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Critical Review on cathode–electrolyte Interphase 
Toward High‑Voltage Cathodes for Li‑Ion Batteries

Jijian Xu1 *

HIGHLIGHTS

• A critical assessment of cathode–electrolyte interphase (CEI) for high-voltage cathode electrodes in Li-ion cells.

• Fundamental understanding of why interfacial interphase is important to electrochemical performance and further elaboration on how 
to design robust CEI interphase.

• Emerging theoretical simulations and advanced in situ characterizations helps to unveil the mystery of CEI are summarized.

ABSTRACT The thermal stability window of current commercial carbonate-
based electrolytes is no longer sufficient to meet the ever-increasing cathode 
working voltage requirements of high energy density lithium-ion batteries. It 
is crucial to construct a robust cathode–electrolyte interphase (CEI) for high-
voltage cathode electrodes to separate the electrolytes from the active cathode 
materials and thereby suppress the side reactions. Herein, this review presents 
a brief historic evolution of the mechanism of CEI formation and compositions, 
the state-of-art characterizations and modeling associated with CEI, and how to 
construct robust CEI from a practical electrolyte design perspective. The focus 
on electrolyte design is categorized into three parts: CEI-forming additives, anti-
oxidation solvents, and lithium salts. Moreover, practical considerations for elec-
trolyte design applications are proposed. This review will shed light on the future 
electrolyte design which enables aggressive high-voltage cathodes.

KEYWORDS Cathode–electrolyte interphase; High-voltage cathodes; 
Interfacial chemistry; Electrolyte design; Batteries.

1  Introduction and Scope

Along with the transition to a net-zero emissions future, 
there is a consistently growing demand for high energy 
density lithium-ion batteries with high voltage and high 

specific capacity [1, 2]. The simplest method to further 
improve the energy density of lithium-ion batteries is 
to increase the upper cutoff voltages. Taking the repre-
sentative  LiCoO2 as an example, the discharge capacity 
increases from 170 to 220 mAh  g−1 by changing the upper 
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cutoff voltages from 4.3 to 4.6 V [3]. However, creating a 
battery that can withstand high upper cutoff voltages while 
maintaining low side effects is no small feat. Cutoff volt-
age fluctuations accelerate interfacial reactions between 
the cathodes and electrolytes which will inevitably lead 
to serious consequences such as rapid capacity decay or 
even battery breakdown.

Since 2011, extensive works on cathode modification 
and electrolyte design have emerged in the hope of sup-
pressing or even eliminating such interfacial reactions. 
There are multiple effective cathode modification strate-
gies such as heteroatom doping and surface coating [4, 
5]. Heteroatom doping was applied to stabilize the crystal 
structure of primary particles and inhibit the undesired 
electrode–electrolyte interfacial reactions [6–9]. Likewise, 
surface coating strategies including oxides, fluorides, and 
phosphates have been put forward to prevent electrolyte 
penetration and transition metal dissolution [10–14]. 
Atomic layer deposition and molecular layer deposition 
outperform various surface coating techniques, enabling 
controllable coating with atomic-level precision, excellent 
uniformity, and conformity [15, 16]. Conformal surface 
coating can be effective even under a high temperature of 
55 °C: exhibiting capacity retention of 89.4% for Ni-rich 
cathode [17]. Another promising strategy aims to enhance 
electrolyte stability by modulating electrode/electrolyte 
interfacial reactions directly through electrolyte design. 
In the history of Li-ion batteries, the electrolyte-derived 
interphase on the anode was observed and defined as “solid 
electrolyte interphase (SEI),” which is a milestone [18]. 
In parallel, the interphase formed on the cathode is named 
“cathode–electrolyte interphase (CEI).” The role of CEI 
was once overlooked because there is no thermodynamic 
driving force for electrolyte oxidation for commercial bat-
teries operating within 4.3 V [19]. The understanding of 
CEI becomes increasingly important due to the require-
ment of high voltage operation [20–23]. In situ formation 
of robust CEI via rational electrolyte design is the most 
promising strategy to separate the electrolyte from active 
cathodes and prolong the cycle life under high-voltage 
operation due to its ease of regulation by various compo-
nents and self-healing ability. A review of CEI from the 
perspective of electrolyte design could provide fundamen-
tal guidance for further research.

This review aims to recount the history of CEI from its 
concept evolution to practice, including the cumulative 

cognition of CEI compositions and formation, the latest 
knowledge about CEI brought by advanced characteriza-
tions and modeling effects, and the design principles of 
CEI especially from the perspective of practical electro-
lyte design, and future research needs on this topic. All 
the electrolytes in our review are liquid unless noted; 
otherwise, the discussion of solid-state electrolytes is not 
included in the scope of this paper.

2  CEI Chemistry in Evolution

Unlike SEI on the anode side, the important role of CEI 
was not realized until attempts were made to increase the 
cutoff voltage beyond the oxidation stability of electrolytes 
[24]. It is academically accepted that there is virtually no 
thermodynamic driving force for electrolyte oxidation on 
most conventional positive electrode materials. However, 
this law only applies to thermal stability windows below 
4.3 V and fails when the cutoff voltage increases.

In addition, the view that CEI is not present on the cath-
ode surface below 4.3 V was also found to be misleading. 
A lot of studies linked oxidation stability with the highest 
occupied molecular orbital (HOMO) energy [5]. In gen-
eral, molecules with higher HOMO energy are more vul-
nerable to oxidation, from which researchers derive oxida-
tion stability higher than the actual value, leading to the 
conclusion that CEI is nonexistent under 4.3 V. The new 
study, however, shows that the oxidation potential strongly 
depends on the local environment, meaning that there is 
no direct correlation between HOMO energies and experi-
mentally observed oxidation stability [25, 26]. Therefore, 
it is more reasonable to use HOMO energy as a qualita-
tive assessment of possible oxidation stability. In contrast, 
quantum chemistry (QC) calculation which takes the local 
solvents and anion environments into consideration is a 
promising direction for predicting oxidation stability [26].

Analogous to the case of graphite anodes, when high 
voltage operation exceeds the oxidation stability limits of 
organic electrolytes, a robust CEI is required to suppress side 
reactions. Before discussing how to design a powerful CEI, 
a comprehensive understanding of CEI is necessary, which 
is a challenge due to its sensitive chemical nature, complex 
formation process entangled with both electrolyte composi-
tion as well as surface chemistries of cathodes, and the lack 
of reliable characterization tools.
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2.1  Composition and Formation Mechanisms of CEI

Pioneering works have been carried out to study the CEI 
even though the validity of the CEI concept was still doubted 
in the early 1990s [27, 28]. Selected studies show a brief 
historic evolution of the mechanism of CEI compositions 
and formation is presented in Fig. 1. A surface layer on 
 LiCoO2 was firstly suggested by Goodenough et al. through 
the analysis of impedance spectra in conjunction with elec-
tron microscopy observation (Fig. 1a) [29]. The compo-
sition of the surface layer was later investigated using an 
in situ Fourier transform infrared (FTIR) spectroscopy, and 
Fig. 1b demonstrates the presence of carboxylate groups on 
the surface of cycled  LiCoO2 thin film electrode [30]. A 
bi-layer CEI model consisting of an inner layer of polymer/
polycarbonate and outer layer of LiF as well as precipitated 
species like  LixPOyFz, phosphorus oxides was proposed 

according to the X-ray photoelectron spectroscopy (XPS) 
analysis of cycled  LiMn2O4 electrodes (Fig. 1d) [31]. Fig-
ure 1h illustrates that artificial CEI of conductive polymer 
on Ni-rich cathodes can effectively suppress the undesired 
layered to spinel/rock-salt phase transformation and enhance 
the capacity under high-voltage operation [32]. Meanwhile, 
a LiF-rich CEI formed in the concentrated electrolyte can 
also stabilize the cathode structure and improve the electro-
chemical performance of lithium-rich cathode (Fig. 1i) [33]. 
One vital but debatable issue in CEI chemistry is the role of 
fluorinated species, such as LiF. On the one hand, less LiF 
was reported to result in a thin CEI film with low imped-
ance to enhance high-voltage performance [34, 35]. On the 
other hand, LiF-rich CEI layers have been well reported 
with superior cycling performance, especially with concen-
trated electrolytes [33, 36, 37]. With the development of 
environmental transmission electron microscopy (TEM), 

(a) Formation of a surface layer
on LiCoO2 [Goodenough]

(b) Detection organic compounds
via in-situ FTIR [Kanamura]

(d) Both inorganic and organic
components [Thomas]

(h) Conductive polymer CEI [Chen]

(i) Inorganic-rich CEI [Qiu]

(c) Nucleophilic reactions [Aurbach]
(e) Surface reactions [Komaba]

(f) Ring opening reactions [Tebbe]

(g) Dehydrogenation reactions
[Shao-Horn]
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Fig. 1  A brief historic evolution of CEI on positive electrodes. a Formation of a surface layer on LiCoO2 was first suggested by Goodenough 
et al. early in 1985. Copyright from Ref. [29]. b Kanamura et al. detected carboxylate species using in situ FTIR. Copyright from Ref. [30]. c 
Nucleophilic reactions mechanism was proposed by Aurbach for nucleophilic cathodes. Copyright from Ref. [28]. d The compositions of the 
CEI layer are further identified from XPS results. Copyright from Ref. [31]. e Surface reaction mechanism of the formation of Li2CO3. Copy-
right from Ref. [39]. f Ring-open reaction of ethylene carbonate. Copyright from Ref. [42]. g Dehydrogenation reaction on the cathode surface. 
Copyright from Ref. [44]. h Illustration of the structural stability of artificial conductive polymer CEI. Copyright from Ref. [32]. i Schematic of 
LiF-rich CEI formed in the concentrated electrolyte. Copyright from Ref. [33]
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in situ visualization of LiF formation on CEI in  LiPF6/pro-
pylene carbonate was achieved, which shows a remarkable 
self-healing ability of LiF [38]. Undoubtedly, this work is a 
milestone that deepens our understanding of LiF formation 
on CEI and guides us toward improving CEI chemistry.

It is extremely challenging to fully understand the CEI 
formation mechanism due to the complicated CEI com-
positions which are still not completely identified so far. 
However, a number of meaningful explorations have 
been conducted in recent years. Based on spectroscopic 
measurements and structural analysis, exchange reactions 
and nucleophilic reaction mechanisms were proposed for 
different cathode materials [28]. In the case of nucleo-
philic cathodes such as  LiNiO2, the electrode is covered 
by  ROCO2Li originating from direct reactions between 
the active materials and the electrolyte solutions (Fig. 1c). 
However, the existence of all CEI components cannot be 
explained by this mechanism alone, and more CEI forma-
tion mechanisms have been proposed later. As shown in 
Fig. 1e, Yabuuchi et al. raised a surface reaction mecha-
nism where oxygen can be reduced to superoxide to attack 
carbonate solvents to form  Li2CO3 [39]. It is worth men-
tioning that the cathode materials undergo surface recon-
struction or reduction of transition metal oxidation state in 
contact with the electrolytes [40, 41], indicating the charge 
transfer between cathodes and electrolytes. CEI was found 
to be dominated by ethylene carbonate open-ring reac-
tion activated by  PF5 derived from  LiPF6 decomposition 
(Fig. 1f) [42]. Other ethylene carbonate open-ring reac-
tions initiated by electron-abstraction, proton-abstraction, 
and Lewis base were also discussed [43]. Shao-horn and 
co-workers found that the ethylene carbonate dissociation 
leads to hydroxylation of the cathode surface, namely the 
dehydrogenation reaction mechanism [44]. Importantly, 
the tendency of ethylene carbonate dissociation is strongly 
cathode material dependent. Proton transfer, also known 
as H-transfer reaction, between solvents on the cathode 
surface followed by solvent oxidation has recently been 
found to be universal [45]. The oxidation stability of com-
mon solvents including carbonates, sulfones, phosphates 
as well as ether significantly drops when coupled with 
H-transfer [46, 47]. Such a mechanism understanding shed 
light on manipulating the CEI chemistry by bringing spe-
cific components closer to the cathode surface to facilitate 
desired redox reactions.

2.2  Interaction Between CEI and SEI

CEI and SEI were usually studied independently as separate 
components on the cathode side and anode side. More atten-
tion should be paid to the correlation between the two, given 
that both are important components in the Li-ion battery sys-
tem. Recently, it was revealed that the SEI transforms from a 
thick “three-layer” to a thin “two-layer” architecture by tun-
ing the CEI surface chemistry via the amount of lithium bis-
(oxalate)borate (LiBOB) additive, demonstrating obvious 
CEI and SEI interaction (Fig. 2a and b) [48]. The modified 
CEI layer is composed of  BxOy species with extreme robust-
ness against electrochemical abuse which can effectively 
prevent the transition-metal crossover, benefiting the forma-
tion of a thin (O-enriched exterior layer and Li-dominating 
interior layer) SEI. Li et al. highlighted the strong interac-
tion between CEI on high voltage  LiCoO2 cathode and SEI 
by quantitative XPS analysis of CEI/SEI components and 
evolution [49]. The CEI components only slightly changed 
with fresh Li metal or graphite anode replaced at the charge 
state, while the CEI thickness increased rapidly with the 
original charged Li metal during the discharge process, as 
presented in Fig. 2c. In another example, the generated gas 
species at a cutoff potential above 4.2 V was migrated to, 
and then interacted with the SEI layer, as verified by gas 
chromatography-mass spectrometry measurement [50]. 
With the ongoing research efforts, increasing evidence has 
indicated the interaction between CEI and SEI [51, 52]. In 
parallel with Li-ion batteries, synergistically strengthening 
the SEI and CEI leads to ultra-stable cycle life of dual-ion 
batteries [53–55].

3  Micro‑Cognition of CEI via Novel 
Technologies

3.1  Advanced Characterizations

CEI is dynamic during the charge/discharge cycling, and 
therefore, advanced operando characterizations are crucial 
to understanding the CEI evolution [56]. Changes in struc-
ture and composition of the CEI layer can be monitored by 
in situ neutron reflectometry [57]. As shown in Fig. 3a and 
b, the CEI thickness increased to 48.8 nm at 4.2 V for sam-
ple (iii) and decreased to 35.6 nm at 3.3 V for sample (iV), 
suggesting a growth/dissociation of the CEI layer during  Li+ 
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extraction/insertion. In situ atomic force microscopy (AFM) 
visualized the morphological changes of the CEI layer up to 
a high voltage of 4.5 V, revealing that the CEI films are only 
formed at the edge plane of  LiCoO2 crystal and decomposed 
at the discharge state (Fig. 3c) [58]. An operando-attenuated 
total reflection—Fourier transform infrared (ATR—FTIR) 
technique was developed to study the dynamic mechanism 
of CEI formation in real time [59]. It was found that the 
addition of tris(trimethylsilyl)-borate additive can prevent 
the continuous decomposition of ethylene carbonate at high 
voltage and promote the stability of the CEI film. Raman 
bands of CEI exhibited substantial dynamics in strong corre-
lation with the state-of-charge of the  LiNi0.33Co0.33Mn0.33O2 
electrode by a monolayer of deposited Au nanocubes [60]. 
Ideally, the in situ characterization techniques should bring 
minimum interruption to the operating cells and be under 
real operating conditions [61]. Learning from the anode 
side, in situ mass spectrometry and Cryo-TEM [62, 63], 
which dynamically investigate the SEI formation, can also 
be applied to monitor and visualize CEI formation. Emerg-
ing nanoscale X-ray tomography combined with artificial 
intelligence and machine learning might be able to develop 
predictive models to analysis the impact of CEI on cell 

performance [64, 65]. All these techniques have helped us 
understand the cell failure mechanism. More importantly, 
we should try to guide the optimization of better electrolytes 
based on observations from various characterizations.

3.2  Molecular Dynamics (MD) Simulation 
and Machine Learning

Nowadays, MD simulations play an important role in inves-
tigating electrolyte solvation structure, the formation of CEI 
and its evolution. MD simulation applied in batteries can 
trace back to the late 1990s [66, 67]. Oleg and co-works 
investigated the interfacial chemistry on the cathode side 
using classic MD simulation with applied electrode poten-
tials [45, 68]. On the cathode electrode surface, highly 
concentrated electrolytes were found to exclude the solvent 
molecules away and selected anions could be preferentially 
absorbed for decomposition (Fig. 4a). Density functional 
theory (DFT) in combination with ab-initio molecular 
dynamics was conducted to understand the electrolyte role 
in CEI formation, showing that an electrolyte with high fluo-
rine content can induce a robust fluorinated CEI [69]. Note 
that the box size and simulation time are very limited due 
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to their high computation expense for ab-initio molecular 
dynamics simulations. The Kristin A. Persson group first 
incorporated machine learning to predict the decomposition 
pathway of electrolyte components [70, 71]. As shown in 
Fig. 4a–b, reaction network was developed to explore pos-
sible intermediates and reaction pathways, obtaining 570 
candidate molecules and identifying two novel lithium ethyl-
ene monocarbonate formation mechanisms. Machine learn-
ing models trained upon the known properties including 
dielectric constant, HOMO energy, and etc. provide a way 
to rapidly screen new electrolyte solvents and even blended 
solvents with different ratios. Experimental trial-and-error 
testing of new compositions of electrolytes can be signifi-
cantly accelerated with data-driven machine learning [72]. 
Such data-driven artificial intelligence continues to trans-
form electrolyte design and shows great potential for further 
optimization of liquid electrolytes and Li-ion cells.

4  Robust CEI: From Electrolyte Design

4.1  CEI‑Forming Additives

Adding functional additives that improve cathode stability 
is the most cost-effective strategy to make conventional car-
bonate-based electrolytes compatible with aggressive high-
voltage cathodes. During the past decades, various types of 
functional additives and their combination have been inves-
tigated [73–75]. In this section, we mainly focus on the CEI-
forming additives in carbonate-based electrolytes, and other 
functional additives, such as overcharge protectants and fire-
retardant agents, are out of scope. However, related research 
could be found in other good reviews [76, 77].

Based on whether the additives participate in interfacial 
reactions, additives can be classified as sacrificial and non-
sacrificial. Sacrificial electrolyte additives electrochemically 
decompose before the host electrolytes and thereby form 
CEI on the cathode–electrolyte. These additives include 
unsaturated carbonate, boron-containing additives [78], 
nitrogen-containing additives [79, 80], fluorine-containing 
additives [81], silicon-containing additives [82], phospho-
rus-containing additives [83], and sulfur-containing addi-
tives [84]. Among them, boron-containing chemicals, such 
as LiBOB, tris (trimethylsilyl) borate [85], trimethyl borate 
[86], and triethyl borate, were particularly effective. This is 
because additives containing electron-deficient boron atoms 

could coordinate with anion  PF6
−, which lowers the oxi-

dation potential of the baseline electrolyte and participates 
in the formation of the protective CEI. A systematic com-
parison of the CEI formation on  LiNi0.5Mn1.5O4 cathodes 
with three different lithium borate electrolyte additives has 
been conducted [87]. As shown in Fig. 5a, the CEI layer 
thickness increases in the order of lithium catechol dimethyl 
borate > lithium 4-pyridyl trimethyl borate > LiBOB, sug-
gesting a strong correlation between the CEI layer thickness 
and reactivity of the additive. A mechanism study for the 
LiBOB-enabled 4.5 V lithium-rich layered oxides||graphite 
full cells was further conducted (Fig. 5b), confirming the 
formation of a uniform interphase with B-F species on 
high-voltage cathodes under cryo-condition [88]. In situ 
formation of F- and B-rich CEI layer on  LiNiO2 cathode 
was demonstrated using LiDFOB as an additive, maintaining 
high capacity retention of > 80% (400 cycles) at a high cutoff 
voltage of 4.4 V [89].

Another requirement of being sacrificial additives is 
that they must possess a lower reduction potential than the 
solvent; otherwise, it needs to create a protective SEI on 
the anode surface at the same time. With this in line, many 
studies have developed blended additives or multifunc-
tional additives by combining the advantages of different 
additives. Synergistic effects of dual additives on protect-
ing the cathodes under high potentials have been inves-
tigated. A blend of SEI film-forming additive (vinylene 
carbonate) and CEI film-forming additive (1,3-propane 
sultone) resulted in improved capacity retention [90]. 
Dual additives (trimethyl borate + fluoroethylene carbon-
ate and trimethyl borate + tetramethylene sulfone) in the 
commercial electrolyte can lower the oxidation potential 
and form a thinner, more stable CEI, enabling the perfor-
mance of  LiNi0.8Co0.1Mn0.1O2 cathodes charged to 4.5 V 
[91]. The combination of tris (trimethylsilyl) phosphite 
and lithium difluoro(oxalato)borate in the electrolyte not 
only forms a robust CEI but also improves the thermal 
stability. (Capacity retains more than 91% when stored 
at 60 °C for 50 days.) [92] A ternary electrolyte additive 
system consisting of 2% prop-1-ene-1, 3-sultone + 1% 
methylene methane disulfonate + 1% tris-(trimethylsilyl)-
phosphite significantly improves the capacity retention of 
 LiNi0.4Mn0.4Co0.2O2||graphite pouch cells cycled at constant 
current up to 4.5 V [93]. In addition, several ternary blends 
of triphenylphosphate with different film-forming addi-
tives were reported to have better high-voltage performance 
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compared to electrolytes with a single additive [94]. Alterna-
tively, integrating the nitrile and borate groups into a single 
additive (tris(2-cyanoethyl) borate) results in the in situ-
formed rich N and B CEI layer and thus enabling single-
crystal Ni-rich cathode to operate at cutoff voltage as high 
as 4.7 V with outstanding cycling stability [95]. Following 

the same logic, tris-(trimethylsilyl)-phosphite was used as a 
multifunctional additive, in which the trivalent phosphorus 
can scavenge oxygen gas in the cell, the electrophilic silicon 
can remove nucleophilic lithium oxide species, and the silyl 
ether component can prevent transition metal dissolution 
[96, 97].
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Non-sacrificial electrolyte additives are emerging very 
recently, which activate the CEI formation without self-sac-
rificing. As well known, sacrificial additives will gradually 
consume through the interfacial reactions, hence deterio-
rating the cycling stability of lithium-ion cells eventually. 
Recent research revealed that employing non-sacrificial elec-
trolyte additives can perfectly address the aforementioned 
concern. Methyl diphenylphosphonate as a non-sacrificial 
additive was evaluated by Zhang et al. [98], which can sta-
bilize the  LiNi0.8Mn0.1Co0.1O2 cathode/electrolyte inter-
face by physical absorption. The first principle calculation 
demonstrates that the methyl diphenylphosphonate additive 
forms a stable pyramid structure with Mn ions and Li ions 
on the cathode surface, which also contributes to the thermal 
stability of the cells at high temperatures. As reported by 
Wang et al., the local fluoroethylene carbonate (FEC)-Li+ 

configuration triggers the oxidative decomposition of the 
otherwise inert  FSI−, while the FEC additive remains stable 
against the electrochemical cycling [99].

Overall, electrolyte additives have been proven to be 
effective in enhancing the electrochemical performance of 
high-voltage Li-ion cells by forming stable CEI. Considering 
the abundance of the additive species and their numerous 
combinations, there is still plenty of space in taking full 
advantage of the commercial carbonate-based electrolytes.

4.2  Anti‑oxidation Solvents

In comparison with traditional commercial carbonate sol-
vents, anti-oxidation solvents not only possess greater stabil-
ity under high voltage, but also contribute to a robust CEI 
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interface when involved in interfacial reactions. In commer-
cial lithium-ion cell systems, carbonate solvents are the most 
popular ones, exhibiting good performance at cutoff voltages 
below 4.3 V. However, as the voltage increases, their ther-
modynamic limitations manifest themselves, which, coupled 
with enhanced cathode surface reactions, lead to extensive 
deterioration in cell performance. By introducing anti-oxi-
dation solvents with greater stability such as fluorinated sol-
vents, sulfones, nitrile, and ionic liquid, the electrochemical 
performance of Li-ion cells with high-voltage cathodes can 
be effectively improved.

Among the various anti-oxidation solvents, fluorinated 
solvents have been well investigated in the hope of extend-
ing the electrochemical stability window of electrolytes. The 
fluorine substitution in the solvents shows improvement in 
oxidation stability due to the strong electron-withdrawing 
effect of fluorine atoms and also contributes to the enrich-
ment of CEI with fluorinated species. Amine’s group dem-
onstrated that a fluorinated carbonate solvent-based elec-
trolyte provides superior voltage stability on the 5.0 V 
spinel  LiNi0.5Mn1.5O4 cathode at both ambient and elevated 
temperature at 55 °C (Fig. 6a–b) [100]. Note that fluorine 
substitution results in simultaneously higher oxidation sta-
bility and higher reduction potential. Considering higher 
reduction potential may lead to instability on the anode side 
[101], a stable  Li4Ti5O12 anode was employed to accurately 
evaluate the beneficial effect on the cathode side. Wang and 
co-workers reported an all-fluorinated electrolyte can form 
a highly fluorinated, conformal, and dense CEI consisting 
of inorganic species with a thickness of 5–10 nm that sta-
bilizes not only the high voltage  LiNi0.8Mn0.1Co0.1O2 (effi-
ciency ~ 99.93%) and  LiCoPO4 (efficiency ~ 99.81%) cath-
odes, but also lithium metal (plating/stripping, ~ 99.2%) 
[102]. As a result, full cells retain ~ 93% of their original 
capacities after 1,000 cycles at a practical loading of 2.0 
mAh  cm−2. By forming a robust CEI layer (~ 8.5 nm) in the 
all-fluorinated electrolyte, 4.5 V high loading (4 mAh  cm−2) 
 LiCoO2//graphite pouch cell delivered excellent capacity 
retention of 80% after 500 cycles (Fig. 6c-d) [3]. However, 
such an all-fluorinated electrolyte consisting of ultra-high 
extent of fluorinated solvents might be an “over-kill” [103]. 
A family of fluorinated ethyl methyl carbonates with differ-
ent numbers of F atoms was systematically studied to reveal 
the effects of fluorination extent of carbonate solvents on 
battery performance (Fig. 6e-f). Yu et al. found that fully 
fluorinated solvents are not necessarily desirable. Instead, 

the degree of fluorination needs to be rationally tuned in 
order to optimize the Li-ion cell performance [104]. Know-
ing exactly which component functions as the key fluorinat-
ing agent for the CEI interphase constitutes the key knowl-
edge to enabling future battery chemistries.

Sulfone-based electrolytes offer another pathway toward 
enabling aggressive high-voltage cathodes. Angell first 
reported a sulfone-based electrolyte of 1 M  LiPF6 dissolved 
in ethyl methoxyethyl sulfone, showing remarkable anodic 
stability of above 5.0 V versus lithium [105]. Later, the 
electrochemical stability of five sulfone-based electrolytes 
was evaluated using lithium bis (trifluoromethanesulfo-
nyl) imide (LiTFSI) as a lithium salt. Among these, ethyl 
methyl sulfone or tetramethyl sulfone exhibited the high-
est anodic stability [106]. Significant anodic stability is 
achieved at the cathode–electrolyte interface because of the 
sulfone group in the molecular which helps to lower the 
HOMO level. The compatibility between the sulfones and 
graphite anodes could be addressed by various approaches. 
Amine and co-workers synthesized β-fluorinated sulfone, 
which is not only resistant to oxidation on the high volt-
age  LiNi0.6Mn0.2Co0.2O2 cathode but also reductively stable 
toward the graphite anode [107]. Moreover, β-fluorinated 
sulfone is a non-flammable solvent with reduced lithium 
solvating power, mitigating the transition metal dissolution 
of the cathodes. Ultimately, β-fluorinated sulfone-based 
electrolytes enable the stable long-term cycling of graph-
ite/LiNi0.6Mn0.2Co0.2O2 full cells with the highest capacity 
retention of 81% after 400 cycles. Together with concen-
trated lithium bis (fluorosulfonyl) imide (LiFSI) derived SEI, 
a sulfone-based electrolyte enables a high voltage (4.85 V) 
graphite/LiNi0.5Mn1.5O4 full cell to operate over 1000 cycles, 
retaining 70% of its first-cycle discharge capacity. QC cal-
culations predict that the decomposition of sulfone results 
in polymerizable products, leading to a thin, sulfur-based 
CEI which are corroborated by XPS and cryogenic-trans-
mission electron microscopy [108]. Considering sulfones as 
the electrolyte solvent, one annoying drawback that should 
be pointed out is the high melting point. Mixing sulfones 
with other solvents is the most effective method to tackle 
the issue. By incorporating fluoroethylene carbonate into 
tetramethylene sulfone, the mixed electrolyte forms ultra-
thin fluorine and sulfur-rich CEI layer [109].

Nitrile-based electrolytes with a wide electrochemical 
window also serve as attractive candidates for high-volt-
age Li-ion cells. Generally, the anti-oxidation feature of 
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nitriles is believed to be caused by the highly nucleophilic 
-CN groups which can be preferentially chemisorbed on 
the surface of high-voltage cathodes, generating a mon-
olayer and preventing their oxidative decomposition [79, 
110]. However, it is unlikely that a chemisorbed monolayer 
could be electrochemically tough enough to resist the ther-
modynamic driving force of electrolyte decomposition. 

Taking succinonitrile as an example, Li et al. found the 
succinonitrile-derived N-containing CEI interphase also 
makes an important role in improving high-voltage stabil-
ity [111]. DFT calculation revealed the interaction between 
salt anion and succinonitrile solvent greatly reduces its 
resistance against oxidation, thus making the formation of 
N-containing CEI possible. On the other hand, Cui’s team 
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demonstrated that the succinonitrile solvent in succinoni-
trile-based deep eutectic electrolyte reacts with the charged 
 LiCoO2 cathode by using in situ XRD and in situ FTIR tech-
niques [112]. A uniform, N-containing CEI layer was also 
observed on the  LiNi0.5Co0.2Mn0.3O2 for electrolyte with 
succinonitrile and fluoroethylene carbonate simultaneously 
as solvents [113]. Concentrated nitrile electrolyte consist-
ing of a solvent mixture of succinonitrile and acetonitrile 
exhibits interfacial stability at a high cutoff voltage of 4.9 V 
due to the formation of uniform CEI layers [114].

4.3  Lithium Salts

The conventional wisdom believes that lithium salts remain 
stable during electrochemical cycling, especially for  LiPF6 
which dominates the commercial lithium salts market nowa-
days. Johansson first explored the intrinsic anion stability 
of lithium salts by electronic structure calculations [115]. 
Limited understanding has been reported toward anion-
derived CEI in nonaqueous electrolytes. In advancing to 
more aggressive cathode chemistry at higher voltages, new 
lithium salts that can contribute to stable CEI formation are 
urgently needed.

Two representative examples are LiBOB and lithium dif-
luorooxalatoborate (LiDFOB), both of which can decompose 
and in situ form CEI at high cutoff voltages. LiBOB was 
reported as anodic unstable at voltages higher than 4.2 V 
[116], in turn, can be used to form stable CEI. The CEI 
formed in LiBOB electrolyte enables  LiNi0.8Co0.15Al0.05O2 
cathode with better rate capability when compared to the 
 LiPF6 counterpart [117]. LiBOB was also applied to other 
high-voltage cathodes  (LiNi0.5Mn1.5O4,  LiCoPO4) with 
remarkably improved capacity retention and decreased 
impedance [118, 119]. Ex situ surface analysis via FTIR 
and XPS of the cycled  LiNi0.5Mn1.5O4 cathodes suggests the 
addition of LiBOB leads to a thinner CEI film containing 
oxalate species. Unfortunately, LiBOB has limited solubili-
ties in carbonate solvents, restricting its applications.

LiDFOB was found to possess the combined merits of its 
parent salts of LiBOB and  LiBF4 [120]. The role of LiBOB 
and LiDFOB on CEI was investigated via electron paramag-
netic resonance spectroscopy and both were found involved 
in one-electron oxidation with the elimination of  CO2 and 
the generation of an acyl radical (Fig. 7a) [121]. Acyl radi-
cals anchored to bridging oxygens on the cathode surfaces 

can form dimers through cross-recombination and pile up to 
form a coating on the cathode surfaces. Differently, another 
mechanism of the reaction between LiBOB/LiDFOB and 
dissociated  F− anion for forming CEI was proposed based 
on QC calculations (Fig. 7b) [122]. The  BOB− reaction with 
 F− was found to be more energetically favorable, which is 
supported by the XPS results with a strong signal ascribed 
to B-F bonds. Although the specific reaction mechanism 
remains to be further explored, experimentally, there are 
already many reports with much improved high-voltage per-
formance with the adoption of LiDFOB salt. As illustrated 
in Fig. 7c, a bi-layer CEI consisting of LiF-rich inner layer 
and  LixBOyFz-rich outer layer is in situ constructed on the 
 LiNi0.8Mn0.1Co0.1O2 cathode through the oxidative decom-
position of LiDFOB [123]. Such a robust CEI effectively 
protects the cathode from reacting with electrolyte, thereby 
boosting the capacity retention of 69.8% after 400 cycles as 
well as a high specific capacity of 127.5 mAh  g−1 at 10C.

Single lithium salt still has a tough road ahead in accom-
plish massive challenges of high-voltage Li-ion cells. Natu-
rally, the synergistic effect between lithium salts and sol-
vents, or dual-salt has great potential to improve the overall 
electrochemical performance [124, 125]. A combination 
of LiDFOB salt and sulfur-containing solvents of ethylene 
sulfite, dimethyl sulfite, and sulfolane has been investi-
gated for 5 V high voltage cells [126]. Among these, the 
LiDFOB-sulfolane-derived CEI films are suggested to be 
denser and more stable. Similar synergistic action between 
LiDFOB salt and sulfolane solvent was also reported on 
 LiNi0.8Co0.15Al0.05O2 cathode chemistry with more LiF 
formed in the CEI layer, which improves the cycle perfor-
mance of the cell [127]. Recently, a dual-salt electrolyte 
(LiDFOB/LiBF4 in carbonate solvents) enabled the best 
performance for anode-free pouch cell-80% capacity reten-
tion after 90 cycles [128, 129]. The LiDFOB and  LiBF4 
lithium salts were continuously consumed during cycling 
at 4.3 V, forcing a limited cycle life. Moreover, a dual-salt 
electrolyte (2 M LiTFSI + 2 M LiDFOB in dimethoxyethane, 
DME) allowed stable cycling of  LiNi1/3Mn1/3Co1/3O2 cath-
ode at 4.3 V despite the limited oxidative stability of DME 
(< 4 V) [130]. The key to breaking the voltage limitation for 
ether-based electrolytes is the formation of stable interfacial 
layers on cathodes. Four imide-borate dual-salt electrolytes 
in carbonate solvent were investigated, showing the electro-
chemical stability in the order of LiTFSI-LiBOB > LiTFSI-
LiDFOB > LiFSI-LiDFOB > LiFSI-LiBOB [131]. It is also 
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worth mentioning that LiDFOB was shown to be the best 
inhibitor of Al corrosion in LiFSI-based dual-salt electro-
lytes [132]. In the search for an ideal lithium salt, LiFSI was 
considered a magic salt due to its unique ability to dissoci-
ate and form protective SEIs [18, 133, 134]. However, the 
corrosion of aluminum current collectors is a longstanding 
barrier for imide salts including LiFSI and LiTFSI [135].

While progress has been made to alleviate Al corrosion 
by blending with other lithium salts [136–138], new imide-
based lithium salts offer a radical solution that can intrinsi-
cally address the corrosion issues through rational molec-
ular design. A novel lithium salt, lithium (fluorosulfonyl) 
(nonafluorobutanesulfonyl) imide (LiFNFSI), which does 
not corrode aluminum was developed by replacing the -CF3 
group with longer perfluorinated alkyl chains [139]. The 
inorganic fluorosulfonyl  (FSO2-) group in LiFNFSI was sug-
gested to be beneficial for forming a protective layer on Al 
surface to suppress its corrosion, see molecular structure in 

Fig. 8a [140]. Likewise, another non-corrosive sulfonimide 
salt, lithium (difluoromethanesulfonyl) (trifluoromethanesul-
fonyl) imide (LiDFTFSI) that critically prevent the anodic 
dissolution of the aluminum current collector at high volt-
ages of at least 4.2 V versus Li/Li+, was reported recently 
[141]. The unstable nature of Al(DFTFIS)3 in carbonate 
solvents makes it easy to decompose to form  AlF3 and LiF 
protective layers, thus preventing further anodic dissolution 
(Fig. 8b). Additionally, the LiDFTFSI also enables the for-
mation of an excellent CEI layer on the  LiNi1/3Mn1/3Co1/3O2 
cathode.

It is difficult to synthesize new lithium salts, and most of 
the newly synthesized lithium salts are not directly usable 
as sole main salt. These new lithium salts enrich our tool-
box for manipulating electrolytes and may yield surprising 
results when coupled with anti-oxidation solvents or/and 
CEI-forming additives.
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Regarding lithium salts, another parameter that must be 
mentioned is the concentration. The “1 molarity (M) legacy” 
of conventional electrolytes stemmed from the quest of max-
imum ionic conductivities [142]. Notwithstanding, deviation 
from this "ideal" fixation has opened a new direction known 
as “solvent-in-salt” electrolytes or “super-concentrated” 
electrolytes [143–145]. Past MD simulations of concen-
trated electrolytes have shown that there is a large portion 
of  TFSI– anions in the inner-Helmholtz layer at the cathode 
side, compelling the solvent away and preventing it from oxi-
dizing [146]. In a high concentration regime, one may expect 
CEI generated from the decomposition of the anions. As 
reported, the oxidation stability of concentrated 10 M LiFSI 
in carbonate electrolyte can be mainly ascribed to the anion-
derived fluorine-rich CEI [147]. The F-rich CEI successfully 
stabilizes the  LiNi0.6Mn0.2Co0.2O2 cathode at a high cutoff 
voltage of 4.6 V, showing remarkable capacity retention of 
86% after 100 cycles. As well, the CEI layer formed in con-
centrated 3 M  LiPF6 in carbonate electrolyte was found to 
be highly homogeneous and robust, which not only effec-
tively inhibits the dissolution of transition metals but also 
stabilizes the cobalt-free cathode structure [33]. In sharp 
comparison, Fe and Mn elements are detected on cycled 
cathodes in 1 M electrolyte because of the uneven and frag-
ile organic-rich CEI layer. A more conformal, anion-based 
CEI of up to 4.4 V can be obtained using a combination 

of LiFSI and LiTFSI at a higher concentration in DME in 
anode-free  LiNi0.6Mn0.2Co0.2O2 cell configurations [148]. 
QC calculations anticipated that all sulfolane molecules are 
coordinated by  Li+ in the high-concentration electrolyte 
which slows the decomposition of sulfolane and leads to 
polymerized CEI [108]. Despite the success of concentrated 
electrolytes in stabilizing the high-voltage cathodes, high 
concentration itself induces compromises in conductivity 
and viscosity. There is a continuous trend to change the salt 
concentration back to 1 M or even low concentration while 
maintaining the merits of high concentration [149, 150]. A 
group of localized high-concentration electrolytes has been 
extensively developed to build protective interphases onto 
both the anode and the high-voltage cathodes [151–153].

4.4  Practical Considerations

In addition to the fundamental understanding of electrolyte 
design, we need to pay attention to the critical requirements 
including cost, eco-friendly, safety, and wide temperature 
range operation for practical applications. Cost is always the 
primary factor in commercialization. Electrolytes account 
for around 5%–15% in the battery cost [154, 155]. Undoubt-
edly, the adoption of new lithium salts, solvents, or additives 
will drive the cost of electrolytes up. The good news is that 
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the prices of Li-ion batteries have fallen by 97% since their 
commercialization in the late 1990s, in particular, about 
38% of the cost reduction is caused by the increased battery 
charge density [155]. It means that advanced electrolytes 
enable high-voltage cathodes to increase energy density and 
thereby reduce overall cost at the cell level. Nevertheless, 
the importance of cost cannot be overemphasized, and we 
should always keep cost in mind during electrolyte design. 
Furthermore, all the electrolyte components should be eco-
friendly, exhibiting the lowest environmental impact.

Upon increasing the energy density by high-voltage 
cathodes, battery safety becomes more critical [20]. Ther-
modynamically, higher operation voltage corresponds to a 
higher risk of electrolyte decomposition, gas generation, 
and therefore a higher likelihood of safety hazards. To make 
safer batteries, flammable carbonate-based electrolytes can 
be replaced by non-flammable electrolytes [156]. It is well 
acknowledged that introducing flame-retardant solvents in 
electrolytes results in non-flammability [157, 158], but more 
rigorous abuse tests, such as nail penetration or heating, are 
required [159, 160]. A deeper understanding of the thermal 
runaway mechanism and the design principles of electrolytes 
for safer batteries would be highly desired.

The widespread application of batteries calls for a cor-
respondingly wide operating temperature range. Tradition-
ally, efforts have focused on thermal management strategies, 
but Li-ion battery is inherently related to the electrolyte, 
SEI, and CEI layers [161, 162]. At low temperatures, down 
to −20 °C, liquid electrolytes confront freezing issues and 
resultant sluggish ion transportation through the SEI/CEI 
layers. Low-temperature operation requires electrolytes with 
low freezing points and low resistance SEI/CEI layers. At 
high temperatures, up to 60 °C,  LiPF6 salt begins to decom-
pose together with the volatility of the organic solvents and 
severe transition metal dissolution [163]. High-temperature 
operation requires electrolytes with high thermal stability 
and inorganic-rich interphases with low solubility. Some 
innovative works including liquified gas electrolytes and 
all-fluorinated solvents have been demonstrated to enable 
impressive cycling performance on the low-temperature 
side [164–166]. However, most of them cannot work at 
high temperatures due to the low boiling point of solvents 
utilized. Therefore, how to design an electrolyte that ena-
bles Li-ion cells to operate within a wide temperature range 
(−30 ~  + 60 °C) remains a big challenge as well as an excit-
ing opportunity. For specific electric vehicle applications, 

in addition to a wide temperature range, more stringent 
parameters such as calendar life (10 years), cycle life (1000 
cycles), and cost ($100/kWh) are required [167].

5  Summary and Perspective

The formation of a stable CEI is critical to achieving high 
voltage lithium-ion cells with long cycling life. Ideally, a 
CEI should be conformal to separate the electrolytes from 
cathode materials and self-healing to accommodate the non-
uniform electrochemical reactions. Great progress has been 
made on the CEI components, morphology, and formation 
mechanism using operando characterizations together with 
MD simulations. Multiple strategies have been developed 
to construct robust CEI through electrolyte design includ-
ing solvents featuring anti-oxidation, multi-lithium salts 
with synergy effects, as well as additives both sacrificial 
and non-sacrificial. However, the fundamental question of 
how to design a controllable CEI with tunable components, 
thickness, ion conductivity, etc., is still not fully answered. 
Given that electrolytes, CEI, and cathode materials dynami-
cally interact with each other upon cycling, it is important 
to consider the following aspects: (i) Universal principles in 
constructing stable CEI. Emerging techniques such as data-
driven analysis and artificial intelligence have shown great 
potential in the high-throughput screening of electrolytes, 
which might be able to establish a correlation between CEI 
and electrolyte composition; (ii) the exact transport mecha-
nism of Li-ion across the CEI. Potentially, isotopic trac-
ing combined with cryo-TEM can be smartly designed to 
dynamically track the Li-ion transportation crossing the CEI. 
More collaborations are required to gain insights into the 
roles of different electrolyte components on CEI formation, 
making further electrolyte optimization possible. By rational 
designing electrolytes, robust CEI can be constructed so that 
Li-ion cells with a long lifespan are achievable even under 
high voltage operation.
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