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HIGHLIGHTS

• Machine learning, techno-economic analysis, and life cycle analysis are imperative for various conversion approaches of high avail-
ability and low utilization biomass (HALUB).

• The conversion of HALUB to sustainable energy and materials has a positive consequence on mitigating climate change and building 
a green future.

• Microfluidic and micro/nanomotors-powered sustainable materials are of high potential for advanced applications.

ABSTRACT We conceptualize bioresource upgrade for sustainable energy, envi-
ronment, and biomedicine with a focus on circular economy, sustainability, and 
carbon neutrality using high availability and low utilization biomass (HALUB). 
We acme energy-efficient technologies for sustainable energy and material recov-
ery and applications. The technologies of thermochemical conversion (TC), bio-
chemical conversion (BC), electrochemical conversion (EC), and photochemi-
cal conversion (PTC) are summarized for HALUB. Microalgal biomass could 
contribute to a biofuel HHV of 35.72 MJ  Kg−1 and total benefit of 749 $/ton 
biomass via TC. Specific surface area of biochar reached 3000  m2  g−1 via pyrolytic 
carbonization of waste bean dregs. Lignocellulosic biomass can be effectively 
converted into bio-stimulants and biofertilizers via BC with a high conversion 
efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to 
a current density of 672 mA  m−2 via EC. Bioresource can be 100% selectively 
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synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential 
to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and 
multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and 
systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.

KEYWORDS High availability low utilization biomass (HALUB); Circular economy; Machine learning; Energy-efficient conversion; 
Nano-catalysis

1 Introduction

More than 80% of the global energy requirements are grati-
fied by fossil fuels, which manifest the dependency of human 
beings on non-renewable resources. This review exclusively 
aims to investigate novel raw materials with high availability 
and low utilization bioresource (HALUB), which are abun-
dant in nature around the Globe, tell-tale their high potential 
to achieve carbon neutrality in environment, largely unuti-
lized at a significant level. Among the various renewable 
biofuels, HALUB is one of the most appealing feedstocks 
to produce gasoline substitutes or carbon–neutral materials 
in order to reduce the use of other non-renewable sources, 
such as petroleum resources and the concentration of  CO2 
[1, 2]. Owing to the environmentally benign and biodegrad-
able nature, the carbon materials derived from bioresources 
can be used in energy conversion, storage, catalysis, water 
purification, biomedicine and biotechnology applications 
[3, 4]. Hence, it is of significant importance to explore this 
research field and its potential submissions.

Bioresource upgrade is an emerging frontier due to its 
importance in energy, environmental and biomedical appli-
cations. For instance, the lignocellulose can be used as a 
bioresource in the production of hydrocarbons, for transport 
and the generation of chemical building blocks for green 
synthesis, biotechnology, or biomedicine. Prior to the pro-
duction of bioethanol, the lignocellulosic biomass can also 
be utilized via both catalytic and non-catalytic degradation 
[5]. Anaerobic digestion (AD) and microbial fuel cell (MFC) 
are promising in the process for HALUB conversion into 
energy [6]. Owing to their high lignin solubility, wide poten-
tial to avoid water splitting reaction, the ionic liquids (ILs) 
have attracted attention as alternative electrolytes. While the 
high-cost of ILs has limited their commercial use, hydro-
thermal carbonization (HTC) and hydrothermal liquefaction 
(HTL) can be used as alternatives to conventional fuels due 
to the synthesis of high-value-added carbonaceous materials 
and biofuels [7, 8]. The hydrothermal conversion of food 

residues and lignocellulosic biomass has been studied via 
HTC and HTL [9, 10]. Waste yeast biomass-derived mate-
rials can help develop eco-friendly catalysts for sustainable 
water splitting and hydrogen production [11, 12]. Machine 
learning can be very helpful to predict the performance 
and mechanism of the HALUB conversion processes and 
to enhance the conversion efficiency during the process of 
HTC and HTL [11, 12].

The effectual conversion of HALUB is very significant 
in the production of high-value chemicals and the solid 
waste management [13]. Biochemical conversion can be 
used to produce green chemicals and biofuels via enzymatic 
hydrolysis, anaerobic digestion, fermentation, and separa-
tion. Furthermore, alkali-based pretreatment occupies its 
role in the development of ethanol production technologies 
from cellulosic biomass [13]. The combined biorefineries 
are of high potential for the cleaner production of biofuels, 
food, bio-based polymers, bio-based chemicals, and pharma-
ceuticals [7, 14]. The selection of non-food raw materials, 
the advanced conversion and management technologies are 
highly important in the sustainable production of biofuels, as 
alternatives to biofuel synthesis from energy crops like sor-
ghum and non-staple miscanthus. Most of the HALUB like 
straw is returned to the soil, while researchers are exploring 
the pyrolysis, gasification, and other new technologies to 
convert and manage these biowastes. HALUB can be used 
to produce electricity, syngas, carbon materials, biofuels and 
electrolyzer fuel cell, playing a significant role in life science 
and environmental sustainability, especially to moderate cli-
mate change from a long-term perspective. Various applica-
tions of the HALUB are summarized in Fig. 1.

The world’s total carbon emissions are about 30 billion 
tons per year [15, 16]. It is exceedingly energy-consuming 
and cost-ineffective to neutralize these emissions at a large 
scale. Reproducing energy and materials from the renew-
able bioresources is an economic approach to neutralize car-
bon emissions. Furthermore, it is urgent to find other eco-
friendly sources for sustainable electrochemical products 
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such as supercapacitors, dye-sensitized solar cells, and 
sensors.

Here we afford an overview of biochemical, electrochemi-
cal, thermochemical conversion, as well as nano-catalytic 
technologies and machine learning for advanced energy 
materials. Biochemical conversion (BC) includes enzymatic 
hydrolysis, anaerobic digestion, fermentation, and advanced 
fermentation [17]. Electrochemical conversion (EC) com-
prises valorization of lignin, microbial fuel cells, and fuel 

cell system [17]. Thermochemical conversion (TC) includes 
hydrothermal carbonization, pyrolysis, gasification, lique-
faction, and combustion [17]. A combination of different 
conversion technologies is discussed, such as integration of 
(1) EC and BC, (2) TC and BC and (3) EC, TC and BC.

Promising technologies for renovating HALUB to 
energy and materials are summarized in Fig. 2. Among 
these technologies, biotechnology, nanotechnology, elec-
trocatalysis and photocatalysis are the most appealing 
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Fig. 1  Applications of the HALUB
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fields in recent years [18]. In terms of novel fuel cells, sin-
gle-component fuel cells have been reported to address the 
technical bottlenecks of solid oxide fuel cells which were 
difficult to commercialize. These advances have urged 
researchers to sightsee the development of international 
fuel cells. The  CO2 released in atmosphere happened when 

biomass burned for electricity or heat. Although, biomass, 
like tree, crop as well as agricultural plant captures  CO2 
with photosynthesis process. The carbon-negative property 
of biomass energy needs attention of researchers and thus 
the development of the biomass energy industries could be 
promoted. In total, following sections of the review exclu-
sively demonstrate the relevant information and studies.

2  Bioresource Components and Material 
Properties

2.1  Biomass‑Based Material Properties

Biomass is classified into the following major groups: fungal 
biomass, bacterial biomass, marine algae and plant biomass, 
herbaceous and agricultural biomass, human waste biomass, 
industrial waste or contaminated semi-biomass, and animal 
biomass [19]. The composition of biomass often depends on 
its type and growing conditions, and, in addition, for plant-
based biomass composition depends to a large extent on the 
soil in which it grows [20]. However, in most cases, biomass 
contains cellulose, hemicellulose, lignin, polysaccharides, 
extracts, lipids, proteins, carbohydrates, water, hydrocar-
bons, ash and other components [21–26]. The composition 
of lignin, cellulose and hemicellulose is given in Fig. 3a–d 
[27]). In terms of constituent elements, biomass can contain 
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a large number of ash-forming elements, i.e., Na, K, Ca, Mg, 
Si, Ti, Al, and Mg [28], in addition to the major C, H and O 
and the minor non-metallic N, P and S elements [29]. These 
elements are essential for the properties of biomass-derived 
materials due to doping. In addition, trace elements such as 
Zn, Cu, Mo, Mn, Fe are important in biomass processing and 
properties of biomass-derived materials because they can 
act as catalysts for the reactions generating biomass-derived 
materials [30].

It is noteworthy that the main focus of most reviews and 
research articles is on biomass processing methods. There 
is no doubt that the development of efficient biomass pro-
cessing methods is crucial for the development of the field 
of biomass-derived materials. However, if the influence of 
biomass components on the performance of biomass-derived 
materials can be clarified, blind selection of biomass pre-
cursors will be avoided and biomass sources with a certain 
high percentage of components can be specifically selected 
according to the application of biomass-derived materials, 
which should enhance the performance of biomass-derived 
materials.

Interestingly enough, biomass exhibits a great variability 
in chemical composition and physical behavior (O/C and 
H/C ratios, particle size structure, ash content). It has been 
shown that the flammability and explosive behavior of bio-
mass is related to the composition of the biomass, with a 
greater tendency of spontaneous combustion observed in 
that biomass with higher H/C ratios [31]. Furthermore, 
the development of lignin-rich biomass into nanoparticles 
(LNP) offers key advantages, such as improved performance 
of polymer blends and higher antioxidant activity due to 
a higher surface area to volume ratio [32]. The complex 
chemical structure of the aromatic ring containing methoxy 
and hydroxyl groups allows lignin to be incorporated into 
different materials to produce antioxidant products that can 
be used in a variety of applications. For example, Lu et al. 
[33] used a supercritical antisolvent (SAS) method to pre-
pare nanoscale lignin (0.144 ± 0.03 μm) using acetone as the 
solvent and supercritical carbon dioxide as the antisolvent. 
The results showed that the SAS process did not lead to 
degradation of lignin or changes in chemical structure. Due 
to the increased solubility, many antioxidant parameters of 
nano-lignin were significantly enhanced, including DPPH 
radical scavenging activity, superoxide radical scavenging 
activity and reducing power. As an antioxidant, nanoscale 
lignin is a better material than non-nanoscale lignin.

Hydrothermal liquefaction is a promising process for pro-
ducing high-quality bio-oil from biomass. However, differ-
ent biomass compositions have a significant effect on bio-
oil yield. Caprariis et al. [34] compared the effect of three 
biomass, natural hay, oak and walnut shell, on the yield and 
quality of bio-oil and found that bio-oil yield increased with 
increasing lignin content in biomass, with walnut shell hav-
ing the highest bio-oil yield and cellulose having the lowest 
bio-oil yield.

Notably, the reconstruction of structural plant compo-
nents (cellulose, lignin and hemicellulose) into materials 
with advanced optical properties is a very promising area, 
as advanced materials made from sustainable resources, 
including those obtained from industrial or agricultural side-
streams, with potentially lower costs, show great promise in 
optoelectronics, while meeting or even exceeding current 
performance requirements. The fabrication of lignocellulose 
into optical thin films has a wide range of applications. In 
addition, lignocellulose can be used to produce bio-based 
UV-blocking materials that can then be used in devices to 
protect components from the harmful effects of UV light. In 
addition, bioluminescence can be achieved by integrating 
lignocellulosic materials with luminescent materials, includ-
ing lanthanides, carbon quantum dots and other dopants: 
perovskites, metal halides, and organic dyes [35].

In addition, biomass diffraction materials are widely stud-
ied in the field of electrocatalysis. Doping of heteroatoms 
such as N, B, S, Se, I, and P into carbon nanomaterials can 
be used as promising electrocatalysts as an alternative to 
the noble metal Pt. Heteroatoms have different atomic sizes 
and electronegativity compared to C. Therefore, their dop-
ing into graphitic carbon structures leads to changes in their 
charge distribution and electronic properties. In this regard, 
N is a special dopant because it is the next neighboring ele-
ment of C in the periodic table, both of which exhibit similar 
atomic sizes but different electronegativities. The doping of 
N into the graphitic carbon structure produces a minimal 
lattice mismatch. The strong electron-withdrawing ability of 
the N atom brings a net positive charge to the neighboring 
C atom through intermolecular charge transfer. Therefore, 
based on this consideration, biomass precursors with high 
heteroatom content can be selected in the preparation of bio-
mass diffractive materials for electrocatalysis [19].

Furthermore, the cellulose content is related to the 
mechanical strength of the biomass, and the structure of cel-
lulose and its crystallinity are other important parameters 
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that affect the mechanical properties. Some authors have 
observed the influence of the percentage of cellulose on 
the mechanical properties, and defects or dislocations can 
be considered as weaknesses of the plant cell wall. Fibers 
that appear to have the highest levels of cellulose, such as 
flax or ramie, are those with higher mechanical properties. 
However, this is not always the case; cotton, despite its high 
cellulose content, has very low tensile properties. Cellu-
lose rate is not the only reason for the mechanical capac-
ity of plant cell walls [36]. The orientation of the cellulose 
fibrils relative to the axis is also considered to a factor of 
the mechanical performance. Different theories, based on 
the work of mechanical engineers or biologists, enable the 
arrangements of the different cell wall constituents to be 
another explanation.

2.2  Biomass‑Based Material Synthesis Process

The different components of biomass have an impact on 
the properties of the derived materials, in addition to the 
process of material preparation. The processing of biomass 
into carbon nanomaterials depends to a large extent on the 
structure of the biomass components. The conversion pro-
cess of biomass to carbon materials is considered. Selection 
of the right biomass precursors is a key step in the synthesis 
of biocarbon materials with the desired structure and mor-
phology. Biomass resources are usually composed of com-
plex components and these chemicals usually have different 
pyrolysis mechanisms. For example, the decomposition of 
cellulose in an inert atmosphere typically occurs between 
315 and 400 °C [37]. At temperatures above 400 °C, cellu-
lose pyrolyzes and forms a small amount of residual carbon 
(≈6.5 wt%). As for lignin, the pyrolysis is more complex 
and can occur over a wider temperature range (140–800 °C), 
while a larger percentage of residual carbon (41.2 wt%) is 
produced at 800 ℃ [38].

The decomposition of cellulose, lignin and hemicellulose 
has different decomposition routes during pyrolytic carbona-
tion. The large number of hydroxyl groups in cellulose and 
hemicellulose are highly susceptible to degradation to vola-
tile compounds (CO,  CO2,  H2O and some hydrocarbons) 
at low temperatures (≤ 400 °C). At the same time, these 
processes usually produce many oxygen-containing hetero-
cycles, which are easily converted to aromatic rings by reac-
tions (dehydration, decarboxylation and decarbonylation) as 

the temperature increases, favoring the formation of BCM 
with interconnected microstructures. As for lignin, it con-
tains fewer oxygen atoms and more aromatic rings, which 
means that it can be easily converted to carbon materials 
without forming many micropores [39]. The composition of 
biomass has a great influence on the decomposition process. 
Chemical transformation of HTC biomass generally consists 
of three steps: (1) hydrolysis of biomass to (hydroxymethyl) 
furfural; (2) polymerization to form polyfurans; and (3) car-
bonization by further intermolecular dehydration. Cellulose 
hydrolysis is more likely to form glucose, while lignin can 
be decomposed into its main product, phenol. As for hemi-
cellulose, the HTC process is more complex. For example, 
504 reactions involving 114 pyrolytic species were found 
in the pyrolysis of hemicellulose. As HTC continues, the 
oxygen and hydrogen content (assessed by O/C and H/C 
ratios) will decrease due to demethanation, dehydration and 
decarboxylation [40].

In addition to HTC and pyrolysis, other methods such 
as microwave [41, 42], plasma [43, 44], laser [45–47] and 
flash joule heating [48] have been used to convert biomass 
into carbonaceous materials. Omoriyekomwan et al. [49] 
reviewed the microwave-assisted pyrolysis of biomass to 
produce carbon nanotubes and carbon nanofibers. Cellu-
lose and polysaccharides are active biological components 
responsible for the generation of carbon nanofibers and car-
bon nanotubes from biomass by microwave irradiation. In 
contrast to HTC and pyrolysis, plasma provides not only 
high temperatures and pressures, but also an abundance of 
free radicals, ions and molecules from the biomass, which 
can rapidly decompose biomass into simpler graphene [50]. 
Shah et al. [43] used plasma after pyrolysis to clarify the 
importance of plasma for graphene growth. Despite the 
decomposition of biomass by breaking chemical bonds 
during pyrolysis at 750 °C, macromolecules formed from 
pyrolytic debris are not conducive to graphene growth. Once 
the plasma is turned on, carbon atoms, ions and free radi-
cals are deposited on the copper substrate and the resulting 
hydrogen radicals also etch and clean the oxides from the 
copper substrate.

Lasers can also induce local high temperatures and pres-
sures as a common laser cutting tool for converting biomass 
to graphene. During laser irradiation [46], hemicellulose and 
cellulose decompose more easily and produce more defects 
under laser irradiation. At the same time, aromatic lignin 
can form graphene to a lower degree. It should be noted that 
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the laser-treated raw lignin formed amorphous carbon with 
high viscosity, indicating the importance of the crosslinked 
lignocellulosic structure. South Korea and others. Graphene 
embedded with metal nanocrystals was further synthesized 
by laser conversion of biomass [46]. However, Mahmood 
et al. [47] prepared porous graphene derived from lignin by 
laser writing. The lignin film was firstly prepared with water-
soluble cork alkaline lignin and protected with adhesive tape 
to avoid deformation of the film at high temperature. Dur-
ing laser writing, gaseous molecules from lignin lead to the 
formation of porous structures. The photothermal process 
is charged by laser intensity/power. Layered porous carbon 
and graphene carbon can be obtained by laser irradiation 
with an optimal power range. With increasing laser power, 
ordered graphene structures with rich defect boundaries can 
be observed.

2.3  Biomass‑Based Material Structure 
and Applications

Biomass feedstock directly affects the performance and 
application of biomass char by influencing the composition 
and structure of biomass char, and to some extent plays a 
decisive role in the activity and reactivity of biomass char. 
Specifically, the catalytic performance and reactivity of bio-
char are mainly controlled by its surface-active sites (e.g., 
metal atoms, non-metal heteroatoms, surface-active func-
tional groups, defective structures) [51]. These active sites 
are essentially composed of elements, which are reflected in 
the surface structure of biochar and influenced by the carbon 
structure and porosity. It is by influencing these components 
that different biomass feedstocks affect the performance of 
their corresponding biochar.

It is worth noting that the elemental composition of 
biochar from various sources differs due to the functional 
composition of the biomass itself, further resulting in dif-
ferences in the types of biochar activity. One of the most 
prominent features of sludge-derived biochar is its higher 
ash content than plant and animal sources, which may be due 
to the complexity of sewage sludge and the diversity of its 
composition. Its ash content consists mainly of silica com-
pounds and various heavy metal components (e.g., Ni, Cu, 
Cr, Cd and Pb) [52]. Several studies have also shown that 
N doping and metal (e.g., Fe and Al) loading are common 
in sludge-derived biochar. The reason for this phenomenon 

is the addition of flocculants (e.g., polyacrylamide, polym-
erized ferric sulfate, polymerized aluminum chloride) dur-
ing the chemical conditioning of the sludge. As a result, 
sludge-derived biochar may often contain more significant 
reactivity imparted by transition metals. However, ash from 
sludge-derived biochar is often difficult to clean and often 
requires high-risk reagents (e.g., hydrofluoric acid and nitric 
acid) to etch or restructure the sludge-derived biochar to 
expose the active structure covered by the ash [53].

The biochar surface is the main site of interfacial reac-
tions, including interfacial adsorption and catalysis. Surface 
properties mainly include specific surface area (SSA), sur-
face functional groups (SFGs), and surface electrical prop-
erties, depending on production parameters (e.g., pyrolysis 
temperature and time) and biomass type [54]. The increase 
in SSA of biochar during carbonization is due to the growth 
of nanopores generated by the growth of high-density vor-
tex layer microcrystals. The SSA of plant biomass char was 
higher than that of other charcoals, while the SSA of sludge 
biomass char was the lowest, probably due to the higher ash 
content covering the pores of sludge biomass char. It is note-
worthy that the SSA of bone-derived biochar is higher than 
the first two. This may contribute to the excellent porosity 
configuration of biochar in bone constructed from natural 
pore templates and acid etching to further modify the pore 
structure.

In contrast, the SSA of manure-derived biochar was only 
0.02–0.16 times higher than that of lignocellulosic biochar 
[55]. The surface-active functional groups of biochar are the 
most intuitive manifestation of its adsorption and catalytic 
properties. The surface-active components, however, are 
mainly composed of elements derived from biomass and 
vary with the abundance and species in different biomass 
sources. In other words, biomass can impart different surface 
activities to biochar by influencing the type and abundance 
of SFGs in the resulting biochar. For example, the –COO 
antisymmetric stretch of amino acids is often found in wood 
and crop waste biochar, and CO32– is usually found in waste 
and manure biochar and rarely in biochar of plant origin 
[56].

The carbon composition of biochar can be divided into 
dissolved organic carbon and polymeric carbon skeletons, 
with the latter predominating. Specifically, the carbon skel-
eton consists of relatively disordered sp2 and sp3 hybridized 
carbons that exhibit an amorphous structure. Based on their 
graphitization and arrangement, typical aromatic cluster 
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models and rectangular polycyclic aromatic ring-like mod-
els are proposed to describe the carbon skeleton morphology 
[57]. In general, the preparation parameters that can induce 
carbon arrangement (e.g., pyrolysis temperature) usually 
have a greater effect on the carbon skeleton form than the 
biomass type.

Regardless of the biomass type, non-carbonized organic 
matter in the carbon skeleton structure (including amor-
phous lignin, crystalline cellulose and amorphous hemicel-
lulose, dominated by sp3 hybridization) slowly transforms to 
amorphous aromatic carbon and then to conjugated aromatic 
carbon as the pyrolysis temperature increases [58]. In addi-
tion, dissolved organic carbon (DOC) is also an important 
component of biochar, and DOC affects the stability and 
performance of biochar-based materials in the environment. 
Further studies have shown that biomass type can influence 
the nature of DOC, which is of interest for the application 
of different types of biochar [59]. The pore structure is not 
only the basis for the expression of adsorption activity of 
biomass char, but also an important contact or attachment 
site for the catalytic process, which is strongly influenced by 
the original template structure, density, and ash composition 
of the precursor biomass feedstock.

The average pore size of biochar typically ranges from 
2 to 50 nm and varies depending on the biomass type. For 
animal bones, nanoscale plate-like hydroxyapatite crystals 
are dispersed in discrete spaces of collagen fibers. Unlike 
fecal-derived biochar, organic matter in bones can act as 
carbon precursors and natural minerals can act as their 
own templates, playing a crucial role in the formation of 
mesopores and macropores [60]. Animal bones are layered 
composites with concentric sheets or plywood-like sheets 
that can be used to form the layered structure of biochar. 
In addition, animal shells such as shrimp shells also have 
properties similar to animal skeletons and can form clearly 
layered porous structures [61]. For biochar of plant origin, 
lignin-rich biomass (e.g., bamboo, coconut shells) tends to 
form biochar with larger pores, while biochar prepared from 
cellulose-rich biomass (e.g., rice husk) usually has smaller 
pore sizes [62].

Biochar produced from cellulose-rich peel mesocarp 
exhibited a lamellar morphology and higher porosity com-
pared to lignin-rich peel exocarp. Therefore, it is reason-
able to speculate that biochar produced from cellulose-rich 
biomass has a finer pore structure and higher pore density. 
In addition, the pore classification of biochar obtained from 

different biomass feedstocks differed somewhat. Plant-
derived biochar (e.g., sawdust and straw) and sludge-derived 
biochar mainly contain micropores and mesopores, while 
animal-derived biochar (e.g., pig bone biochar and eggshell 
biochar) are dominated by mesoporous structures, some of 
which (e.g., shrimp shell) even have three pore structures 
(micropores, mesopores and macropores) [63].

Aside from the various raw material utilizations in natural 
biomass, artificial composition management and structural 
design at various scales also show remarkable value in mate-
rial synthesis and application. The hydroxyl group on the 
surface of wood cellulose allows for increased mechanical 
strength. According to studies [64], after removing a consid-
erable amount of lignin and hemicellulose with a combina-
tion of sodium hydroxide and sodium sulfite, the exposed 
hydroxyl groups of a big amount of cellulose and hemicel-
lulose could form multiple hydrogen bonds with each other 
at high temperatures. The elimination of lignin and hemi-
cellulose enhances not only the density of wood, but also 
its mechanical qualities due to the production of a signifi-
cant number of hydrogen bonds. This technology produces 
extraordinarily strong wood (548.8 MPa, ten times stronger 
than natural wood), which means it could one day be utilized 
as a less expensive, greener alternative to steel or even tita-
nium alloys. Similarly, increasing the number of hydroxyl 
groups exposed to the cellulose/hemicellulose chain would 
allow for more chemical changes. Li et al. [65] extracted 
lignin from natural wood and modified its surface charge 
to generate a nanofluid film made of wood nanofibers and 
high-density cellulose, the conductivity of which increased 
from 1 to 2 ms  cm−1 following modification. Furthermore, 
the membrane’s nanofiber channel diameter may be varied 
between 2 and 20 nm, allowing for high flexibility and 150° 
folding. As a result, wood-derived cellulose membrane has 
a promising future in the field of folding and high-perfor-
mance nanofluid devices.

2.4  Biomass‑Based Material Optimization

The chemical structure of biomass can be easily modified 
to develop new materials, especially lignin rich in is phe-
nolic and aliphatic hydroxyl groups. Lignin can be used with 
or without chemical modifications depending on the target 
application (Fig. 4) [66]. Without chemical conversion, 
lignin can be incorporated directly into polymer matrices 
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to reduce production costs and improve performance. For 
example, unmodified lignin can be used as UV stabilizers, 
antioxidants, flame retardants and additives to promote plas-
ticity and flowability of the final product [67–74]. Although 
there is potential for direct industrial application, unmodi-
fied lignin can only be incorporated in small amounts due 
to its weak mechanical properties. On the other hand, lignin 
can be chemically modified to be used as a starting material 
for polymer synthesis or for conversion into chemicals and 
fuels [75–78]. There are four different ways to chemically 
modify lignin: (1) lignin depolymerization or fragmentation, 
using lignin as a carbon source or cleaving it into small frag-
ments containing aromatic rings; (2) modification of lignin 
by synthesis of new chemically active sites; (3) chemical 
modification of the hydroxyl groups presents in the lignin 
structure; and (4) production of graft copolymers. These 
chemical modifications are very dependent on the reactiv-
ity and structural characteristics of the functional groups of 
the lignin used [66].

Lignin depolymerization or fragmentation is a promising 
method to convert lignin feedstock and produce valuable 
lignin-based products. Thus, lignin molecules are converted 
into small compounds for further applications, includ-
ing fuels and basic chemicals or oligomers [79]. Several 

thermochemical methods have been investigated for lignin 
depolymerization, such as pyrolysis, oxidation, hydrolysis 
and gasification (Fig. 5) [80].

Lignin has several functional groups, including hydroxyl, 
methoxy, carbonyl and carboxyl groups. These functional 
groups can be modified for different applications, which will 
increase the value of modified lignin. These modifications 
include the synthesis of new macromolecular monomers that 
are more efficient and reactive by increasing the reactiv-
ity of the hydroxyl group or by changing the nature of the 
chemically active sites. As a result, the chemical reactivity 
of lignin is increased, the brittleness of lignin-derived poly-
mers is reduced, the solubility of lignin in organic solvents 
is increased, and therefore lignin processing is improved. In 
this way, several chemical modifications have been used to 
introduce new chemical sites in the lignin structure (Fig. 6) 
[82], including hydroxyalkylation, amination, nitration, sul-
fomethylation, and sulfonation [82–85].

Lignin has phenolic and aliphatic hydroxyl groups present 
in its structure in the side chains. The phenolic hydroxyl 
group is the most reactive functional group and can influence 
the chemical reactivity of the newly formed material. Modi-
fication of the hydroxyl groups can lead to the formation of 
polyol derivatives of lignin. For this reason, several reac-
tions to functionalize lignin with different functional groups 
have been reported and studied, these include alkylation, 
esterification, etherification, phenolization and carbamyla-
tion reactions [86–90]. In addition, lignin can be used to 
develop lignin graft copolymers in which polymer chains 
are attached to hydroxyl groups on the lignin structure, 
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resulting in a star-shaped branched copolymer with a lignin 
core [91–94] (Tables 1 and 2).

Similarly, cellulose material modification can solve 
usage-related faults such as poor heat formability, excessive 
hydrophilicity, and poor mechanical properties [95–97]. The 
primary hydroxyl group on C-6 and the subsidiary hydroxyl 
groups on C-2 and C-3 of the glucose ring units of cellulose 
afford it an extensive range of modification options. It can 
be subdivided into etherification, crosslinking, esterification, 
grafting copolymerization, and so on, based on the introduc-
tion of various functional groups and their degrees of sub-
stitution at various positions of the glucose group ring unit. 
The modification of the hydroxyl group on its molecular 
chain by esterification with acid or acid derivatives is known 
as esterification modification [98] (anhydride, acyl chloride, 
etc.). The degree of cellulose substitution was controlled 

by varying the amount of acid or acid derivatives, catalyst 
concentration, reaction time, reaction temperature, and reac-
tion medium, resulting in prime derivatives with varying 
properties. Etherification, like esterification, can improve the 
characteristics of cellulose or add new functions to cellulosic 
materials. Typically, epoxide and chloroalkyl groups are 
accelerated to create ether bonds by reacting with hydroxyl 
groups on the cellulose skeleton. Esterification is primar-
ily utilized to improve the solubility, biodegradability, and 
application performance of cellulose. Because ether bonds 
are substantially more stable under basic conditions than 
ester bonds, cellulose ether derivatives offer a broader range 
of applications [99]. The active hydroxyl group at the end 
of the cellulose molecular chain is polymerized with the 
monomer under the action of the initiator [100], and new 
functional groups are introduced into the polysaccharide 
molecular chain through grafting polymerization to improve 
its characteristics [101]. The reaction of cellulose grafting 
copolymerization can be classified into three mechanisms: 
ring-opening polymerization, free radical polymerization, 
and ion polymerization. Cellulose materials that have been 
grafted and polymerized have improved biocompatibility, 
conductivity, and water resistance. Crosslinked cellulose is 
cellulose that has been changed by the connection of two or 
more cellulose molecules via a tiny molecule. The crosslink-
ing agent has several active groups and can be linked to 
cellulose via chemical reactions such as etherification, 
esterification, and free radical polymerization. Crosslinking 
agents that are often utilized include epichlorohydrin [102], 
dicarboxylic acid [103], diisocyanate [104], and diacrylate 
[105]. To create interpenetrating polymer networks, cellu-
lose can be crosslinked with other polymers such as PVA 
[106], chitosan [107], sodium alginate [108], and others. 
This is another method for incorporating the characteristics 
of other polymers into cellulosic products.

3  Biochemical Conversion

Numerous studies have focused on BC of biomass and mate-
rials, with BC of biomass studies focusing on lignocellulosic 
biomass feedstocks. Lignocellulosic biomass is of high interest 
to produce biofuels and bioproducts via the process of enzy-
matic hydrolysis [109]. Besides, lignocellulosic biomass such 
as corn stover was scrutinized to produce bio-succinic acid 
via biological routes of pretreatment, fermentation, as well as 
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downstream technologies for bio-succinic acid recovery [110]. 
Furthermore, lignocellulosic feedstocks like corn cobs are of 
high potential to produce bioethanol with a prominent yield of 
0.49 g  g−1 biomass via the processes of NaOH pretreatment, 
hydrolysis and fermentation [111]. Integrated biorefinery 
including pretreatment, enzymatic hydrolysis and fermenta-
tion was applied for conversion of agricultural residues, forest 
waste, energy crops into second-generation bioethanol as well 
as value-added products [112]. There are also studies center of 
attentionon is feedstock of microalgal biomass. BC of micro-
algal biomass studied for useful and cost-effective biofuels 
[113]. Microalgae have been also investigated to produce bio-
stimulants and biofertilizers via anaerobic digestion [114]. 
For example, mixed microalgae have been shown to be a sub-
strate for a 17 mL  g−1 COD biomethane production through 
an anaerobic digestion process [115]. In the case of biological 
hydrogen production, mixed microalgae with a biomass con-
centration of 2.57 g  L−1 can recover 13 mL  g−1 biohydrogen at 
the laboratory scale level [116]. In addition, some researchers 
have implemented pilot-scale reactors to increase output and 
productivity. For example, biomethane production of 0.27 L 
 CH4  g−1 VS was achieved with mixed microalgal biomass in a 
pilot-scale high-rate cyclotron algal pool [117]. Heterogeneous 
catalytic biochemical processes have been reported for the effi-
cient production of value-added chemicals and biofuels from 
both edible and non-edible biomass [115]. Biological lignin 
valorization was applied to produce polyhydroxyalkanoates 
having a selling price of 6.18 $  Kg−1 [116]. Microbial fer-
mentation and alkaline hydrolysis of sugarcane bagasse were 
studied to produce high concentration of l-tyrosine from a 
newly p-coumaric acid biotransformation route [117]. In dry-
ing biomass there has been a large amount of energy utilized, 
so if biomass has moisture content less than 50% then for gen-
eration of energy direct combustion method recommended. If 
it is present more than 50% in wet biomass than BC is most 
valuable and promising method to convert biomass into bio-
fuel. In general, BC of biomass is highly vital for the supply 
of biofuels and biomaterials.

4  Electrochemical Conversion

EC is of high reputation as a cleaner technology to pro-
duce sustainable energy and materials. Electrochemical 
process uses electrons as reactants, habitually works at 
low temperature (in most cases below 100 °C) and ambient 

pressure, which is considered as low-cost, environmentally 
benign, and “green” [120]. Electrocatalytic synthesis of 
high value-added chemicals from bioresource is a research 
hotspot [121]. EC of biomass-derived intermediates (e.g., 
lignin, polyols, carboxylic acids, furans, and amino acids) 
has been emphasized to produce fuel, chemicals, as well as 
materials [122]. In a recent study, EC of biomass-derived 
compounds was investigated for synthesis of 4-ethylnon-
ane, which contributed to a high product yield of 94% with 
an apparent coulomb efficiency of 4700% [123]. With this, 
biomass-derived feedstock levulinic acid was investigated 
to produce 4-hydroxyvaleric acid via outer sphere electron 
transfer route [124]. The outcomes showed that 4-hydroxy-
valeric acid reached a production rate of more than 40 g (L 
h) −1. Besides, the selectivity was higher than 99.9%, and 
conversion as well as faradaic efficiency were both more 
than 80%. Non-Kolbe electrolysis of bio-derivable hydroxy 
acid was studied to produce C9 oxygenate mixture with 
high-quality fuel properties with a density of 834 kg  m−3 
at 15 ℃ [125]. Furthermore, biomass-derived compounds 
like aldehydes, aryl ethers and phenolic compounds were 
studied for value-added hydrocarbons by electrocatalytic 
processes with desired selectivity and conversion efficiency 
[126]. Electrocatalysis of biomass-derived 5-hydroxymeth-
ylfurfural (HMF) was carried out to produce 2,5-diformyl-
furan (DFF) with a separation rate of 78% and a selectivity 
of 100% [127].

While co-electrocatalytic conversion process has been 
settled in recent years, furan coupling electrolysis of bio-
mass-derived furfural was of interest for hydrofuran pro-
duction with a yield of 94% and a faradaic efficiency of 
93% in batch electrolytic cell [128]. Additionally, electro-
chemical decarboxylation and cross-coupling of biomass-
based carboxylic acids were examined for sustainable fuel 
production in presence of  (RuxTi1−x)O2 catalyst [129]. The 
findings showed that the conversion of α-methylsuccinic 
acid reached 89–96% while the maximum yield of methyl 
2,5-dimethylhexaneoate (MDH) and 2,5-dimethylhexa-
neoate (DH) achieved 37 and 21%, respectively. The 
unconfined carbon dioxide can be used in molten carbon-
ate fuel cells and has great potential for further applica-
tion. Simultaneous electrocatalytic oxidation (ECO) and 
electrocatalytic hydrogenation (ECH) of 5-hydroxymeth-
ylfurfural (HMF) were coupled to generate 2,5-furandi-
carboxylic acid (FDCA) with a high selectivity of more 
than 96%, and a faradaic efficiency of higher 84% [130]. 
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More interestingly, nanostructured NiFe oxide (NiFeOx) 
and nitride (NiFeNx) catalysts were used to assemble an 
electrolytic cell to electrolyze glucose [131]. The results 
showed a glucaric acid yield of 83% and a faradaic effi-
ciency of 87%. Besides, electrochemical reduction of glu-
cose produced gluconic acid at a cost of 54% lower than 
current chemical methods.

EC of lignin was handled for green chemicals and 
materials via hybrid of electro-oxidation, electroreduc-
tion, electrochemical upgrading, and fractionation [132]. 
Biomass-derived products like glycerol, 5-hydroxymethyl-
furfural, levulinic acid, and muconic acid were efficiently 
converted to high-value chemicals of glyceraldehyde, glyc-
eric acid, formic acid, glycolic acid via EC [133]. Waste 
biomass of bread residue, cypress sawdust, and rice chaff 
were electrolyzed with 85% phosphoric acid solvent at 
150 °C [134]. The current efficiency of hydrogen produced 
by the cathode was about 100%. In all the tested fuels, 
hydrogen production was 0.1–0.2 mg  mg−1 feedstock. It 
is evident that glycerol, furfural, 5-hydroxymethylfurfural, 
levulinic acid and other biomass-derived substances are 
mostly used as starting reactants to synthesize fuel. It is 
important to emphasize on electrocatalytic synthesis of 
high value-added products from HALUB initially for eco-
nomic availability. Focusing on HALUB, many investiga-
tions can be settled in the field for efficient and sustainable 
production of fuels, chemicals, and new materials.

4.1  Electrochemical Valorization of Lignin

Various research activities, such as pyrolysis, chemical 
and enzymatic catalysis, have been conducted to degrade 
lignin into small molecules that have potential to be 
used as chemical feedstocks or fuels. Beyond research 
efforts, electrochemical depolymerization and upgrada-
tion offers an alternative for lignin valorization [138]. In 
light with the fact that renewable electricity from sources 
such as solar and wind energy becomes more abundant 
and cheaper, the electrochemical process has potential to 
further incorporate renewable energy into biomass utili-
zation and associated industries [138]. Electrochemical 
lignin conversion can take place at both anode (oxidation 
reaction) and cathode (reduction reaction), although more 
anodic studies have been reported so far [122]. In a typical 

electrochemical setup, an anode and cathode are employed 
to abstract and inject electrons, respectively, and a solvent 
with supporting electrolyte is used to dissolve lignin and 
conduct ions (Fig. 7).

In order for the lignin to be in close contact with either 
anode or cathode, the electrolyte should dissolve lignin 
well. However, the complicated structure of lignin renders 
its poor solubility in common organic solvents [138]. Alka-
line solutions, such as NaOH and KOH, have been widely 
rummage-sale as the electrolyte in many studies of lignin 
electro-conversion owing to increased lignin solubility and 
high ion conductivity [122]. The main challenge is the com-
peting water splitting reaction, i.e., oxygen evolution reac-
tion (OER) at anode and hydrogen evolution reaction (HER) 
at cathode, which competes with lignin electroreduction and 
electro-oxidation, respectively, resulting in lower electro-
conversion efficiency of lignin. Ionic liquids (ILs) have been 
used as alternative electrolytes because of their high lignin 
solubility and, more importantly, wide potential window to 
avoid water splitting reaction [139, 140] A range of ILs have 
been studied in electrochemical lignin depolymerization, for 
example, 1‐ethyl‐3‐methylimidazolium trifluoromethanesul-
fonate, 1-butyl-3-methylimidazolium tetrafluoroborate, and 
triethylammonium methanesulfonate [141, 142]. A barrier 
that averts ILs from commercial applications is the high cost 
of ILs [143].

At the anode side, lignin can be electro-oxidized via three 
primary ways, i.e., direct, mediated, and electrochemical or 
chemical combined strategies. Inclusively, the electro-oxi-
dation involves lignin functionalization, depolymerization, 
and other side reactions. In the direct electro-oxidation, a 
heterogeneous catalyst is needed to adsorb and thereafter 
active the lignin via the break of C–O or C–C bonds, and 
therefore is the key. The electronic structures, morphologies, 
and surface areas of the electrocatalysts have marked effect 
on the activity, selectivity, and deactivation of lignin elec-
tro-oxidation. Various transition metals (e.g., Fe, Co, Ni), 
metal alloys, and metal oxides (e.g.,  PbO2,  IrO2, and  SnO2) 
have been studied [144, 145]. Mediated electro-oxidation 
of lignin uses mediators, which are usually homogeneous, 
to mediate the activation of lignin. This is essentially an 
out-sphere electrochemical reaction, involving an electro-
chemical oxidation of the mediator and the ensuing chemical 
oxidation of lignin by the oxidized mediator [146, 147]. For 
this reaction, the reaction regions can be extended from the 
two-dimensional interfaces in the direct electro-oxidation 
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case to three-dimensional electrolyte phases. Polyoxometa-
lates, N‐hydroxyphthalimide (NHPI), 2,2,6,6‐tetramethyl-
piperidine‐N‐oxyl (TEMPO), ferric, and halide have been 
widely studied as mediators [148]. In the electrochemical 
and chemical combined reaction, lignin in the electrolyte is 
both directly electro-oxidized at the anode and chemically 
oxidized by electro-generated reactive oxygen species (ROS, 
e.g.,  H2O2,  O2

− ⋅ and ⋅OH) formed at anode or cathode [149].
While oxidation usually surges the oxygen content, reduc-

tion of lignin increases hydrogen and carbon content in the 

final products, which is critical for the production of lignin-
derived oil due to higher oxygen content reduces combustion 
value of the oil [150]. Electro-reduction, or electrochemical 
hydrogenation in some reports, uses protons and electrons to 
selectively add hydrogen or remove oxygen from lignin. This 
process involves the reduction of protons to form adsorbed 
H* (* denotes adsorbed species), which can either dimerize 
to desorb as gaseous hydrogen, i.e., HER or react with lignin 
to cleave C–O single bonds and add hydrogen to aromatic 
rings [151]. Thus, the HER is the major competing reaction 
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Lignin

Oxidised product(s)Mediatorred

Mediatorox

Lignin

Lignin

Reduced product(s)

H2O

O2

ROS

Lignin
+

H2

e−

H+

Oxidised product(s)

Fig. 7  Electrochemical lignin valorization. Electro-oxidation at the anode via direct, mediated methods and via the generation of reactive oxy-
gen species (ROS) from reduction of  O2. Electroreduction via direct method. Water splitting competes with lignin electrochemical conversion at 
both anode (OER) and cathode (HER)

Table 1  Biochemical conversion to energy and materials

Feedstock Approach Performance References

Lignocellulosic biomass Enzymatic hydrolysis Biofuels and bioproducts [109]
Lignocellulosic biomass Biological routes Bio-succinic acid production, selling price 

1.7–2.0 $  Kg−1
[110]

Lignocellulosic feedstocks Fermentation Bioethanol yield 0.49 g  g−1·biomass [111]
Agricultural residues, forest 

materials and energy crops
Pretreatment, enzymatic hydrolysis and fermen-

tation
Biofuel and value-added products [118]

Microalgal biomass Nanoparticle-assisted biochemical conversion Attained the highest amount of COD of 
14,760 and 14,745 mg  L−1 using Fe and Ni 
NPs respectively

[119]

Microalgae Anaerobic digestion Bio-stimulants and biofertilizers [114]
Edible and non-edible biomass Heterogeneous catalytic biochemical processes Value-added chemicals and biofuels [115]
Lignin Pretreatment, solubilization and enzymatic 

hydrolysis
Polyhydroxyalkanoates $6.18  kg−1 [116]

Sugarcane bagasse Microbial fermentation and alkaline hydrolysis l-tyrosine 49% and p-coumaric acid 44 mg [117]
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with electro-reduction of lignin, decreasing overall energy 
efficiency of the process. The yield and selectivity of prod-
ucts from lignin electroreduction can be tuned by varying the 
nature of the cathode catalyst, current density, electrolyte, 
temperature, or mediator [132].

Electrochemical approach can be combined with other 
progressions for lignin valorization. For example, it can 
integrate with micro-organism to form microbial fuel cells 
(MFCs), microbial electrolysis cells, and electro‐microbial 
systems [152]. A solar thermal electrochemical process that 
embedded the use of solar energy has also been demon-
strated to produce biofuels and hydrogen from lignin [153, 
154]. Several challenges must be addressed for the electro-
chemical process to be commercially viable. Either electro-
oxidation or -reduction suffers from competing reactions of 
water splitting and product selectivity from electrochemical 
lignin conversion is low, resulting in low energy efficiency 
and adding cost for additional product separation. Develop-
ing more effective and selective catalysts is critical, which 
involved more understanding of catalytic mechanism to 
guide design of new materials [155]. Further, the choice 
of electrolyte is limited to mainly alkaline solutions or ILs. 
Low-cost yet green solvents must be further explored.

4.2  Microbial Fuel Cells

Microbial fuel cell (MFC) is a technology that renovates 
the chemical energy in biomass to electric energy relying 
on the catalytic action of microorganisms. MFC can use 
bioresources like microalgae for the generation of electric-
ity and the treatment of wastewater or seawater. It has the 
dual functions of waste treatment and generation of electric 
energy. The information on MFC with HALUB biomass is 
tabulated in Table 3. Various biomass feedstocks have been 
investigated for use in MFCs, such as Microcystis aerugi-
nosa, sugarcane biomass, cyanobacterial biomass, azolla 
pinnata biomass, and S. japonica substrate. The harmful 
algal biomass was applied as a substitute substrate for the 
anodic microorganisms in MFC for biological power genera-
tion [156]. The maximum power density, current density, 
and coulombic efficiency were 83 mW  m−2, 672 mA  m−2 
and 7.6%, respectively. Sugarcane biomass was converted 
using acetate and p-coumaric acid as substrate in a MFC, 
achieving a potential of 0.34 V, and power density of 398 
mW  m−2 [157].

There was a study concentrating on a double chamber 
MFC with Anabaena vaginicola cyanobacterial biomass 
as the anodic substrate [158]. The results showed that the 
highest current density, maximum power density, chemical 
oxygen demand removal efficiency and coulombic efficiency 
reached 366 mA  m−3, 144 mW  m−3, 65, and 5.7%, respec-
tively. Azolla pinnata biomass was inspected as substrate 
while defatted azolla biochar was applied as electrode. Bio-
hydrogen and bioelectricity could be simultaneously gener-
ated in this system [159]. There were 67 mW  m−2 power 
output and 23 L  m−3 hydrogen produced from a new exo-
electrogenic yeast strain that can generate electricity in MFC 
using xylose as the substrate [160]. An excellent energy 
recovery of 17.3% was obtained from S. japonica with  H2 
yield of 110 mL  g−1 VS and maximum power density of 
1.82 W  m−2 in a hybrid process of dark fermentation and 
MFC [161].

In recent years, MFC was not only used in biomass con-
version as declared above but also used in waste treatment. 
Microbial synergy with sludge fermentation fluid and fruit 
waste extract generated bioelectricity through MFC [162]. 
The peak output voltage of the hybrid MFC reached 0.75 V, 
while the bioelectric energy conversion efficiency achieved 
1.39 kWh  Kg−1 COD. Another study reported that MFCs 
were manufactured using zinc and copper electrodes and 
H. undatus as the substrate in the processing of fruit waste, 
showing the maximum power density of 0.072 W  cm−2 and 
current density of 0.051 A  cm−2 [163]. Although HALUB 
for MFC has been studied in open literature, some of the 
reported methods have limitations, such as low power den-
sity, coulombic efficiency, bioelectric energy, and conversion 
efficiency, particular for the feedstocks of biowaste. Future 
research could concentrate on the exploration of milder 
waste pretreatment unit that are compatible with MFC to 
enhance the performance.

4.3  Fuel Cell System

Using fuel cells to treat waste biomass and generate electric-
ity is a novel way to achieve the goal of waste treatment and 
energy recovery. The process requires converting the bio-
mass to gas such as hydrogen or carbon monoxide before it 
can be utilized, so the cells are essentially unable to process 
biomass directly. There have been some studies absorbed 
on the fuel cell systems meeting with HALUB (Table 4) 
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[164]. A study reported that the highest output power den-
sities (Pmax) reached 12.3 and 41.8 mW  cm−2 with open-
circuit voltages of 560 and 1560 mV, respectively, through 
a liquid flow fuel cell under acidic and alkali conditions in 
processing of lignocellulosic biomass [165]. Another study 
found that power density and energy density achieved 440 
mW  cm−2, and 0.83 Wh  g−1, respectively, from solid oxide 
fuel cell in processing of lignin, which performance was 
better than plastic wastes like polyethylene terephthalate 
[166]. A hybrid power system achieved a net output power of 
196.2 kW, 1510 ton of  CO2/year reduction and 21,901 $/year 
of environmental benefit, where the woody biomass gasifi-
cation technology was integrated with the molten carbonate 
fuel cell, an externally fired gas turbine, and a supercritical 
carbon dioxide cycle [167]. The electrical power, heating 
power and cooling power reached 1000, 250, and 99 kW, 
respectively, in a novel rice straw based SOFC-Engine sys-
tem for cooling, heating and power production [168].

Biomass-based solid waste has recently been sightseen as 
a carbon neutral, sustainable and inexpensive feedstock in 
fuel cell system. White cement brick fuel cell was pragmatic 
to convert rice husk ash and achieve a maximum power 
density of 0.2 mW  cm−2 at Gr/Gr electrode [169]. Another 
study found that the maximum power density and energy 

density reached 0.41 W  cm−2, and 0.42 W  g−1, respectively, 
via solid oxide fuel cell (SOFC) with the feedstock of weed 
waste [170]. Peak power density output achieved 11.8 mW 
 cm−2 from direct carbon fuel cell in processing of palm 
mesocarp fiber [171]. In another study, liquid flow fuel cell 
was developed to convert sugarcane bagasse and achieve 
a power density of 49.1 mW  cm−2, and co-generation of 
101.4 Wh electricity [172]. Besides, low-temperature pro-
ton exchange membrane fuel cell was developed to process 
sugarcane press-mud and reached an energy efficiency of 
56%, a renewability factor of 1.24 and a carbon footprint 
of 1.21 kg  CO2 kW  h−1 [173]. In brief, fuel cell would play 
an important role in processing of HALUB bioresource for 
efficient and renewable energy generation.

5  Thermochemical Conversion

TC biomass to energy and materials is imperative for the 
carbon neutrality and environmental sustainability. Cur-
rently widely reported TC technologies include torrefac-
tion, pyrolysis, hydrothermal carbonization, gasification, 
and liquefaction. This section is proposed to focus on the 
latest research progress. The information on TC biomass to 
energy and materials is summarized in Table 5.

Table 4  Fuel cell system meet with HALUB

Feedstock Approach Performance References

Lignocellulosic biomass Liquid flow fuel cell (LFFC) Highest output power densities  (Pmax) of the 
LFFC under acidic conditions 12.3 mW  cm−2, 
 Pmax of the LFFC underand alkali conditions 
41.8 mW  cm−2

[165]

Lignin Solid oxide fuel cell Power density 440 mW  cm−2, energy density 0.83 
Wh  g−1

[166]

Woody biomass Hybrid power system where the biomass gasifica-
tion technology is integrated with the molten 
carbonate fuel cell, an externally fired gas 
turbine, and a supercritical carbon dioxide cycle

Network output 196.2 kW, cost of electricity 
0.1168 $  kWh−1

[167]

Rice straw A novel biomass-based SOFC-Engine system for 
cooling, heating, and power production

Electrical power 1000 kW, heating power 
250 kW, cooling power 99 kW

[168]

Rice husk ash (RHA) White cement brick fuel cell (WC-BFC) Maximum power density at Gr/Gr electrode 0.2 
mW  cm−2

[169]

Weed waste Solid oxide fuel cell (SOFC) Maximum power density 410 mW/cm2, maximum 
energy density of 0.42 W  g−1

[170]

Palm mesocarp fiber (PMF) Direct carbon fuel cell (DCFC) Peak power density output 11.8 mW  cm−2 [171]
Sugarcane bagasse Liquid flow fuel cell (LFFC) Power density 49.1 mW  cm−2, co-generation of 

101.4 Wh electricity
[172]

Sugarcane press-mud Low-temperature proton exchange membrane fuel 
cell (LTPEMFC)

Energy efficiency 56%, renewability factor 1.24, 
carbon footprint 1.21 kg  CO2 kW  h−1

[173]



 Nano-Micro Lett. (2023) 15:3535 Page 18 of 50

https://doi.org/10.1007/s40820-022-00993-4© The authors

Co-conversion of different feedstocks is currently popular 
in thermochemical process. The all-out fatty acid methyl 
esters (FAMEs) yield of 95% achieved under the conditions 
of 80 °C, 20 min, dimethyl carbonate ratio of 6:1, catalyst 
ratio of 3% and methanol addition of 3% via chemical co-
conversion of algal oil, waste cooking oil and dimethyl car-
bonate [174]. The maximum methane of 394.6 mL  g−1 VS 
was obtained via co-digestion of algal biomass and food 
waste [175]. An experimental and numerical study was car-
ried out on co-conversion of algal bloom and water hya-
cinth via  Ni2P-loaded zeolite catalytic pyrolysis [176]. The 
results showed that hydrocarbon production of 70.23%, bio-
oil HHV of 35.72 MJ  Kg−1 and total benefit of 749 $/ton 
biomass were achieved under the conditions of algal bloom 
to biomass ratio of 0.40, catalyst to biomass ratio of 0.95, 
steam to biomass ratio of 3.75, 500 °C, and  CO2 flow rate 
of 40 mL  min−1. It is evident that the co-conversion process 
is hence of important interest to produce sustainable fuels 
and materials.

Dairy manure and agricultural waste were explored to ver-
balize nutrient-enriched products via hydrothermal carboni-
zation and pyrolysis. The maximum specific surface area of 
produced biochar reached 48.8  m2  g−1, while the produced 
bio-oil was enriched in alkanes and alkenes with fewer oxy-
genated compounds [177]. Co-pyrolysis of livestock feces 
and biomass wastes with different blending ratios was imple-
mented at 600 °C [178]. The results showed that biochar 
with lower pH value and electrical conductivity value can 
be obtained by rice husk and chaff treatment. Wood chips 
and bamboo sawdust had positive effects on improving the 
fuel characteristics and thermal stability of fertilizer biochar. 
Pig manure-based biochar had high calorific value and low 
aromatic H/C ratio. Furthermore, the formed carbide can 
be widely used as adsorbent or catalyst in the removal and 
conversion of metal and organic pollutants owing to its large 
specific surface area and porosity.

An integration of different conversion tactics is explored 
in HALUB management. The biocrude oil yield, carbon con-
tent, energy content and energy conversion ratio reached 
9.8, 29.7, 40.0, and 61.0%, respectively, in comparison to 
the control via integrated dark fermentation-hydrothermal 
liquefaction in processing of algal bloom [179]. Carbona-
ceous materials resulting from hydrothermal carbonization 
and pyrolysis were characterized with higher amounts of 
surface functional groups, whereas carbonaceous materials 
derived from hydrochar-impregnation were detected with 

more C–O bond. The maximum adsorption capacity of 
phenol was 125.70 mg  g−1 from the process of pyrolysis, 
while the value was 102.72 mg  g−1 from hydrothermal car-
bonization [180]. Hydrothermal treatment and  CO2 gasifi-
cation of cherry pomace were conducted for the synthesis 
of carbonaceous materials. The highest yield and activation 
energy of the solid products reached 57% and 732 kJ  mol−1, 
respectively [181].

The accumulation of external sources like solvent, catalyst 
or enzyme is beneficial to the thermochemical conversion 
process. Alkaline thermal treatment of seaweed was carried 
out to produce high-purity  H2 [182]. The fallouts showed 
that  H2 yield reached 69.69 mmol  g−1·biomass with a con-
version rate of 71%. Solvent-assistant thermal treatment is a 
promising approach to produce clean energy like hydrogen. 
Besides, thermochemical liquefaction of pinewood shaves 
was studied with solvents and acidic catalysts at mild tem-
peratures and atmospheric pressure [183]. The conversion 
rate achieved 98.7% in presence of glycerol carbonate as 
a reaction solvent. The HHV of the obtained bio-oil was 
27.88 MJ  Kg−1, which was much higher than 19.35 MJ  Kg−1 
in absence of solvent. Agricultural wastes were thermochem-
ically treated with 1.0 M HCl as the acid catalyst [184]. 
Through chemoenzymatic valorization, maximum 11.3 mM 
4-hydroxyvaleric acid was obtained with a conversion rate 
of 48.2% in presence of Alcaligenes faecalis.

It is manifest that several biowastes were explored as the 
raw feedstocks in TC. Co-conversion of different feedstocks 
could be beneficial to generate high-value products partially 
owing to their variable physical and chemical characteristics. 
Additionally, a combination of varied processes like hydro-
thermal carbonization and pyrolysis, hydrothermal treatment 
and  CO2 gasification, and fermentation and hydrothermal 
liquefaction, could highly enhance the energy conversion 
efficiency and product quality. It is of high interest for the 
application of pyrolysis, gasification, liquefaction, and car-
bonization in solid biowaste conversion and management 
for a green future.

5.1  Hydrothermal Carbonization

Hydrothermal carbonization (HTC) is a promising know-
how for converting high moisture feedstock to a safe low-
emission hydrochar. HTC generally refers to wet torrefac-
tion and can produce hydrochars with higher HHVs under 
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lower temperature in short reaction time compared to that of 
dry torrefaction [185]. Different feedstock and approaches 
in HTC are listed in Table 6. HTC of sea lettuce produced 
24.43% of hydrochar and the HHV reached 20.2 MJ  Kg−1 
under 220 °C for 2 h [186]. Two types of carbonaceous mate-
rials including oriented carbon microspheres (OCMSs) pow-
der and 3D porous carbon (3DPC) block can be produced 
in one step by hydrothermal treatment of basswood block at 
700 °C [187]. Sugarcane bagasse was converted at 200 °C 
for 18–20 h in a muffle furnace for HTC [188]. The maxi-
mum surface area of activated biochar was 1099  m2  g−1, and 
the surface has a mesoporous structure, which was rich in 
hydrophobic groups inside and hydrophilic groups outside. 
The adsorption affinity of active biochar for sulfamethoxa-
zole (400 mg  g−1) was higher than other materials.

Hydrochar from simulated food waste retained up to 78% 
of the original fatty acids and accomplished a total fatty 
acid recovery of 49%. Under mild conditions, the yield and 
phosphorus recovery of aqueous phase products were higher 
than 70% [189]. The optimum conditions for tetracycline 
removal were 598.63 mg  L−1 of  CuFeO2/BC-1.0, 57.63 mM 
of  H2O2 and pH of 6.27. The maximum adsorption capac-
ity of As (V) and distribution coefficient were respectively 
98.74 mg  g−1 and 85.67 mg (g μM) −1 in a study on novel 
hydrochars co-activated by thiourea and Fe(NO3)3 via one-
pot and two-stage schemes for the processing of dairy cattle 
manure [190]. Adsorption of hydrothermal biochar derived 
from waste cotton for  Pb2+ and  Cd2+ reached 50.44 and 
33.77 mg  g−1, respectively, while the removal efficiency of 
 Pb2+ and  Cd2+ in soil reached 92.87 and 86.19%, respec-
tively [191]. HTC of apple bagasse led to energy densifica-
tion of 1.3–1.6 with 80–93% of C recovering and generated 
stable carbonaceous solids to be applied as  CO2 neutral fuel 
(30 MJ  Kg−1) and soil improver [192].

In a study engrossed on HTC and anaerobic fermenta-
tion of wheat straw and poplar sawdust, the maximum 
adsorption capacity of modified wheat straw hydrochar 
and modified poplar sawchip hydrochar increased by 3.1 
times (19.87 mg  g−1) and 3.4 times (16.68 mg  g−1), respec-
tively [193]. The 3DPC exhibited abundant  sp3 defects and 
micropores with a surface area of 855.12  m2   g−1, while 
the as-assembled OCMSs and 3DPC potassium ion hybrid 
capacitor presented an energy of 140.7 Wh  Kg−1 at 643.8 W 
 Kg−1 with a recycling circle of more than 8500 times. Col-
loid-like magnetic biochar (Col-L-MBC) was fabricated in 
one step through hydrothermal process of corn straw and 

eucalyptus leaves in presence of modified artificial humic 
acid (A-HA) [194]. Col-L-MBC has rich functional groups, 
great dispersibility, oxidation resistance, and considerable 
 Cd2+ removal capacity (169.68 mg  g−1).

Hydrochars derived from HTC present gainful character-
istics such as large surface area, high porosity, and multiple 
surface functional groups, which are beneficial to be used in 
environmental remediation. This process is to be relatively 
straightforward, as only one target solid product, and do not 
need extra procedures to collect other products. However, 
the HTC technology is still under developing. It is a promis-
ing technology but still needs further detailed investigation 
for its potential applications in energy and environmental 
sustainability.

5.2  Pyrolytic Carbonization

Pyrolysis is a common thermochemical process to treat 
biomass, which can be rummage-sale in the production of 
syngas, bio-oil, biochar, and other products. Product yields 
mainly depend on pyrolysis conditions. According to pyroly-
sis time and temperature, pyrolysis can be classified into 
"slow" pyrolysis and "fast" pyrolysis. Different feedstock 
and approaches in pyrolytic carbonization (PC) are summa-
rized in Table 7. Pyrolytic carbonization of bamboo waste 
was carried out in a fixed-bed system, achieving a maxi-
mum specific surface area of 1351.13  m2  g−1 [195]. This 
process also developed high porosity and facilitated oxygen 
groups evolution into more stable –OH, –CO, and –COOH 
groups. In a study on pyrolytic carbonization of maple leaf, 
the maximum surface area reached 191.1  m2  g−1, and calcite 
crystal and hydrophobicity increased significantly [196]. The 
adsorption capacity was 407.3 mg  g−1 for the removal of 
tetracycline by maple leaf derived biochar. Specific surface 
area, pore diameter and total pore volume of biochar reached 
594  m2  g−1, 3.1 nm and 0.93  cm3  g−1, respectively, in con-
version of shrimp shell under 800 °C, 2 h reaction time,  N2 
atmosphere and 5 °C  min−1 [197].

Renewable biomass (e.g., rice husk, saw dust, corn 
stalk, etc.) were rehabilitated via fast pyrolysis at 500 °C 
coupled with atmospheric distillation process [198]. The 
results showed that the HHV of the as-prepared bio-coals 
from the representative biomass were within 25.4–28.2 MJ 
 Kg−1, which are comparable to that of the commercial 
coals. Vine shoot and crystalline cellulose derived biochar 
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was prepared by pyrolysis of chemical zinc chloride modi-
fied raw materials in carbon dioxide atmosphere for the 
preparation of lead-based catalysts [199]. The specific 
surface area, pore diameter and pore volume of biochar 
reached 2867  m2  g−1, 2.7 nm, and 1.020  cm3  g−1, respec-
tively, while catalyst selectivity toward the dehydrogena-
tion reaction reached 100%. KOH treatment significantly 
increased the specific surface area of sewage sludge-
derived biochar (264.1  m2  g−1), enhanced the pore struc-
ture (total pore volume 0.449  cm3  g−1), and had superior 
peroxymonosulfate activation and degradation capacity of 
organic pollutants [200].

A study engrossed on utilizing waste pyrolysis gases and 
waste heat to prepare high-quality three-dimensional gra-
phene foams (3DGFs) [201]. The results demonstrated that 
biomass wastes derived 3DGFs consist mainly of approx-
imately 95% C, 3% O, and 1% H. 3DGFs prepared from 
biomass pyrolysis gas were ultra-light with a mass den-
sity of 2.4–3.0 mg  cm−1. Spent mushroom substrate was 
investigated at 600/300 ℃ for 4 h under  CO2/N2 [202]. The 
results illustrated that 600 °C and  CO2 produced higher 
levels of aromaticity, ash, BET surface area and porosity 
(BET surface area and total pore volume increased 4.19- 
and 9.60-fold, respectively), while 300  °C and  N2 pro-
duced more oxygen-containing functional groups, such as 
hydroxyl, carboxyl, and carboxyl groups. The waste bean 
dregs derived biochar had extremely high specific surface 
area (BET surface area, > 3000  m2   g−1) [203]. Besides, 
the biochar showed good catalytic activity for bisphenol A 
(BPA, 1358.4 mg  g−1). The yield of teak sawdust pyrolytic 
biochar was 27.4% at temperature of 600 °C [204]. The BET 
surface area of biochar was 253  m2  g−1 with high calorific 
value, which can be used as solid fuel and suitable for waste 
stream purification.

A comparative insight was demonstrated on the fuel per-
formance of chars derived from the two pretreatment meth-
ods of HTC and PC [205, 206]. The key parameters includ-
ing VM, the solid yield, HHV, the N content reduction, and 
char reactivity can be adopted to well evaluate the qualities 
of solid biofuel produced from different processes of HTC 
and PC, respectively. Sustainable solid fuel production was 
investigated via HTC technology using municipal solid 
wastes and sewage wastes [207]. Since the hydrothermal 
method is not limited by the moisture content of raw materi-
als, it can be used for the carbonization of HALUB biomass 
with high moisture content, such as sewage sludge, aquatic 

plants, food, and agricultural waste, which are difficult to be 
processed by pyrolysis or gasification system.

6  Advanced Technologies of HALUB 
Conversion and Management

IN this section, we focused on advanced technologies of 
nano-catalysis and machine learning in the field of HALUB 
conversion and management.

6.1  Nano‑catalytic Technologies

Nano-catalytic technologies have attracted courtesy owing 
to their advantages of environmental sustainability, high 
efficiency, and low emissions for carbon neutrality, espe-
cially their wide applications in the production of energy 
and materials [208, 209]. A summary on the nano-catalytic 
conversion biomass to energy and material is tabulated in 
Table 8. Graphitic carbon supported Co catalyst was applied 
for catalytic steam reforming of tar [210]. The  Co0.1/oxidized 
Shengli lignite char catalyst maintained a stable toluene con-
version of 85% during the 30-h test of the steam reforming 
of tar. It can efficiently remove tar and simultaneously con-
vert tar into high-value gases. Lignocellulosic biomass was 
converted over in-situ self-regenerable Fe/Fe3C-Mo2C-CNF 
catalyst [211]. Average hydrodeoxygenation conversion and 
gas yield of 45–50% showed that lignocellulosic biomass 
could be largely converted to hydrogen rich syngas through 
addition of external  CH4 and  CO2. Catalytic biomass tar 
cracking was studied over highly dispersed FeNi alloy cata-
lysts embedded in graphitic carbon (BC-FeNi) [212]. The 
conversion rate of tar was 95.8% in presence of 1.01% metal 
load nano-catalyst, which could effectively convert tar com-
pounds into syngas at 800 °C.

A study engrossed on conversion of biomass-derived 
monosaccharides via ZnS@Bi2S3 nano-catalyst was con-
ducted via a facile one-pot synthetic route to selectively 
oxidize xylose to xylonic acid, achieving a conversion rate 
of 91.6% and d-xylonic acid yield of 74.2% [213, 214]. 
CaO–TiO2 nano-catalyst was applied in co-transesterifica-
tion reaction of waste chicken eggshells, glycerol, and glyc-
erol carbonate in a reflux condensation process. The results 
showed that CaO/TiO2 provided 99.3% conversion of glyc-
erol with 93.7% of glycerol carbonate yield, it can be used 
in food, medicine, new energy and other fields [215]. Steam 
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reforming was applied to convert ethylene glycol over alu-
mina supported Ni-Pt bimetallic catalysts [216]. The highest 
ethylene glycol conversion,  H2 selectivity and yield reached 
60, 45 and 27%, respectively. Seed oil was converted via 
two-step transesterification reaction over trimetallic based 
montmorillonite nano-catalyst [217]. The density value, 
acidity value, flash point value, turbidity point and pour 
point of the biodiesel obtained were all within the standard 
range, so it could be used in diesel engine.

Algal oil was progressed via transesterification of N. ocu-
lata algae in the presence of a heterogeneous nano-catalyst 
and Ca(OCH3)2 [218]. This process resulted in a 34.6% 
reduction in carbon dioxide emissions and a biodiesel purity 
of 91.55%, which encouraged the production of biodiesel 
from algal oil. Oxidative esterification of biomass-derived 
alcohols was carried out over cobalt loaded on nitrogen-
doped carbon nano-catalyst [219]. The results showed a 
96% quantitative conversion of HMF and 92% selectivity 
of FDMC at 80 °C. Hydrodeoxygenation (HDO) of lignin 
monomer molecules-vanillyl alcohol and vanillin was con-
ducted over Pd/Ru metal supported graphene oxide nano-
catalysts [220]. This method was directly applied to the 
chemical transformation of phenolic intermediates generated 
by photocatalytic cracking to obtain vanillin and p-cresol, 
which can be formed as a potential biofuel in the future 
[221]. To summarize, nano-catalytic technologies are of 
high importance in the efficient and complete conversion of 
biomass-derived feedstocks, biowaste, and bio-oil, thus has 
a promising application in the conversion of HALUB [222].

6.2  Machine Learning

In the twenty-first century, the combination of big data and 
artificial intelligence (AI) is known as the fourth paradigm 
of science [224] and the fourth industrial revolution [225]. 
Among them, machine learning (ML), as an essential data 
analysis technology, has been widely concerned by all walks 
of life and achieved explosive development in the past dec-
ade. ML is a collection of advanced data analysis methods 
with statistical algorithms as the core, which can acquire 
and integrate knowledge independently and has high pre-
diction accuracy. In recent years, ML has been successfully 
applied to cutting-edge work in the fields of medicine [226], 
physical science [227], biology [228], earth system science 
[229], and material science [230]. ML is suitable for solving 

problems that are difficult to be solved by traditional meth-
ods for challenging problems, such as those involving a large 
number of combinatorial spaces or nonlinear processes. This 
method saves time, reduces labor and resource consumption, 
and is often accompanied by new discoveries. For example, 
in a recent study, unsupervised machine learning success-
ful identification of the ligand, similarity between forecast 
algorithm and some phosphine ligands is verified by experi-
ment, and synthesized eight had not been reported before air 
stable  Pd(I) dimers [231]. Figure 8 shows the application of 
machine learning workflow forecast form and identify new 
 Pd(I) dimers process.

At present-days, ML has attracted more and more devo-
tion in the field of transformation of biological resources 
and has been extensively used to predict the transformation 
behavior of biomass through pyrolysis, gasification, hydro-
thermal and co-conversion. For example, traditional hydro-
thermal liquefaction experimental method to produce bio-oil 
requires a lot of time and manpower in order to obtain bio-
oil with high yield and low nitrogen content. Therefore, ML 
algorithm is used to assist bio-oil production. After experi-
mental verification, the actual yield of bio-oil is 54.30%, 
the content of n is 2.60%, and the energy recovery rate is 
75.42%. The results are not different from the bio-oil yield 
(58.11%), nitrogen content (3.37%) and energy recovery rate 
(80.32%) optimized by the model, ML provides a new idea 
and strategy for accelerating the production of high-quality 
engineering bio-oil [232]. In another study of lignocellulosic 
biomass pyrolysis, the prediction model of biochar yield and 
carbon content using machine learning was successfully 
developed. The model can accurately predict biochar yield 
and carbon content according to biomass characteristics and 
pyrolysis conditions. Among them, the relative contribution 
of pyrolysis conditions to yield (65%) and carbon content 
(53%) is higher than that of biomass characteristics, which 
can help us understand the biomass pyrolysis process and 
provide new ideas for improving biochar yield and carbon 
content [233]. Biomass gasification is a promising power 
generation process. Predicting this process is conducive to 
obtaining the best products. Before the application of ML 
attracted attention, scientists proposed various kinetic mod-
els and equilibrium models, but the assumptions in these 
models greatly reduced the actual availability and consist-
ency. A study based on ML prediction predicted the  CH4, 
 H2, CO,  CO2 and HHV outputs of downdraft biomass gasi-
fication process. The results showed that most of the outputs 
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reached  R2 > 0.9 and were superior to traditional modeling 
methods in accuracy. These models can be used in simula-
tion environment, microcontroller circuit or practical appli-
cation [234].

Compared to traditional mechanism models, data-driven 
ML models can learn and recognize nonlinear relation-
ships between the output and input parameters [235]. The 
widely used ML models include Gaussian process regression 
(GPR), support vector machine (SVM), random forest (RF), 
and artificial neural network (ANN) models (Fig. 9) [236].

The ANN model has been widely used to forecast and 
optimize system outputs in a short CPU time, which simu-
lates the human brain in terms of mathematical functions 
[237]. An ANN includes an input layer, a number of hidden 
layers, and an output layer. Multilayer network structures 
and feed-forward ANNs with the backpropagation method 
is strong and widely used [238]. ANN models are particu-
larly powerful for solving the extensive problems in science 
and engineering and have been used by many researchers 
in complex biomass thermochemical conversion processes 
[238]. The ANN model as a machine learning method was 
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used to investigate the exergy value of the syngas. The Lev-
enberg–Marquardt algorithm was used to train the ANN 
model. The oxygen, hydrogen, and carbon contents of 16 
different types of biomass, gasification temperature, steam 
and fuel flow rates were the input parameters. The hydro-
gen percentage in the syngas and the exergy value of the 
syngas were predicted accurately [239]. In another study, 
ANN models were also applied in the steam gasification of 
biomass to predict the product yield. It has been suggested 
that ANN models perform better than traditional regression 
models [240].

In a bubbling fluidized bed reactor, the effect of bed 
materials was included in the input of the ANN model to 
predict the gas composition  (H2, CO,  CO2, and  CH4) and 
gas yield. The training of the networks was carried out with 
feed and cascade forward back propagation networks with 
one and two hidden layers and with Levenberg–Marquardt 
and Bayesian regulation learning algorithms. It has been 
reported that the output matched well with the experimen-
tal data, with an  R2 higher than 0.94. These results indicated 
that the ANN model is a powerful tool to help the design 
and operation of the reactor, as well as the control of pollut-
ants [237]. Large-scale experiments are usually expensive 
and energy intensive. Therefore, neural network models are 
beneficial for use in industrial-level plants. In a large-scale 
biomass gasification plant, the ANN model showed good 
capability to predict the biomass gasification process [241].

For the supercritical gasification (SCWG) of biomass, 
four ML models were applied to predict the  H2 production. 
The results suggested that the RF model exceeded the oth-
ers (GPR, ANN, and SVM models) with an R2 of 0.9782. 
The RF model was combined with feature importance and 
partial dependence analysis to visually present the relative 
important and average partial relationship between the  H2 
yield and the input parameters. This study indicated that 
ML is useful for predicting  H2 production from the SCWG 
of biomass [242].

The yield and quality of bio-oil are affected by many fac-
tors, such as biomass feedstock type (biomass type, parti-
cle size, pretreatment), operation conditions (temperature, 
pressure, heating rate, reactor type), and catalysts [243]. 
Numerous experiments have been performed to obtain the 
bio-oil from biomass pyrolysis under different conditions. 
Therefore, it is meaningful to develop a model to predict the 
bio-oil yield and quality from the above-mentioned factors. 
The ANN and SVM were used to predict the production 

distribution and bio-oil heating value (HV) of biomass 
pyrolysis. Correlated samples of biomass pyrolysis were 
collected as the data set. It was shown that both ANN and 
SVM can predict the product yield and HV of bio-oil. The 
SVM model could make the prediction better compared to 
the ANN model [244].

ML has also been used in the prediction of bio-oil pro-
duction from hydrothermal liquefaction of biomass with the 
input parameters of biomass elemental composition, process 
parameters, and solvents. RF performed the best with the 
R2 of 0.80 for the prediction of bio-oil yield, nitrogen in oil, 
and oil energy recovery. Therefore, the ML could be used 
to guide the experiments to produce bio-oil with a low N 
content [245].

Some progress has also been made in the application of 
ML in the synthesis of carbon materials from biomass. A 
deep neural network (DNN) model was used to predict the 
fuel properties and carbon capture and storage (CCS) stabil-
ity of hydrochar with the R2 of 0.91. ML has revealed that 
both the fuel elemental composition of biomass and tem-
perature are key factors for the characteristics of hydrochar 
[246].

Although ML plays a chief protagonist in the transforma-
tion of biological resources, ML-assisted prediction is still 
in the initial stage of development, and there are few related 
research contents and lack of comparison between different 
models, which will have great application potential in the 
future.

6.3  Microfluidics

Microalgae have been considered as promising alternatives 
for the production of biodiesel as an alternative to fossil 
fuels [247]. However, their application is limited by the fact 
that the production costs for large-scale derivation of biofu-
els and bioproducts from microalgae are still much higher 
than economic feasibility. A great deal of work has been 
done to overcome this limitation. Typically, neutral lipids 
occur as triacylglycerols (TAG), which are synthesized in 
algae through an ester exchange process using an intermit-
tent reactor. However, this process can lead to non-homo-
geneous conditions and subsequent inefficient cell growth, 
resulting in a potential decrease in total biodiesel yield.

To overcome this paradox, a "two-stage culture" strategy 
in bioreactors has been explored to improve the yield of 
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microalgal lipids [248]. However, a detailed study of the 
stress response of lipid-rich microalgae in continuous cul-
ture may provide mutual benefits for the one-step production 
of biomass and lipids, and this strategy may be more suit-
able for large-scale production [249]. However, currently 
available bioreactor systems are not very efficient and suffer 
from problems such as high microalgal adhesion disrupting 
biological properties and unsuitability for high-throughput 
screening applications. Zheng et al. [250] proposed a micro-
fluidic chemical bioreactor (Fig. 10) that provides low bio-
adhesive cultures of algae in a synergistic environment of 
gas, nutrients and temperature (GNT) with high-throughput 
screening capabilities. In addition, the core chip of this reac-
tor is a high-throughput microfluidic bioreactor array capa-
ble of simultaneously studying the effects of 64 different 
nutrient conditions on microalgal growth and oil production, 
overcoming the limitations of conventional culture systems.

7  Applications of Sustainable Natural 
Biomaterials

Abundant materials, ideas, possibilities, and sustainable 
solutions were provided by Mother Nature. Nature-derived 
and Nature-inspired materials shine the glory of intelligence 

for a large variety of sustainable energy, environment, and 
especially biomedical applications due to their unique 
advantages, including the excellent biocompatibility, bio-
degradability, vast abundance, low-cost, diverse functionali-
ties, and beyond [251–259].

7.1  Multifunctional Applications

Many stunning advanced materials have been developed 
via bioresource upgrade. One great example is the two-
dimensional (2D) materials. 2D nanosheets were upgraded 
from FDA-approved compositions from clays by Harvard 
scientists [260]. Those 2D nanosheet derived from natu-
ral clay has been demonstrated for diverse applications, 
including cancer therapy. Clays, also known as phyllo-
silicate minerals, are fundamentally composed of tetrahe-
dral silicon  (SiO2) and/or aluminum oxide  (Al2O3) crystal 
structures. To upgrade the resources of clays, researchers 
have proposed a universal exfoliation method that is able 
to intelligently “capture” the ultrathin, biocompatible, and 
functional core layers (FCLs: MgO and  Fe2O3, both are 
FDA-approved). These materials are sandwiched between 
two identical tetrahedral layers  (SiO2 and  Al2O3) from 2:1 
aluminosilicate (vermiculite (VMT), biotite, flogopite, 
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illite, etc.). The processes to upgrade the natural clays 
include a combination of ball-grinding, calcination, etch-
ing, and sonication. The above-mentioned NSs have an 
average thickness of 2.7 nm and a size of 110 nm, respec-
tively. For its applications in nanomedicines for in vivo 
therapy, physiological stability and dispersibility are 
important indicators. Thus, the FCL nanosheets were fur-
ther modified by positively charged PEG-NH2. The aver-
age thickness of FCL-PEG NSs increased to 6 nm, which 
confirmed the successful PEG-NH2 functionalization. 
Meanwhile, the average size of FCL-PEG NSs decreased 
to 105 nm, which is a result of the use of bath sonication 
to break down FCL NSs during PEGylation. Given the 
fact that the FDA-approved MgO and  Fe2O3 are widely 
used in the clinic for the treatment of stomach diseases 
and iron deficiency respectively, the innovative grown lay-
ers are biocompatible and potentially highly benefit both 
the basic science and translational medicine. Additionally, 
both in vivo and in vitro toxicity studies were conducted 
to further confirm and highlight the excellent biocompat-
ibility of the obtained FCL-PEG NSs. This 2D nanosheet 

further specifically pioneers their application in cancer 
theranostics as a demonstration of proof-of-concept, which 
also shows their potential as a prelude to the future exten-
sive studies of 2D NSs (Fig. 11).

The FCL-PEG NSs upgraded from natural clay had a 
strong ability to modulate tumor microenvironment (TME) 
via catalyzing  H2O2 to produce  O2, while consumes GSH 
due to the existence  Fe3+ in FCL-PEG NSs, which could 
relieve hypoxia and diminish the antioxidant capability of 
the tumor.

The NSs upgraded from natural clay possess a tunable 
and appropriate electron band structure with the bandgap 
decreased from 2.0 to 1.4  eV and the conductive band 
increased from –0.4 to –0.6 eV. This result endows them 
a huge potential in energy, catalysis, and biomedicine. By 
taking advantages of the narrowed band gap and improved 
ΔE between the conductive band of FCL-PEG NSs and E0 
of  O2/·O2

−, effective electron–hole separation of FCL NSs 
has been explained under 658 nm laser irradiation, which 
elevated the ·O2

− generation from  O2 with a high photody-
namic therapy (PDT) efficacy.
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Another good example is naturally upgraded fluorosur-
factant. It has been widely used in various areas, including 
the fundamental research and the industrial applications. 
Fluorosurfactant-stabilized droplets can be generated by 
microfluidics, which are widely used as pico- to nanoliter 
volume reactors for both chemistry and biology. However, 
current available surfactants are not able to completely pre-
vent the inter-droplet transfer of small organic molecules that 
encapsulated or produced inside the droplets. In addition, 
most microdroplets typically coalesce at temperatures higher 
than 80 °C. Thus, the usages of fluorosurfactant-stabilized 
droplets for ultrahigh-throughput combinatory drug screen-
ing and polymerase chain reaction (PCR) have been lim-
ited. Bioresource upgrade has been employed into designing 
surfactants that form robust microdroplets with improved 
stability and capability to prevent inter-droplet transferring. 
To upgrade surfactant, a panel of dendritic oligo-glycerol-
based surfactants have been produced [261]. The authors 
further elaborated a high degree of inter-and intramolecu-
lar hydrogen bonding, as well as the dendritic architecture, 
which guarantees high droplet stability. The good stability 
further benefits PCR thermal cycling via minimizing the 
inter-droplet transfer of the water-soluble fluorescent dye 
sodium fluorescein salt and the drug doxycycline.

The bioresource upgrade can be pragmatic to biomedical 
therapy. For example, the ROS can be upgraded. A sub-
lethal level of ROS sustains cell proliferation, differentia-
tion and promotes tumor metastasis, while a drastic ROS 
burst directly induces apoptosis. The biological derived 
nanomaterials have been applied for ROS modulation. The 
surface-oxidized arsenene nanosheets (As/AsxOy NSs) with 
type II heterojunction are upgraded for efficient ·O2

− and  O2 
production [262]. The upgraded biomaterials also consume 
glutathione through prolonging the lifetime of photo-excited 
electron–hole pairs. Additionally, the portion of  AsxOy is 
not only able to catalyze a Fenton-like reaction, but also 
generate ·OH and  O2 from  H2O2. At the same time, As/
AsxOy NSs will be inactively main antioxidants to prevent 
the cytotoxicity of ROS. The As/AsxOy NSs can further be 
upgraded by coating polydopamine (PDA) and cancer cell 
membrane. The further upgraded As/AsxOy NSs provides 
as an intelligent therapy system with active tumor targeting 
and long-term blood circulation. More importantly,  AsxOy 
can be further upgraded to As/AsxOy@PDA@M NSs for 
imaging-guided non-invasive and real-time nanomedicine 
for cancer therapy.

The natural bioresource can also be progressed to wear-
able biomedical and theranotic devices. A good example is 
a non-printed integrated-circuit textile (NIT), which is built 
by fibers via interlacing nodes and waving into a deformable 
textile integrated circuit [263]. The upgraded non-printed 
integrated-circuit textile builds electrochemical gates. In the 
device, the fiber-woven-type transistors have been demon-
strated with superior bending or stretching capability. This 
non-printed integrated-circuit textile was woven into a fiber-
type sweat sensor with strain and light sensors, providing an 
intelligent wearable device for simultaneously monitoring 
body health and the environment. The woven circuit textile 
can be completely self-powered with a photo-rechargeable 
energy textile for both wireless biomedical monitoring and 
early warning. As a demonstration of proof of concept, the 
non-printed integrated-circuit textile could be used as a 24/7 
private AI “nurse” for routine healthcare, healthy monitor-
ing, or emergencies such as hypoglycemia, metabolic alka-
losis, and even COVID-19 patient care.

In addition to the natural materials, the living cells can 
also be upgraded for biomedical applications. For example, a 
helical-shaped cyanobacterium, Spirulina platensis (SP), can 
be upgraded by loading curcumin (SP@Curcumin) [123]. 
The upgraded microalgal biomass can be employed to treat 
colon cancer and colitis, two different types of gastrointesti-
nal diseases. SP@Curcumin encapsulated in microalga was 
used for the combined chemo- and radiotherapy, resulting 
in inhibition of tumor progression and radioprotection by 
scavenging reactive oxygen species that generated by the 
high dose of X-ray radiation. The upgraded microalga fur-
ther reduces the production of proinflammatory cytokines 
to inhibit inflammation against colitis. Based on the above-
mentioned parameters of the helical microalgae, it has been 
further upgraded for the protection of the whole small intes-
tine from radiation-induced intestinal injury in the radio-
therapy of gastrointestinal solid tumor [264].

Despite of the recent advances of selective radiopro-
tector for healthy tissues such as Amifostine (AMF), its 
applicant to intestinal radioprotection has been limited 
due to the harsh microenvironment of gastrointestine 
and rapid refreshment. A microalga carrying AMF, SP@
AMF, has been constructed for oral delivery for radiopro-
tection. The SP@AMF exhibit superior drug accumula-
tion and radioprotection in the whole organ as compared 
to free AMF and its enteric capsule. More significantly, 
the SP@AMF prevented the radiation-induced early and 
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delayed intestine injury, which resulted in prolonging 
the survival without influencing the tumor regression. 
To upgrade the microalga SP, SP was first lyophilized 
(dehydration) followed by incubated with a solution of 
AMF. The AMF will flow into the dehydrated SP during 
its extra flow-mediated drug loading and the rehydration 
process (Fig. 12). In addition, the upgraded microalga can 
be employed for automatic marine pollutants monitoring. 
The motion of algae can be set as a signal for bioassay 
sensor of marine pollutants [264]. The results demon-
strated by Han et al. showed that Platymonas subcordi-
formis as a sensitive and robust bioreporter when encap-
sulated in digital microfluidic systems. The microfluidic 
device can be extended to a gradient generator, which 
enable screening microalgae behaviors in a simple and 
cost-/time-/space-saving way [265]. This study conducted 
by Zheng et al. showed more opportunity for the upgraded 
microalgae as biosensors and monitors.

7.2  Sustainable Living Materials

Granting natural biomaterials such as wood and cotton have 
been extensively used in life and industry, their character-
istics are limited by evolutionary selection and are still not 
ideal. Sustainable living materials (SLMs) integrate biologi-
cal and abiotic components and have the advantages of both 
synthetic and natural materials, which can meet this limita-
tion. As a rapidly developing emerging field, SLMs aim to 
summarize the ideal characteristics of natural biomaterials 
and create new materials with activity and responsiveness by 
using genetically engineered organisms [266, 267]. A variety 
of organisms, such as bacteria, fungi, and algae, have been 
incorporated into materials such as concrete and hydrogels, 
and have broad application prospects in the fields of daily 
life, construction, and medical treatment. For example, a 
living component of silica material composed of a self-
assembled protein scaffold has been prepared. The obtained 
SLM can respond to external stimuli and can be regenerated 
from cells containing silicon material and incorporate new 
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functions. The SLM can be utilized as a self-healing material 
and can be applied to coatings and gypsum [268].

Compared with plant cellulose, bacterial cellulose (BC), 
as a high value-added biomass material, has some additional 
and unique properties, such as a high degree of polymeriza-
tion, high crystallinity, high purity, and biocompatibility. 
Because BC can obtain a high yield in a short period of 
time, it has recently become a promising material to produce 
SLMs. However, due to the lack of genetic tools and knowl-
edge, the bacteria that produce BC have been reprogrammed 
to sense external signals. A new SLM system (Syn-SCOBY) 
has been developed to prepare functional BC-based bioma-
terials by stable co-culture of Saccharomyces cerevisiae and 
bacteria. This method creates living materials that can sense 
and respond to stimuli, and has potential applications in bio-
catalysts and biosensor [269]. Figure 13 shows the analogy 
between natural living materials (plants) and engineering 
living materials. As the material basis and the main force 
of all life, protein also plays an extremely important role 
in the design of SLMs. Due to the functional diversity of 
natural proteins in machinery, electricity, catalysis, magnet-
ism, and biocompatibility, it is possible to reasonably design 
and direct evolution of proteins, which provides sufficient 
space for the design and function optimization of elms 
[270]. For instance, a programmable method to manufacture 

bio-hybrid semi-IPN (sIPN) has been proposed. The pro-
cess binds functional proteins through covalent bonds, has 
good biocompatibility and versatility, and has been proved 
to successfully protect the microbiota in the intestine from 
antibiotic-mediated interference [271].

In addition, the cost-effectiveness of mass production of 
materials and its industrial manufacturing speed limit the 
feasibility of SLMs in practical application, and there con-
tinue to be some challenges in the synthesis process. With 
the continuous development of SLMs, these new materials 
will bring more functions and applications and bring great 
benefits to our life in the near future [272].

7.3  Electrochemical Products

Porous materials equipped from biomass have high specific 
surface area and porosity, light weight, high mechanical 
properties and damping properties. These excellent proper-
ties make them widely used in aerospace, medical, electro-
chemical, petrochemical, and other fields [273]. They are 
also high-quality materials for preparing electrochemical 
products such as electrode and conductor of supercapaci-
tors. Various feedstocks, e.g., black sesame, wood, pollen, 
coconut meat, and water hyacinth, have been investigated 
to produce electrochemical products (Table 9). Microwave 
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treatment, thermal reduction and oxidation, vacuum-assisted 
filtration and hydrothermal treatment were applied to pro-
duce supercapacitors. The supercapacitor presented high 
performance with a specific capacitance of 403.8 F  g−1 at 
1.0 A  g−1, cycling stability of 10,000 cycles with 98.2% 
retention, and energy density of 378.7 Wh  Kg−1 [274]. Wood 
cell chamber-reduced graphene oxide was produced via 
carbonization with a specific capacitance of 288 F  g−1 and 
energy density of 36 Wh  Kg−1 at power density of 3600 W 
 Kg−1 [275].

The original discharge capacity and the Coulombic effi-
ciency respectively reached 884.1 mAh  g−1 and 64.6% for 
a full cell derived from pollen via template assisted sol–gel 
method [276]. A specific capacitance of 548.6 F  cm−3 
achieved for a supercapacitor derived from tannin via vac-
uum-assisted filtration, and hydrothermal treatment [277]. 
Another study investigated fibrous film electrode produced 
from bamboo pulp by hydrothermal treatment and carboni-
zation [278]. The results exhibit a specific capacitance of up 
to 331 F  g−1 at a current density of 1 A  g−1, and high energy 
density of 10.3 Wh  Kg−1 at a power density of 250 W  Kg−1. 
Composite sensors derived from water hyacinth presented 
linearity from 0.74 to 9.82 μmol  L−1, with a limit of quanti-
fication of 0.07 μmol  L−1 [279]. Triboelectric nanogenerator 
was produced by combining 1D cellulose nanofibers and 
2D nanosheets through a multi-step processing [280]. The 
results exhibit that a short-circuit current, open-circuit volt-
age and short-circuit transfer charge reached 3 μA, 38 V, 
and 12 nC, respectively. These latest advances on conver-
sion biomass to electrochemical products, and multi-system 
design as demonstrated above, can enable more clean and 
sustainable electricity generation [281]. It is essential to pin 
the enhancement on under-researched areas like the engage-
ment of effective catalysts and the development of more sta-
ble, efficient, and inexpensive conversion processes [222, 
282].

7.4  Micro/Nanomotors

Motion is critical for all different types of lives existing in 
both macroscopic and micro/nanoscopic realms. Nature has 
developed smart and high-efficiency biomolecular protein 
motors through thousands of years of biological evolution 
and has applied them in numerous biological processes and 
cellular activities [290, 291]. For instance, bacteria are able 

to drive themselves forward with the aid of rotary flagella 
nanomotors. Moreover, linear biomolecular protein motors 
such as kinesin, myosin and dynein, are able to harvest 
energy from hydrolyzing adenosine triphosphate (ATP) into 
adenosine diphosphate (ADP) and phosphate (Pi) molecules 
for lateral movement along the corresponding tracts. In addi-
tion, biological cells are decorated with intelligent biomo-
lecular engines (ATPase) which are demanded to produce 
biological fuel ATP.

Micro/nanomotors are micro/nanoscale devices, which 
are capable of converting chemical energy into mechanical 
force or movement [292, 293]. Evolution bestows biomo-
lecular protein motors with fascinating abilities to harness 
energy from living ambient for autonomous motion in vivo 
as described above. Inspired by the fantasy of naturally 
occurring protein motors, researchers paid great interests 
into artificial micro/nanomotors in the past decades. In 
particular, led by pioneering contributions of Sen and Mal-
louk’s team and Ozin’s group, current work mainly focuses 
on the exploration of high-efficiency and high-speed artifi-
cial micro/nanomotors, which have the abilities to convert 
chemical energy into autonomous motion [294, 295].

The research of artificial self-propelling micro/nanomo-
tors has rapidly developed in last few decades [296, 297]. 
Several advanced developments and excellent contributions 
have been made in this field. Although the bright future 
of this research field can be expected, some major exist-
ing challenges are still remained to be solved. The design, 
fabrication, control and applications of functional micro/
nanomotors require some innovative approaches and ideas 
to be realized. For example, synthesizing micro/nanomotors 
with individual functional parts and smartly and precisely 
controlling motors are still extremely challenging. Hereby, a 
complete understanding of the physiochemical mechanism is 
necessary. To realize better control of micro/nanomotors in 
the future, an industrial level of functional micro/nanoma-
chinery could be achieved. Despite of the significant devel-
opments and advances in micro/nanomotors, challenges are 
still remained to find specific relevant applications, such as 
biologically compatible fuels, etc.

In terms of implementation, micro/nanomotors have a 
wide variety of applications, including cargo delivery, water 
remediation, chemical sensing and biomedical applications, 
etc. [298, 299]. Advanced forms of micro/nanomotors may 
accelerate and benefit other research. However, designing 
and powering micro/nanomotors can be considered as a 
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Table 9  Conversion biomass to electrochemical products

Feedstock Approach Product Performance References

Coconut/walnut/bamboo waste Mechanochemistry/ball milling lithium–sulfur batteries/medi-
cal absorant

Excellent electrochemical 
performances/better than 
medicinal charcoal tablets

[274]

Eggshell Hydrothermal treatment/car-
bonization

Carbon electrode Wide potential window, low 
resistance, high specific 
capacitance, high cycling 
capacity

[274]

Coconut meat Microwave treatment, thermal 
reduction and oxidation

Supercapacitor Capacitance 403.8 F  g−1 at 
1.0 A  g−1, cycling stability 
98.2%, energy density 378.7 
Wh  Kg−1

[274]

Wood Carbonization Wood cell chamber-reduced 
graphene oxide@PVA com-
posite material

Specific capacitance 288 F  g−1, 
capacitance retention 91%, 
energy density 36 Wh  Kg−1, 
power density 3,600 W  Kg−1

[275]

Pollen Template assisted sol–gel 
methode

Anode Initial discharge capacity of 
the full cell 884.1 mAh  g−1, 
coulombic efficiency 64.6%

[276]

Tannin (TA) Vacuum-assisted filtration, 
hydrothermal treatment

Supercapacitor Capacitance 548.6 F  cm−3 [277]

Bamboo pulp Hydrothermally treated, then 
directly carbonized

Fibrous film electrode Specific capacitance of up to 
331 F  g−1 at a current density 
of 1  Ag−1, high energy 
density of 10.3 Wh  Kg−1 at a 
power density of 250 W  Kg−1

[278]

Water hyacinth biomass Pyrolysis, followed by  HNO3 
activation

composite sensors Linearity from 0.74 to 
9.82 μmol  L−1, a limit of 
detection 0.02 μmol  L−1, limit 
of quantification 0.07 μmol 
 L−1

[279]

Cellulose nanofibers Combining 1D CNFs and 2D 
C-GD nanosheets through a 
multi-step processing

Triboelectric nanogenerator 
(TENG)

Short-circuit current (Isc) 3 μA, 
open-circuit voltage (Voc) 
38 V, short-circuit transfer 
charge (Qsc) 12 nC

[280]

Black sesame Microwave irradiation Supercapacitor Specific capacitance 333.3 F 
 g−1, charge transfer resistance 
(Rct) 0.047 Ω, energy density 
3.32 Wh  Kg−1

[283]

Pine tannin Pyrolysis Capacitor electrodes Maximum electrode capaci-
tance 232 F  g−1 (at 0.5 A 
 g−1), capacitance retention 
70% (at 10 A  g−1)

[284]

Ganoderma lucidum Chemical self-assembly method Electrode material Specific capacitance 176 F  g−1, 
rate performance 81.6%, spe-
cific surface 893.9  m2  g−1

[285]

Water hyacinth biomass Pyrolysis, followed by  HNO3 
activation

Composite sensors Linearity from 0.74 to 
9.82 μmol  L−1, a limit of 
detection 0.02 μmol  L−1, limit 
of quantification 0.07 μmol 
 L−1

[286]

Cellulose nanofibers Combining 1D CNFs and 2D 
C-GD nanosheets through a 
multi-step processing

Triboelectric nanogenerator 
(TENG)

Short-circuit current (Isc) 3 μA, 
open-circuit voltage (Voc) 
38 V, short-circuit transfer 
charge (Qsc) 12 nC

[287]
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significant challenge in today’s nanotechnology research. 
Hence, it is much beneficial for us to learn the state of the 
art of artificial micro/nanomotors and improve them in this 
research field. In this section, the published work on the 
applications of artificial self-propelling micro/nanomotors 
will be presented and discussed.

For the cargo delivery by micro/nanomotors, the cargo 
could simply be attached to the motors by magnetic attrac-
tion. The delivery of drug-loaded magnetic poly (d,l-lactic-
co-glycolic acid) (PLGA) microparticles has been reported 
by both chemically propelled and magnetically driven micro/
nanomotors, as shown in Fig. 14a [300–302]. For charged 
cargoes, electrostatic interaction between cargoes and micro/
nanomotors could be employed for the pick-up process. A 
common strategy introducing charged portions into micro/
nanomotors is to incorporate a negatively charged poly-
mer part. Sen et al. reported that a polypyrrole (PPy) part 
was incorporated to a nanowire via electropolymerization, 
which could be connected to oppositely charged polysty-
rene amidine cargo via electrostatic interaction, as shown 
in Fig. 14a. A photo-chemically triggered cargo unload-
ing manner was proposed for cargoes loaded nanowires 
via electrostatic interaction. An additional Ag portion in a 
nanowire will be dissolved rapidly in the presence of fuel, 
chloride ions  (Cl−), and ultraviolet (UV) light, resulting in 
drop-off of the cargo. One of the primary environmental 
applications of micro/nanomotors is to adsorb the pollutants 
in water. Remediation agents could be incorporated with 
micro/nanomotors as the outer surface to contribute to the 
purification process during motion. Soler et al. reported the 
application of micromotors decorated with an iron (Fe) outer 
surface to degrade organic contaminants in water via the 
Fenton oxidation, as shown in Fig. 14b [303]. The applica-
tion of micro/nanomotors as chemical sensing is based on 
the case that the motion speed of micro/nanomotors can be 

converted into an analytically useful signal. The interaction 
of certain compounds in the sample with the catalytic sites 
of micro/nanomotors leads to the alteration of their motion 
speed and is related to the concentration of an analyte in 
solution, as shown in Fig. 14c [304]. Micro/nanomotors have 
proven to be able to drill into biomaterials and soft tissues. 
Rolled-up thin nanomembranes can asymmetrically result 
in sharp edges being engineered. Micro/nanomotors were 
self-propelling and externally directed toward immobilized 
cancer cells as well as embedded in their interior, as shown 
in Fig. 14d [305]. However, the toxicity of the fuel used for 
the motion leads to the cells undergoing apoptosis after short 
periods. Therefore, other environmentally friendly sources 
of motion are urgently required to be found.

8  Conclusions and Outlook

Bioresources are obtainable in large quantities and associ-
ated with persistent environmental challenges. It is essen-
tial to utilize these resources at a large scale within frame-
work of a circular economy. Furthermore, it is crucial to 
explore promising technologies for converting bioresource 
to sustainable energy and materials, which can promote the 
transformation and application of carbon neutral technol-
ogy. In the next stage, the renewable energy and materi-
als will be more proactive, to implement new development 
concepts, support economic green, low-carbon, and high-
quality development, and serve the goal of achieving carbon 
neutrality associated with challenges and opportunities for 
HALUB. Some future outlooks and prospects are summa-
rized as follows:

(1) High-value-added carbon materials production from 
HALUB

Table 9  (continued)

Feedstock Approach Product Performance References

Black sesame Microwave irradiation Supercapacitor Specific capacitance 333.3 F 
 g−1, charge transfer resistance 
(Rct) 0.047 Ω, energy density 
3.32 Wh  Kg−1

[288]

Pine tannin Pyrolysis Capacitor electrodes Maximum electrode capaci-
tance 232 F  g−1 (at 0.5 A 
 g−1), capacitance retention 
70% (at 10 A  g−1)

[289]
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 Biomass-modified carbonaceous materials will find rele-
vance for various other carbon-based materials applications 
like graphene and semi-conductor beyond fertilizer, adsor-
bent and catalyst. HALUB-derived carbon-based catalysts, 

including thermocatalysts, electrocatalysts, and photocata-
lysts are of high interest. Moreover, the high surface area 
and tunable porosity of the carbon materials can promote 
the application in carbon capture, such as pressure swing 
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adsorption (PSA). Additionally, the carbon materials have 
great potentials in lithium battery and hydrogen fuel cell 
technologies, which play important roles in the green energy 
for transportation.

(2) Co-conversion technologies

 Co-conversion of different HALUB and integration of dif-
ferent technologies are innovative approaches for sustain-
able bioresource management in the generation of energy 
and materials. Currently, it is promising to utilize the full 
components of biomass (cellulose, hemicellulose, and 
lignin). Combination of biochemical methods (such as AD 
or fermentation) and thermochemical methods could help to 
achieve this goal. The components that cannot be converted 
in biochemical methods (such as lignin) can be used in the 
thermochemical methods. Actually, lignin is the most abun-
dant aromatic source in the nature.

(3) Application of machine learning in HALUB conversion 
processes

 Due to the difficulty and high cost to perform biomass ther-
mochemical conversion reactions, especially the large-scale 
reactions. Machine learning plays an imperative protago-
nist in the optimization of HALUB conversion process and 
improvement of the conversion efficiency. The current data 
will help to train the model and thus predict the outcome of 
the thermochemical conversions. This will rely on a large 
amount of data and a comprehensive overview of the avail-
able experimental results.

(4) Full life cycle assessment of HALUB utilization

 HALUB to sustainable energy and material has a positive 
effect on mitigating climate change and building a commu-
nity with green future. It is important to emphasize repre-
sentative feedstocks and utilization approaches in a common 
framework, including availability, physiochemical charac-
teristics, techno-economic and life cycle considerations for 
resource-process-use-disposal systems. The utilization of 
HALUB should be considered in a full life cycle, from cul-
tivation to the final disposal. Wherever possible, use existing 
indices (e.g., IPCC emission factors) for direct comparison 
of resource-process impacts.

(5) Future perspectives

 The current status and future prospects of HALUB are 
linked with the maneuver of persistent organic and inor-
ganic pollution and other environmental glitches. Glob-
ally, the bioresources management systems can perform a 
vigorous protagonist in supervision of climate change and 
subsidiary green revolution. In imminent, renewable mate-
rials will be more practical for the implementation of novel 
developmental perceptions and for achieving carbon neu-
trality. The promotion of carbon neutral technologies may 
yield results for conversions of bioresources to biomateri-
als and energy. There are voluminous opportunities in the 
field of HALUB based photocatalysis as well as electroca-
talysis as it has high curiosity in the field of carbon capture 
and storing technology to boost modernization. Moreover, 
hydrogen fuel cell automations perform a vigorous role in 
green energy. It also promotes scientific knowledge and 
innovation research hence the green environment will be 
encouraged. The utilization approaches will enhance and 
contribute to advancement toward international environ-
ments restoration. The unearthing of bioresource derived 
materials will have momentous impacts on progression of 
getting environmental sustainability. Although, there are 
some challenges to comprehend the conversion of energy 
structure via renewable energy substitutions and need for 
further development and to contrivance solutions employ-
ing HALUB.

In conclusion, this review article explores the utiliza-
tion of biomass and residual materials associated with 
persistent environmental challenges around the world and 
highlights utilization approaches that integrate into circu-
lar economy and contribute to progress toward environ-
mental remediation and restoration. Common criticisms 
of the bioeconomy with regard to challenging HALUB 
are addressed with feedstocks and utilization approaches 
in a common framework. At last, challenges and need for 
further development and to implement solutions utilizing 
HALUB are discussed.
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