPL 
was also used to regulate the azobenzene supramolecular 
chirality. And the influence of CPL handedness, irradiation 
time, and wavelength on the resulting product’s chirality 
were systematically investigated (Fig. 2c, d) [68]. All these 
results provide new insight into the chirality of CPL-con-
trolled molecules, supramolecules, and polymers.

Recent progress in using CPL to fabricate chiral nano-
structures can be classified into two main strategies: CPL-
driven self-assembly of nanoparticles into chiral struc-
tures and CPL-induced synthesis of chiral nanostructures 
(Scheme 1). Both strategies were based on the use of CPL 
as the chiral source in the growth reaction process. As shown 
in Scheme 1a, CPL is used to irradiate solutions of nanopar-
ticle in a reaction vessel.

More recently, using trigonal nanoprisms as the seeds, 
our group synthesized chiral Au nanostructures with optical 
anisotropy factor (g-factor) of up to 0.44 under irradiation 
with CPL [79], which was the highest g-factor value up to 
now (Fig. 3). To discover the mechanisms underlying the 
CPL-mediated preparation of chiral Au nanostructures, the 
finite-difference time-domain (FDTD) and semi-empirical 
density functional theory (DFT) simulations of chiral Au 
nanostructure growth were carried out. The observed shapes 
of the chiral Au nanostructures can be explained by regiose-
lective gold deposition on dynamically changing hotspots 
and localized reduction of Au(iii) to Au(0). As the electrical 
field is strongly localized in the corners of trigonal nano-
prisms, the shape of the forming chiral Au nanostructure 
was depended by the handedness of CPL. Using iterative 
modeling for progressive deposition of gold on gradually 
changing hotspots, the final shape with out-of-plane Au seg-
ments was successfully modeled, which matched the key 
features of chiral Au nanostructure shape characterized by 
transmission electron microscopy (TEM) tomography. To 
further confirm the growth mechanism for the preparation 
of chiral Au nanostructure induced by CPL, other chiral gold 
nanomaterials such as gold nanocubes and octahedrons were 
also used as the seeds to prepare chiral nanostructures. The 
obtained chiral Au nanostructures also displayed remarkably 
high chiroptical activity under CPL illumination, indicat-
ing that the CPL-driven synthetic strategy is good to obtain 
chiral nanostructures with high g-factors.
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Significantly, a very impressive result was obtained by 
Kotov and co-workers, who reported the synthesis of chi-
ral twisted nanoribbons by illuminating the dispersion of 
racemic CdTe NPs with LCP or RCP light [80]. CdTe NPs 
were stabilized by the achiral capping agent thioglycolic 
acid (TGA). It should be noted that, this TGA capped CdTe 
dispersion showed no CD responses and thus has equal 
cumulative absorbance for LCP and RCP photons. Under 
LCP illumination, predominantly left-handed nanoribbons 
were formed, while right-handed nanoribbons were formed 
by RCP illumination. The obtained chiral nanoribbons 
were very stable and can retain their geometry for 3.5 years. 
Notably, illumination with unpolarized light generated the 
equal amount of left-handed and right-handed nanoribbons. 
Straight achiral nanowires were obtained by incubation in 
the dark or under linearly polarized light irradiation. Sig-
nificantly, a control experimental demonstrated that D- and 
L-cysteine protected chiral CdTe NPs can self-assemble in 
the dark, generating submicron helices with distinctly dif-
ferent twist directions that was dependent on the chirality of 
D- and L-cysteine stabilized CdTe NPs.

The mechanism of chirality transfer from CPL to NP 
assemblies can be understood as follows. The effect of CPL 
on TGA capped CdTe NPs self-assembly originates in the 

Fig. 2  a, b Circularly polarized light triggered enantioselective thiol–ene polymerization reaction. a Schematic illustration of the growing opti-
cally active polymer from racemic monomers through the asymmetric thiol–ene polymerization process triggered by 313 nm CPL irradiation. 
b CD signals (irradiation for 90 min) of the specific rotation values of the final polymer obtained by irradiation with 313 nm (i) LCP, (ii) RCP, 
or (iii) normal UV light (reproduced with permission from Ref. [66]. Copyright 2017 the Royal Society of Chemistry). c, d CPL to regulate 
azobenzene supramolecular chirality. c Scheme of long- and short-axis-dependent twisted stack led by wavelength-dependent LCP and RCP 
light. d CD and UV–Vis spectra of PAzoMA 2 aggregates exposed to 365 nm LCP and RCP light for 150 s (reproduced with permission from 
Ref. [68]. Copyright 2017 the Royal Society of Chemistry)

Scheme 1  Experimental setup for CPL-driven synthesis. a CPL irra-
diation apparatus: (i) light source, (ii) polarizer, (iii) quarter wave 
plate, (iv) cuvette as reaction container. b CPL was used to drive the 
assembly of monodisperse nanoparticles into chiral helixes. c CPL 
was used to fabricate chiral inorganic nanostructures
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optically selective activation of nanostructures with differ-
ent handedness. The original CdTe NP solution is racemic, 
containing equal amounts of left- and right-handed particles 
and small clusters. After illuminating the solution with RCP 
light, a subpopulation of right-handed CdTe NPs and clus-
ters absorb light more effectively than left-handed CdTe NPs 
and clusters. If illuminating the solution with LCP light, a 
subpopulation of left-handed CdTe NPs and clusters absorb 
light more effectively than right-handed CdTe NPs and clus-
ters. The surface TGA ligands on the CdTe NPs were photo-
oxidized and transformed into ‘bare’ CdS NPs. Because the 
photooxidation of multiple TGA ligands requires multiple 
photons, the difference in the probability of absorption of 

L- and R-photons multiplies over time. This process ‘locks 
in’ and amplifies the differences between NPs of opposite 
chirality in the initially racemic mixture. The bare CdS NPs 
were much easier to self-assemble than TGA-modified, 
non-light-activated CdTe NPs. The self-assembly of NPs 
is very sensitive to the anisotropy of NP interactions, thus 
the chirality of the constituent building blocks is reflected in 
the helicity of the resulting assemblies. Atomistic molecu-
lar dynamics (MD) simulations were performed to further 
clarify the origin of the helical nanoribbons. At first, the 
right-handed or left-handed CdTe NPs were preassembled 
into a planar piece of nanoribbon with a packing, assuming 
that NPs of predominantly one handedness were prepared 

Fig. 3  Morphology and spectroscopy of CPL-mediated chiral gold nanostructures. Scanning electron microscope (SEM) images a, circular 
dichroism spectra b and g-factor spectra c of L-P+ NPs after 0, 5, 10, 20, 30, and 40 min of illumination at 594 nm with 84 mW cm−2. d SEM 
images of L-P+ NPs and D-P− NPs. e TEM tomography images of L-P+, L-P−, D-P−, and L-P0 NPs. Circular dichroism spectra f and g-factor 
spectra g of NPs synthesized under different light conditions in the presence of CYP dipeptides: L-P+ NPs (under LCP illumination), D-P− NPs 
(under RCP illumination), D-P+ NPs (under LCP illumination), L-P− NPs (under RCP illumination), L-P0 NPs (under LP illumination), D-P.0 
NPs (under LP illumination), L-NPs (without light illumination), and D-NPs (without light illumination) (reproduced with permission from Ref. 
[79]. Copyright 2022 Nature publishing group)
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under CPL photoexcitation and self-assembled. On equi-
libration of the NP assemblies in an isothermal–isobaric 
ensemble at T = 300 K for ∼ 5–10 ns, the planar nanorib-
bons acquired obvious twists. Notably, the twist was oppo-
site for NPs with opposite handedness. The average twist 
angle observed in the simulation of the nanoribbons made 
from CdS NPs was − 3.1° and + 4.3° for left-handed and 
right-handed NPs, respectively, which corresponds to a pitch 
length of ∼1,400 – 1,900 nm, similar to the experimental 
pitch length of nanoribbons observed after 28 h CPL illu-
mination. The MD simulations indicate that the chirality of 
the individual NPs translates into a twist of the nanoribbons 
as a result of cooperative interactions with the NP ensemble. 
Besides unequal truncations, this phenomenon may be asso-
ciated with other chiral geometries and multiple interparticle 
interactions. Water molecules facilitate this process via the 
formation of a soft ‘cushion’ layer between NPs, enabling 
their restricted mobility. Translation and reorientation of 
NPs led to the possibility of ensemble-energy minimiza-
tion in accordance with the chiral bias. The experimental 
structures are partially disordered because of fluctuations in 
NP size, which translate into some variability of the pitch 
and of the non-close packing of the NP lattice in the ribbon.

The recent studies from Kotov’s group reported the 
assembly of gold nanoparticles into chiral superstructures 
by illumination of gold salt solutions with RCP or LCP light 
at 543 nm (Fig. 4a, b) [81]. After CPL irradiation for 50 min, 
the gold NPs were firstly formed and then assembled into 
chiral nanostructures, which showed a clear CD peak at 
550 nm. Compared with twisted CdTe ribbons or helixes, 
these gold nanostructures did not show obvious chiral geom-
etry, as shown in the tomography images. Through calcula-
tions of chiroptical properties, the percentage of chiral gold 
nanostructures among the prepared Au nanostructures was 
estimated to be 11.9% and 7.10% under LCP and RCP light 
illumination, respectively. This CPL-driven assembly of chi-
ral gold nanostructures was originated from the asymmetric 
displacement of NPs in dynamic assemblies by plasmonic 
fields followed by particle-to-particle attachment. After CPL 
illumination, the chirality of photons was transferred to the 
chirality of Au NP assemblies. Transient interparticle forces, 
which were depended on the polarization of incident light, 
generate the chiral bias in the intermediate dynamic assem-
blies. Subsequently, the chiral bias was locked in shape via 
the integration of the nanoscale cores, resulting in the final 
chiral nanostructure. This synthetic protocol that using 

CPL-induced forces to prepare chiral plasmonic nanoma-
terials may be applicable to other dispersions, which were 
capable of spontaneous assembly into a superstructure with 
lattice-to-lattice connectivity.

Besides the synthesis of chiral materials in solution, the 
CPL-driven synthesis strategy can be extended to create chi-
ral inorganic nanomaterials on the substrates. By employing 
circularly polarized light as the sole chiral source, Saito et al. 
prepared the chiral Au-PbO2 hybrid nanostructures with 
unique geometry on the  TiO2 substrate (Fig. 4c, d) [82]. The 
optical activity of the chiral Au-PbO2 hybrid nanostructures 
was depended on the handedness of light. The enantiomeric 
excess value of the chiral Au-PbO2 nanostructures was as 
high as 43%. Under CPL irradiation, the  Pb2+ in the solution 
was oxidized and then  PbO2 was deposited at the specific 
corners of Au nanocuboids to form chiral Au-PbO2 hybrid 
nanostructures. Because the chiral structure was immobi-
lized on a surface, thus the circularly polarized light was 
illuminated constantly from one orientation. Chiral deposi-
tion may be possible by the oxidation of plasmon-induced 

Fig. 4  a TEM images and b of the chiral LH and RH AuNPs, which 
were prepared under the irradiation of LCP and RCP light, respec-
tively (reproduced with permission from Ref. [81]. Copyright 2019 
American Chemical Society). c SEM images of the chiral LH and RH 
Au-PbO2 nanostructures. d CD spectra of the TiO2 substrate with 
gold nanocuboids before (black line) and after PbO2 deposition by 
RCP (blue line) or LCP (red line) light irradiation (reproduced with 
permission from Ref. [82]. Copyright 2018 American Chemical Soci-
ety)
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charge separation. When plasmonic nanoparticle (Au nano-
cuboids) was in contact with a semiconductor  (TiO2), under 
CPL irradiation, the positive and negative charges are pro-
duced in the Au nanoparticle and  TiO2, respectively, then 
 Pb2+ in the solution was oxidized to  PbO2 and deposited 
onto the corner of Au nanocuboids. These studies open up 
new ideas that the use of CPL as the primary chiral bias to 
prepare chiral inorganic nanostructures.

The various examples discussed in this part indicated that 
the CPL has the advantage of providing an easy and effec-
tive way to prepare chiral materials, allowing us to fore-
see that CPL approaches have a great potential toward the 
synthesis of chiral materials with tunable optical activity in 
solution or on the substrate. The mechanistic study showed 
that the CPL photoinduced site-selective reactions based on 
plasmon-induced charge separation resulted in the chiral 
nanostructures on the substrate. However, the mechanism 
of CPL-mediated preparation of chiral nanoparticles in solu-
tion is worthy to be further explored.

There are also some disadvantages about the CPL-induced 
synthetic strategy. Therefore, some chiral small molecules, 
helical polymers, supramolecular compounds, and liquid 
crystals after circularly polarized light illumination were 
observed. However, the e.e. for some of the reactions car-
ried out using CPL is small, namely 0.1% − 2%. It is neces-
sary to optimize the experimental condition and improve the 
e.e. value of chiral molecules. For the CPL-driven synthesis 
of chiral plasmonic superstructures, combining CPL-driven 
synthesis with the well-developed wet-chemical strategy, it 
could be used to synthesize more unique chiral structures 
with intense optical activity that cannot be prepared using 
conventional methods. More recently, combining CPL-
driven synthetic strategy with the conventional strategy of 
chiral-ligand induced optical activity, it is possible to synthe-
size chiral Au nanoparticles with optical anisotropy factors 
of up to 0.44 [79].

2.2  Tailoring Chirality of Self‑Assembled 
Nanostructures by CPL

Control of dynamic chirality in self-assembly systems is of 
great significance in exploitations of artificial nanomachines. 
DNA origami has been reported to achieve reconfigurable 
chiral assemblies with dynamic chirality. However, using 
DNA origami was relatively complicated. Recently, CPL 

was used to achieve optically chiral controls based on chi-
ral gold nanorod (GNR) dimers (Fig. 5a-c) [3]. Two gold 
nanorods modified with chiral L- or D-cysteine (Cys) mol-
ecules were assembled into chiral L- or D-GNR dimers 
through electrostatic interactions. The chirality of GNR 
dimers was originated from the dihedral angle between the 
two GNRs. The L- and D-GNR dimers displayed a positive 
and negative CD peak centered at about 680 nm, which are 
referred to as  PL- and  MD-isomers, respectively. Illuminating 
 PL-isomers with LCP light and  MD-isomers with RCP light 
resulted in the inversion of CD response of  PL-isomers and 
 MD-isomers.

While almost no change was observed for illumination 
 PL-isomers with RCP light or illumination  MD-isomers with 
LCP light, indicating the CD change was dependent on the 
polarization states of CPL. Theoretical simulations showed 
that under CPL photoexcitation, the chiral GNR dimers 
can generate large optical torques, which caused this chiral 
switching. In addition to the optomechanical perturbation, 
the CPL-controlled chiral plasmonic nanosystems may also 
involve photochemical effect at the interfaces. This needs a 
further study to deeply understand the underlying mecha-
nism and to explore other kinds of photoinduced chiral 
switching strategies. By increasing or decreasing the aspect 
ratio of GNRs, this CPL-driven photoswitches could work 
with different frequencies of light.

CPL can also be used to adjust the pitch of chiral heli-
cal structures. For helical nanostructures, their chiropti-
cal properties were also determined by their helical pitch 
length. Thus, tuning the pitch of chiral helical structures 
is the key to adjust the optical properties. Using a series 
of peptide conjugate molecules, Rosi’s group prepared a 
family of chiral helical gold nanoparticle single helices, 
their pitch can be systematically adjusted by the length 
of peptide aliphatic tails [83]. Significantly, the pitch and 
diameter of the hydrogel can also be tuned by LCP or 
RCP light (Fig. 5d–f) [84]. The hydrogel was consisted 
of chiral iron disulfide quantum dots  (FeS2 QDs) and two 
gelators (N-(9-fluorenylmethoxycarbonyl)-protected L/D-
glutamic acid, Fmoc-L/D-Glu and chiral L/D-lysine, L/D-
Lys) [84]. The chiral  FeS2 QDs with an average diameter 
of 5 nm were prepared using L/D-cysteine (Cys) as the 
capping ligands. Then, the chiral L/D-FeS2 QDs in water 
were mixed with Fmoc-L/D-Glu and L/D-Lys, a heli-
cal co-gel L/D-(Gel +  FeS2) was formed after heating the 
mixture and cooling down to the room temperature. The 
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co-gel L/D-(Gel +  FeS2) exhibited intense optical activity 
and circularly polarized luminescence. The responsive-
ness of the L/D-(Gel +  FeS2) to CPL light (532 nm, 78 mW 
 cm−2) was investigated. After illuminating D-(Gel +  FeS2) 
with LCP light, the helical pitch was increased, while the 
pitch was decreased after illumination with RCP light. 
For L-(Gel +  FeS2), the pitch was increased after illumi-
nation with RCP light, whereas the LCP light will cause 
the decrease in pitch value. Besides helical pitch, the helix 
diameter of the L/D-(Gel +  FeS2) was also changed after illu-
mination with CPL. For D-(Gel +  FeS2), the helix diameter 
was increased after illumination with RCP light, while the 
LCP light will cause the decrease in helix diameter. All the 

data indicated that the degree of twisting (twist pitch) and 
the diameter of the co-gels can be regulated by illumination 
with CPL.

3  CPL‑Activated Applications Based 
on Chiral Materials

Chiral materials have great application prospect in biosens-
ing, asymmetric catalysis, and biomedicine. Given the fact 
that CPL can be used to prepare chiral materials, we envi-
sion that chiral materials could have more unique and useful 
applications under the help of CPL. In this section, we will 

Fig. 5  a–c Chiral GNR dimers and the asymmetric interactions with CPL. a Schematic illustrating the chiral GNR dimers with opposite hand-
edness under illumination of CPL. b Typical SEM image of the GNR dimers. c g-factor spectra acquired from the GNR dimers under LCP or 
RCP light illuminations for 40 min (dashed lines) and 6 h (solid lines), respectively. LCP or RCP light was irradiated from a diode laser with 
a wavelength of 633 nm and a power density in the range of 50–90 mW  cm−2. (reproduced with permission from Ref. [3]. Copyright 2019, 
WILEY–VCH GmbH). d Illustration of the co-gel formation and its CPL responsiveness. e SEM image of the L-(Gel +  FeS2. f CD spectra of the 
L-(Gel +  FeS2) under LCP light illumination for 2, 4, 8, and 12 h (reproduced with permission from Ref. [84]. Copyright 2019, WILEY–VCH 
GmbH)
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discuss the CPL-activated promising applications based on 
chiral materials, with a primary focus in the fields of bio-
sensing, combating bacteria, circularly polarized photocatal-
ysis, and phototherapy. Although some of these applications 
can also be implemented in the absence of CPL, we must 
emphasize that the CPL could further improve the effect on 
the basis of its exceptional chiroptical performance.

3.1  CPL‑Triggered Biosensing

Based on chiral assemblies, CPL can also be applied in the 
field of biosensing. By employing metal-dependent DNA-
zymes [85], a chiral core-satellite nanoprobe was developed 
to detect multiple metal ions in live cells under CPL irradia-
tion (Fig. 6a-c) [86]. The chiral core-satellites nanostructures 
consist of a spiny platinum coated with gold nanorod dimer 
(Au NR@Pt, core) and several up-conversion nanoparticles 
(UCNPs, satellites). Through DNA hybridization, Au NR@
Pt and UCNPs were assembled into the chiral Au NRs@Pt-
UCNPs probe. Significantly, the intracellular CD response of 
Au NRs@Pt-UCNPs core-satellite assemblies was reversed 
after being uptake by the HeLa cells. This interesting prop-
erty could enable the Au NRs@Pt-UCNPs to be used as 

intra/extracellular biosensors under irradiation of CPL. The 
key role of CPL was to increase the local temperature of 
the chiral assembly. After illumination with 980 nm LCP 
light (5 Mw  cm−2, 2 min), the temperature of chiral core-
satellite assemblies could reach 57 °C, which is higher than 
the melting temperature of the metal-ion-protected substrate 
DNA, resulting in the release of the protected DNA strands 
from the assemblies. Notably, the other light conditions such 
as RCP light cannot cause the similar temperature change. 
In the presence of target metals, the fluorescence signals 
of Cy5, TAMRA, and UCNPs, which were quenched by 
Au NRs@Pt, could be restored. And this chiral nanoprobe 
showed good linear relationships when applied for sensing 
 Zn2+,  Mg2+, and  Cu2+. This new method of CPL-activated 
biosensor could be extended to probe other significant tar-
gets in live cells.

3.2  Combating Bacteria

Multidrug-resistant bacteria are becoming increasingly pre-
sent in humans, animals, and the environment, and pose a 
serious threat to public health that needs to be addressed as 
soon as possible. Chiral materials are widely investigated 

Fig. 6  a Schematic illustration of the Au NR@Pt dimer-UCNP satellites for intracellular triple-ion detection. b CD spectra of the Au NR@Pt 
dimer-UCNP satellites, and the inset is the typical TEM image of the Au NR@Pt dimer-UCNP satellites. c Normalized fluorescence intensity 
of satellite assemblies with various concentrations of the Cu2+, Zn2+, and Mg.2+ ions (reproduced with permission from Ref. [86]. Copyright 
2019, WILEY–VCH GmbH). d Schematic illustration of the chiral CdTe NPs for combating gram-negative bacteria under CPL illumination. e 
CD spectra of the CdTe NPs and the CdTe NRs, and the inset is the typical TEM image of CdTe NP and NR. f Cell viability of E. coli incubated 
with chiral CdTe NPs and then treated with different illumination intensities (405 nm, 30 min). The inset is the TEM image of the E. coli after 
treating with chiral CdTe NPs and CPL (reproduced with permission from Ref. [89]. Copyright 2018, WILEY–VCH GmbH)
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in biosensing owing to their unique optical properties. 
Recently, Sun et al. reported that chiral heterodimers of 
UCNP and gold yolk–shell NP can be applied for quanti-
tative analysis and imaging of antibiotic-resistant bacteria 
in vivo [87]. Interestingly, under CPL illumination, chiral 
cadmium telluride (CdTe) NPs can also be good candidates 
to combat bacteria. The concept is that chiral CdTe NPs will 
transform into nanorods under CPL illumination (405 nm, 
100 mW  cm−2), which was consistent with the previous 
report [88]. The nanorods can destroy of the bacteria mem-
brane, about 93% E. coli were dead after 30 min. At the same 
time, a large amount of reactive oxygen species (mainly 
hydroxyl radical) was generated during the transformation 
of NPs to NRs, which could cause the serious damage of 
the membrane and then kill the bacterial (Fig. 6d-f) [89]. 
Moreover, due to the strong fluorescent property, the chiral 
CdTe NP was the excellent fluorescent probe and can be 
used for the fluorescence imaging-guided bacterial infection 
therapy. This study opens up a new way for using both CPL 
and chiral nanomaterials to treat bacterial infection.

3.3  CPL‑Triggered Catalysis

As a specific light, CPL can be used to accelerate and even 
trigger some photocatalytic reactions. For instance, Sun et al. 
demonstrated that chiral CdTe quantum dots (QDs) with a 
unique truncated tetrahedral shape could be used as artifi-
cial restriction endonuclease (Fig. 7a, b) [88]. This chiral 
CdTe QDs with tetrahedral shape were prepared using D/L-
cysteine as chiral ligands, and the diameter was 4.5 ± 0.3 nm. 
CD spectra showed that these chiral QDs showed mirror sig-
nals between 350 and 410 nm. The prepared chiral QDs can 
be used to specifically recognize and cut double-stranded 
DNA (dsDNA) at the site GAT′ ATC (′ shows the cut site) 
under CPL illumination. It was found that the strong affin-
ity between chiral Cys and the conformation of the specific 
DNA sequence induced the specific sequence selectivity. 
More importantly, these CdTe QDs can be used for cutting 
DNAs in living cells and in nude mice. The mechanism 
study showed that photoinduced reactive oxygen species 
(ROS) are responsible for DNA cleavage. Simultaneously 
with DNA cleavage, the ROS content in the DNA solution 
increased in response to light over time. Moreover, under 
the same exposure time, the ROS production by the chi-
ral L- or D-CdTe QDs was clearly affected by the different 

polarization directions. L-QDs produced more ROS under 
RCP light than under LCP light. Consistent with the ROS 
yield, L-QDs showed a higher cleavage rate under RCP than 
under LCP light irradiation. This difference can be attrib-
uted to the differential absorption efficiency of the chiral 
CdTe QDs under CPL. Therefore, chiral CdTe QDs showed 
specific nuclease-mimetic activity under the corresponding 
CPL. Although photoinduced ROS are responsible for the 
cleavage activity, the sequence selectivity arises from the 
affinity between chiral cysteine ligands and the conformation 
of the specific DNA sequence, as confirmed by quantum-
chemical calculations. This is the first report that using chiral 
inorganic nanoparticles as the artificial endonuclease.

In a recent report, chiral copper sulfide QDs were pre-
pared in the presence of chiral L-/D-Pen and used to cut 
proteins under the illumination of circularly polarized 
light. Notably, the L-type QDs showed the highest catalytic 

Fig. 7  a Schematic illustration of chiral CdTe-based specific DNA 
cleavage under CPL irradiation. b CD spectra of the chiral CdTe NPs 
(reproduced with permission from Ref. [88]. Copyright 2018 Nature 
publishing group). c Schematic illumination of the photocatalytic 
reduction of 4-nitrophenol by chiral Gold-Gap-Silver (GGS) nano-
structures (NS). d CD spectra of GGS nanostructures prepared at 
different reaction times (reproduced with permission from Ref. [90]. 
Copyright 2015, WILEY–VCH GmbH). e Schematic illumination of 
photocatalytic oxidation of glucose enantiomers by chiral AuNP film. 
f CD spectra of the chiral AuNP films (reproduced with permission 
from Ref. [92]. Copyright 2018, WILEY–VCH GmbH)



Nano-Micro Lett. (2023) 15:39 Page 11 of 19 39

1 3

performance under the illumination of left-circularly polar-
ized light. Similar to the above chiral CdTe QDs, mechanis-
tic studies demonstrated the production of hydroxyl radicals 
under CPL illumination that resulted in the cutting of pro-
teins [90].

In addition, CPL can also be used to accelerate the cata-
lytic reaction using chiral plasmonic gold-gap-silver (GGS) 
nanostructures as the catalyst (Fig. 7c, d) [91]. The chi-
roplasmonic GGS nanostructures with interior gaps were 
enantioselectively fabricated using L/D-cysteine as the chiral 
ligands, denoted as GGS-L/D. The plasmonic CD response 
of GGS-L/D could be adjusted by the concentration of chiral 
cysteine in the synthetic process. Significantly, under illumi-
nation with LCP light, the catalytic efficiency of converting 
4-nitrophenol to 4-aminophenol by GGS-L is about fivefold, 
tenfold, 11-fold, and 12-fold higher than those of the pho-
tocatalytic reactions irradiated by linearly polarized (LP), 
RCP, natural light, and without light, respectively. The rea-
son why LCP light resulted in the highest catalytic efficiency 
was that LCP light activated a larger number of GGS-L than 
other light conditions, which increased the number of hot 
electrons of chiral plasmonic gold-gap-silver nanostructures 
by adsorbing the related rotation of polarized light. Moreo-
ver, the CPL could activate hot electrons of chiral plasmonic 
nanostructures, resulting in the much higher catalytic activ-
ity. This work opens up avenues for using chiral plasmonic 
nanostructures to chiral catalysis.

Besides the colloidal chiral materials, chiral plasmonic 
film could also be used for catalysis under CPL irradiation 
(Fig. 7e, f) [92]. Chiral Au NP films that modified with chi-
ral D-/L-phenylalanine (Phe) molecules (denoted as D/L-
Phe-NP films) can be used as the photo-oxidant under CPL 
irradiation for selective oxidation of glucose enantiomers. 
For D-glucose oxidation, when using L-Phe-NP films as 
the catalysts, the kinetic rate constant was 2.14  min−1 under 
RCP light illumination, which was about 2.9-, 7.6-, and 
21.4-fold higher than those of the photocatalytic reactions 
irradiated by linearly polarized (LP) light, LCP light, and 
dark condition, respectively. All the results showed that the 
catalytic performance was light-polarization dependent. Sig-
nificantly, the optical activity of the chiral film was almost 
unchanged after five times cyclic reaction, suggesting that 
this chiral NP film has good stability and could be reused.

The reasons for the polarized light-enhanced photoca-
talysis with high selectivity are as follows. Firstly, L-Phe 
and D-Phe onto the surface of Au NPs can self-assemble to 

chiral arrangement, which was very important in the chiral 
selection of glucose enantiomers. The chiral arrangement 
will make L-Phe-modified Au surface has higher catalytic 
activity toward the oxidation of D-glucose molecules, and 
will make the D-Phe-modified Au surface has higher activ-
ity toward the oxidation of L-glucose molecules. Secondly, 
chiral AuNP films selectively absorb photons of specific 
light handedness, resulting in matter–photon interaction. 
For instance, L-Phe-NP films showed a much stronger pro-
pensity to absorb LCP light at 660 nm. Excited plasmons on 
the gold surface act to populate  O2 antibonding orbitals and 
to form a transient negative-ion state to boost the oxidation 
reaction of glucose. Thirdly, CPL containing all polarization 
angles within one optical period can activate numerous NPs, 
thus increasing the light absorption efficiency. Fourthly, due 
to the efficient absorption of CPL, the rate of plasmon for-
mation in the hotspot region is markedly accelerated with 
maximized local electromagnetic field enhancement in the 
hotspot region. This is owing to surface plasmonic reso-
nance, which greatly increases the catalytic rates. Fifthly, 
the intensity of local photons in the hotspot region could be 
enhanced elastic scattering of the incident light by adjacent 
NPs and by increasing the photon path lengths and steady-
state photon intensity. The energy of the elastic scattering 
photon could accelerate the oxidation.

3.4  CPL‑Triggered Cell Manipulation

The biological effects of CPL on living cells are considered 
to be negligibly weak. However, under the help of the chi-
ral assemblies and circularly polarized photons, differen-
tiation of neural stem cells into neurons can be accelerated 
(Fig. 8a–d) [93]. Au NPs of three different sizes (5, 20, and 
30 nm) were coated with chiral D-/L-cysteine (D-/L-Cys) 
and then assembled into chiral NP assemblies by DNA 
hybridization, denoted as  C30(D)S5-C20(L). In the presence 
of Fox3,  C30(D)S5-C20(L) will turned into  C30(D)-C20(L)S5. 
The  C30(D)S5-C20(L) showed negative CD peak, while 
 C30(D)-C20(L)S5 displayed positive CD response. After incu-
bating  C30(D)S5-C20(L) with neural stem cells (NSCs), the 
effects of photonic polarization on the NSCs differentiation 
with RCP, LCP and linearly polarized (LP) light (532 nm, 
50-Hz pulse rate, 5 min each day for five days) were stud-
ied. RCP light illumination caused the largest increase in 
neurite length compared with other light conditions (LCP, 
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LP). The mechanism of CPL-accelerated NSC differentia-
tion was also studied. The difference in NSC differentiation 
between these illumination conditions was due to the dif-
ferent light-dependent force on the cytoskeleton under dif-
ferent light illuminations. The plasmonic-force calculations 
showed that the  C30(D)S5-C20(L) assembly exerted nine times 
larger force under RCP illumination than the force under 
LCP and LP illumination. To test the functionality of CPL-
differentiated NSCs, the obtained neurons were implanted 

in the hippocampus of a mouse model of Alzheimer’s dis-
ease. After treatment, the amount of amyloid-β (Aβ) and 
hyperphosphorylated tau (p-tau) proteins in AD mice were 
reduced by more than 70%. This work indicated that the 
biological effects of CPL can be applied to cellular develop-
ment for biomedical use.

Using light to manipulate cells has obvious advantages 
and has captured the attention of investigators. For cell 
detachment, using near-infrared (NIR) light can avoid the 
irreversible damage caused by the digestive enzymes. But 
NIR light can lead to the increase in temperature, which was 
bad for the cells. To avoid the heating effect and improve 
the efficiency of light in cell manipulation, CPL was intro-
duced. Chiral Au NP film with intense optical activity can 
be applied to promote cell adhesion, growth, differentiation, 
and retrieve cells without damage under CPL (Fig. 8e, f) 
[94]. The chiral Au NP film was consisted of achiral Au 
NPs and chiral L/D-penicillamine (denoted as L/D-Pen-NP 
film). The NG108-15 cells were chosen as the model cells. 
On the surface of chiral L-Pen-NP film, the rate of cell pro-
liferation was accelerated, while the rate was slowed on the 
D-Pen-NP film. Interestingly, CPL (808 nm laser) can be 
used to significantly improve the cell detachment efficacy 
without cell damage. Under the optimized condition (LCP 
light, 150 mW  cm−2 for 5 min), the detachment percentage 
of cells on the L-Pen-NP film was 91.2 ± 7.8%. No heat-
ing effect was observed after illumination, and the viabil-
ity of cells retrieved from L-Pen-NP film exceeded 95%, 
which was much higher than the cells retrieved from the 
D-Pen-NP film. This could be owing to that more proteins 
were adsorbed on the L-Pen-NP film, which might work as 
a protecting layer, and this strategy for cell detachment by 
remote irradiation with CPL was even safer than the diges-
tive enzymes.

3.5  CPL‑Triggered Phototherapy

Photodynamic therapy (PDT) is a noninvasive, site-selective 
way with minimal side effects that has emerged as an effi-
cient treatment for local cancer cell ablation. Although a 
huge amount of photosensitizers have been used as PDT 
agents for cancer therapy, their limited ROS-generating 
capability caused low PDT efficiency. This issue can be 
addressed using chiral materials and CPL. For example, 
chiral dimers of AuNPs modified with protoporphyrin IX 

Fig. 8  a Schematic of differentiation of NSCs with CPL after daily 
incubation with C30(D)S5-C20(L) for five days. b CD spectra of 
C30(D)S5-C20(L) and C30(D)-C20(L)S5 in phosphate buffered 
saline. c Neurite mean length of differentiated NSCs incubated with 
C30(D)S5-C20(L) or C30(D)-C20(L)S5 for 4 h each day, and subse-
quently illuminated with CPL (50 μJ per pulse, 50 Hz, 5 min) for five 
days, or incubated with C30(D)S5-C20(L) without illumination for 
5 days; cells without nanoassemblies or light exposure were used as 
a control. d Mean lengths of neurites in differentiated NSCs. e CD 
spectra of differentiated NSCs from day 1 to day 5 (reproduced with 
permission from Ref. [93]. Copyright 2021 Nature publishing group). 
f CD spectra of Au NP film and L/D-Pen modified Au NP film. g Cell 
detachment rates upon different light irradiation (reproduced with 
permission from Ref. [94]. Copyright 2017 Nature publishing group)
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(PpIX) could enable dichroic targeting of PDT under CPL 
illumination [95]. The chiral dimers were assembled via 
DNA hybridization and displayed scissor-like geometry with 
a distinctive dihedral angle. Significantly, the intracellular 
AuNP dimer showed a mirror structure of the extracellular 
dimer during transmembrane transport. Correspondingly, the 
plasmonic CD responses changed from negative to positive 
after entering cells. For PDT experiment, the chiral AuNP 
dimers were incubated with HeLa cells, then the cells were 
illuminated with different light conditions. The viability of 
cells was dramatically decreased when circular polarization 
of incident photons matched to the preferential absorption 
of chiral dimers localized inside the cells, which is associ-
ated with the increased generation of reactive oxygen species 
(ROS). LCP light resulted in a three-time higher cell mortal-
ity rate compared with RCP or LP light. Significantly, the 
difference between LCP and RCP light illumination in apop-
tosis induction for chiral AuNP dimers was much greater 
than one might expect based on the intracellular concen-
tration of photosensitizers, g-factor, and the difference of 
light absorption by the twisted AuNP dimers. This is quite 
surprising from the optical standpoint and a detailed inves-
tigation needs to be performed to fully understand the origin 
of such strong PDT effect. The ROS generation experiments 

showed that the amount and localization of ROS are the key 
in understanding the biological effect of RCP and LCP pho-
tons. The large difference between RCP and LCP photons is 
specific to the concentration of the photodynamic therapy 
agents and the chiral AuNP dimers.

To further prove the elimination of cancer cells, the chiral 
gold nanorod (GNR) dimers modified with Chlorine6 (Ce6) 
were used to confirm the effect of circular polarization in 
killing cells. The polystyrene-block-poly(acrylic acid) (PS-
PAA) was used to coat on the GNR dimers, and then, the 
intracellular CD signal was the same to the extracellular CD 
response. Due to the chiral GNR dimers showed a negative 
CD peak, so the RCP light gives a highest efficiency in kill-
ing cancer cells. Therefore, the chiral dimers of AuNP and 
GNR proved the dichroic targeting of cancer cells incor-
porating of chiral nanostructures with specific handedness.

To further enhance the efficiency of using chiral structures 
for PDT, chiral shell–satellite (SS) assemblies were devel-
oped as PDT agents to treat cancer (Fig. 9a–c) [96]. The Ag 
NP (core) and Au NPs (satellites) were assembled to form 
the core–satellites assemblies. Next, chloroauric acid was 
added to transfer the core–satellites into shell–satellite (SS) 
assemblies. Then chiral D-/L-cysteine was modified onto the 
SS assemblies, forming the chiral plasmonic SS-D/L-Cys 

Fig. 9  a Illustration of self-assembled shell–satellite (SS) nanostructure as a chiral photodynamic therapy agent under CPL illustration. b CD 
spectra of the chiral SS15 nanostructure. The inset is the 3D tomography of the SS15 nanoassembly. c The relative tumor growth curves after 
various treatments: PBS only, SS15 assembly + LCP light, SS15 assembly + LP light, and SS15 assembly + RCP light (reproduced with permis-
sion from Ref. [96]. Copyright 2017, WILEY–VCH GmbH). d Scheme for the synthesis of Cys-MoO3−x NPs and their applications for tumor 
cell ablation via CPL radiation. e CD spectra of chiral Cys-MoO3−x NPs. f Viability of HeLa cell incubating with chiral D-Cys-MoO2 (50 µg 
mL−1) after 532 nm RCP, LP, and LCP irradiation (1 W cm.−2 for 15 min) was analyzed by CCK-8 assay (reproduced with permission from 
Ref. [97]. Copyright 2019, WILEY–VCH GmbH)
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assemblies. These chiral SS-D/L-Cys assemblies, as chiral 
photosensitizers, can generate ROS under CPL irradiation. 
Under LCP light irradiation, SS-L-Cys assemblies produced 
the higher degree of ROS than SS-D-Cys assemblies due 
to the higher energy transfer efficiency. Under illumination 
with RCP light, SS-D-Cys generated more ROS than the 
SS-L-Cys, and even higher than protoporphyrin IX (PpIX), 
the classic organic photosensitizer. In order to study the pho-
totherapeutic potential, chiral SS assemblies were incubated 
with HeLa cells for 24 h and then removed the excess assem-
blies. Under RCP irradiation, SS-D-Cys assemblies killed 
more cancer cells than SS-L-Cys assemblies. As a control, 
the achiral PpIX showed much weaker phototherapeutic 
effect and no light preference was observed. The therapeutic 
efficacy of the SS-D-Cys assemblies was evaluated in vivo 
using a nude mouse tumor model. Under RCP light irradia-
tion, the tumor was completely eliminated and no regrowth 
of tumor was observed, indicating that the PDT was highly 
efficient for tumor treatment under RCP.

In a recent report, under CPL irradiation, chiral nanoma-
terials were also used as photothermal therapy (PTT) agents 
to eradicate cancer cells. Using chiral cysteine as the ligands, 
chiral substoichiometric molybdenum oxide (L/D-MoO3−x) 
nanoparticles with intense CD response in the visible‐ and 
near‐infrared‐light regions were prepared (Fig. 9d-f) [97]. 
This chiral L/D-MoO3−x could be applied as the photother-
mal therapy agent for tumor cell ablation. Under illumination 
with LCP light, L-MoO3−x showed the highest efficiency for 
killing HeLa cells, while the D-MoO3−x gave the highest 
mortality for HeLa cell ablation under RCP light, indicating 
the chiral selectivity of L/D-MoO3−x for incident light. Such 
chirality-dependent photothermal therapy of chiral  MoO3−x 
NPs can be ascribed to the differential absorption efficiency 
of the chiral NPs under different CPL illumination. When 
CPL was used as light source, chiral  MoO3−x NPs can gener-
ate stronger local heating effects than LP light irradiation, 
which will cause higher cancerous cell killing rate.

4  Conclusion and Outlook

In this review, we firstly summarized the recent progress on 
the preparation of chiral materials using circularly polarized 
light (CPL). As a chiral source, CPL has been found in star-
forming regions, and could be a possible origin of single 
chirality in nature. By locking the chirality of the incident 

photons, CPL was used to induce enantiomeric excess from 
a prochiral photosensitive molecule (such as azobenzene 
dimer [98]), produce chiral porous solids containing only 
achiral building blocks [99], and synthesize chiral coordina-
tion polymer [100]. Moreover, CPL could transfer the chiral 
information from photons to the materials, which has been 
used for the preparation of chiral organic compounds (such 
as chiral polymers and amino acid derivatives) and inorganic 
nanostructures, and CPL can regulate the dynamic chirality 
at molecular level and in chiral nanoassemblies. On the other 
hand, circularly polarized light can be applied to many fields 
based on the chiral materials. By using chiral assemblies, a 
CPL-activation method was proposed for detecting the metal 
ions in live cells. Also CPL can be applied for combating 
bacterial, phototherapy, catalysis, cell manipulation, and so 
on.

On account of the above-mentioned progress of CPL-ena-
bled chiral nanomaterials, there is plenty of room for explo-
rations to further advance this exciting multidisciplinary 
field. Bottleneck problems still remain and need to address 
in the future. For instance, how can the optical responses of 
CPL-induced chiral structures be enhanced? How can CPL 
be used to further improve the yield of chiral nanomaterials 
with high yield for stronger optical responses? When both 
CPL and chiral ligand are used in the synthesis of chiral 
materials, does chiral ligand play any essential role in the 
synthetic processes? These are very relevant open questions 
that certainly deserve a lot of brilliant ideas and experimen-
tal efforts.

The development of CPL-driven synthetic approaches 
to obtain chiral nanoparticles with high morphological and 
chemical stability, as well as strong optical activity, can 
expand their applicability in different technologies. For the 
CPL-triggered catalysis, such as chirality-dependent pho-
tocatalytic water splitting using CPL, the detailed mecha-
nism under these reactions was still unclear. This requires 
more comprehensive mechanistic study to fully elaborate the 
phenomena. In the future, optimized material combinations 
and morphology control with better matched CPL excita-
tion have potential to achieve much higher performance of 
chirality-sensitive photochemistry.

Because many kinds of inorganic nanoparticles (such as 
quantum dots and plasmonic nanomaterials) are light sensi-
tive, using CPL to fabricate chiral structures should have a 
broad prospect. For now, most studies are still focused on 
Au, but other plasmonic metals, such as silver, aluminum, or 
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palladium, will be worth exploring. With the deeper under-
standing of interactions of CPL and chiral materials and the 
emerging of advanced characterization methods, we envision 
that the CPL-activated chiral materials could provide more 
important and unprecedented applications in detection, bio-
medicine, biocatalysis, and life science.
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