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HIGHLIGHTS

• Fundamental principles for designing high‑performance thermally conductive graphene‑based polymer composites are reviewed in 
detail.

• The reasoning behind using the preconstructed graphene 3D networks for fabricating thermally conductive composites and recent 
progress are discussed in‑depth.

• Insight into the existing bottlenecks and opportunities in developing preconstructed 3D networks of graphene and their thermally 
conductive composites is also presented.

ABSTRACT Electronic devices generate heat during operation and require efficient 
thermal management to extend the lifetime and prevent performance degradation. 
Featured by its exceptional thermal conductivity, graphene is an ideal functional filler 
for fabricating thermally conductive polymer composites to provide efficient ther‑
mal management. Extensive studies have been focusing on constructing graphene 
networks in polymer composites to achieve high thermal conductivities. Compared 
with conventional composite fabrications by directly mixing graphene with polymers, 
preconstruction of three‑dimensional graphene networks followed by backfilling poly‑
mers represents a promising way to produce composites with higher performances, 
enabling high manufacturing flexibility and controllability. In this review, we first 
summarize the factors that affect thermal conductivity of graphene composites and 
strategies for fabricating highly thermally conductive graphene/polymer composites. 
Subsequently, we give the reasoning behind using preconstructed three‑dimensional 
graphene networks for fabricating thermally conductive polymer composites and high‑
light their potential applications. Finally, our insight into the existing bottlenecks 
and opportunities is provided for developing preconstructed porous architectures of 
graphene and their thermally conductive composites.
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1 Introduction

With the fast development of powerful electronic devices, 
high‑performance thermally conductive materials that can 
provide efficient thermal management are becoming increas‑
ingly important and attracting more and more attention. 
Among all the thermally conductive materials, polymer 
composites have significant advantages because of their 
lightweight, easy processability, low cost, and superb sta‑
bility. Most polymers are typically insulative with extremely 
low thermal conductivity of 0.1–0.3 W  m−1  K−1 [1]. Thus, 
incorporating thermally conductive fillers into polymers 
represents a cost‑effective and efficient way to fabricate 
thermally conductive materials that can combine high ther‑
mal conduction of functional fillers and superior properties 
of polymers. Since its discovery in 2004 [2], graphene has 
revolutionized the field of thermally conductive materials 
because of its extraordinary in‑plane thermal conductiv‑
ity [3] and superb mechanical properties [4, 5]. The unique 
ultrathin two‑dimensional (2D) structure of graphene with 
ultrahigh aspect ratios makes it an ideal functional filler for 
polymer composites to achieve desirable thermal conduc‑
tivities. To date, graphene/polymer composites have found 
widespread use in electronics [6, 7], communication equip‑
ment [8, 9], and energy harvesting, conversion and storage 
[10–13].

Typically, the thermal conduction and other properties 
(e.g., mechanical performances) of graphene/polymer com‑
posites are largely determined by the dispersion and distribu‑
tion of graphene sheets in the polymer matrix. To achieve 
efficient thermal transport in polymer composites, highly 
interconnected graphene networks should be formed. Con‑
ventional methods to fabricate thermally conductive gra‑
phene/polymer composites rely mainly on directly mixing 
the graphene with polymers by in situ polymerization [14, 
15], solution processing [16–18], and melt compounding 
[19]. Although these methods provide simple and scalable 
routes for the fabrication of composites, there exist two sig‑
nificant issues. One is the aggregation of graphene sheets 
during the mixing process. As a result, thermally conductive 
networks in polymer matrices can only be formed at rela‑
tively high graphene loadings, which would result in limited 
thermal conductivities, high cost, and degraded mechanical 
properties of polymer composites. The other one is that the 
graphene distribution and the configuration of as‑formed 

conducting networks cannot be effectively tuned during 
simple blending processes and the graphene sheets typi‑
cally show random dispersion and distribution in the result‑
ing composites, which result in monotonous function and 
severely limit wide applications of the composites.

Recently, the preconstruction of three‑dimensional 
(3D) continuous networks of graphene sheets followed by 
backfilling polymers has been proved to be a very effec‑
tive method to fabricate composites with improved perfor‑
mances. The preformed conducting networks can be well 
maintained during subsequent compounding with polymers, 
avoiding aggregation of graphene sheets in polymer matri‑
ces and hence enabling high thermal conductivities at rela‑
tively low graphene loadings while preventing mechanical 
performance degradation of polymers [20, 21]. More impor‑
tantly, the thermally conductive behaviors of the resultant 
composites can be tuned by configurational/microstructural 
designs of the preconstructed 3D graphene networks, such 
as designing anisotropic thermally conductive networks for 
enabling directional conducting behavior, which provides 
unique flexibility and versatility for composite fabrication 
and would significantly broaden the application of the as‑
fabricated composites.

Although great progress has been made, hitherto, the 
evolution of using preconstructed 3D networks of graphene 
sheets for fabricating thermally conductive polymer com‑
posites has not been discussed in depth and recent progress 
has also not been well recognized and analyzed. To the best 
of our knowledge, there remains a lack of comprehensive 
summaries and guidance on how preconstructed graphene 
3D conducting networks can be designed for functionalizing 
polymers facing thermal management applications. To this 
end, the present review aims to provide a focused and criti‑
cal review on thermally conductive graphene/polymer com‑
posites and highlight the recent advancements in designing 
novel composites with preconstructed graphene networks as 
fillers. The characteristics of this review include: (1) the key 
factors that affect the thermal conductivity of graphene/poly‑
mer composites and strategies for achieving high thermally 
conductive properties are reviewed in detail; (2) the reason‑
ing behind using the preconstructed 3D graphene networks 
for fabricating thermally conductive polymer composites 
is discussed in‑depth; (3) the potential applications toward 
thermal managements of the graphene/polymer composites, 
such as thermal interface materials (TIMs), phase change 
materials (PCMs), photothermal conversion materials, and 
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thermal switches, are demonstrated; and (4) the challenges 
and perspectives regarding the development of precon‑
structed graphene 3D networks and their thermally conduc‑
tive polymer composites are also presented.

2  Factors Affecting Thermal Conductivity 
of Composites Functionalized with 3D 
Graphene Networks

Focusing on polymer composites with graphene as fillers, 
the main factors that influence the thermal conductivities 
include: (1) intrinsic properties of graphene in terms of sheet 
quality, lateral size, thickness (layer number), aspect ratio, 
and interfacial compatibility with polymer matrix; (2) dis‑
persion and distribution of the graphene in polymer compos‑
ites; and (3) graphene loading level (Fig. 1).

2.1  Effects of Intrinsic Properties of Graphene Sheets 
on Thermal Conductivity of Composites

The strong covalent  sp2 bonding between carbon atoms as 
well as the unique 2D crystal structure that can restrain pho‑
non scattering during heat transfer endow graphene with 

ultrahigh thermal conductivity. The heat in graphene sheets 
is predominantly transferred through phonon vibrations 
[30–32]. Previous studies have revealed that the existence 
of atomic defects can significantly reduce the thermal con‑
ductivity of graphene [33]. Usually, 3D graphene conductive 
networks can be obtained by assembling of graphene oxide 
(GO) building blocks followed by chemical/thermal reduc‑
tion. However, the graphene sheets derived from mildly 
reduced GO often present large defect density and residual 
functional groups on the surface, which would shorten the 
long phonon mean free path of graphene by phonon scat‑
tering and cause heat loss, leading to degradation in ther‑
mal conduction (Fig. 2) [34–37]. Among all the reduction 
methods, high‑temperature annealing of GO has been con‑
sidered an effective approach in largely removing the oxy‑
gen functionalities and healing the lattice defects, ensuring 
high thermal conductivity [38, 39]. For instance, Li et al. 
reported that thermal annealing of graphene aerogel (GA) 
at 2800 °C increased the thermal conductivity of the GA/
epoxy composite from 1.63 to 6.57 W  m−1  K−1 [40]. An 
et al. reported that the thermal conductivity of epoxy com‑
posites enhanced by graphene foam (GF) increased with the 
annealing temperature of the GF, and the epoxy composite 

Fig. 1  Factors affecting thermal conductivity of polymer composites functionalized by graphene 3D networks [22–29]
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containing 2800 °C‑annealed GF showed a superb thermal 
conductivity of 35.5 W  m−1  K−1 with a graphene loading of 
19.0 vol% [41].

The lateral size and thickness (layer number) of graphene 
sheets also significantly affect thermal conductivity of the 
as‑formed networks. Theoretically, increasing lateral size 
is beneficial for enhancing thermal conductivity of gra‑
phene sheets and hence performances of composites since 
the sheet edge can scatter phonons (Fig. 3) [37, 42, 43]. 
It has also been noted that using fillers with smaller sizes 
would generate more interfacial area between the filler and 
polymer and lead to higher surface energy, making it more 
difficult to achieve uniform dispersion. On the basis of the 
simulation results reported by Su et al., in the length range 
of 0–16,000 nm, the thermal conductivity of infinite wide 
graphene nanoribbons increased with the length and even‑
tually tended to be constant, and the thermal conductivity 
of graphene nanoribbons also increased with the width 
[44]. Hitherto, substantial efforts have been made to fab‑
ricate high‑performance graphene materials by using large 
graphene sheets [38, 45, 46]. Besides, sheet thickness is 
another factor that affects thermal conductivity of graphene 
by interlayer phonon coupling effect. Ghosh et al. reported 
that the thermal conductivity drastically decreased from 
2800 W  m−1  K−1 for 2‑layer graphene to 1300 W  m−1  K−1 
for 4‑layer graphene [47].

Compared with high‑quality graphene sheets, multilayer 
graphene nanoplatelet (GNP) with large lateral size and high 
aspect ratio is a cost‑effective alternative for fabricating ther‑
mally conductive polymer composites [48]. In the network 
formed with these nanoplatelets, the thermal conductivity 
enhancement is achieved due to the longer phonon mean 
free path, lower interfacial density, and larger contact area 

between the nanosheets, which could ensure minimal pho‑
non scattering and heat loss [49, 50]. Shen et al. reported 
that the epoxy‑based composite made from multilayer graph‑
ite nanoplatelets with large aspect ratios possessed thermal 
conductivity even higher than those containing monolayer 
or few‑layer graphene at the same graphene loading [51]. 
Note that, for situations where ultra‑high performances of 
the materials are required, the use of ultrathin and large 
graphene sheets is still preferred despite the cumbersome 
procedure and high cost for the synthesis processes.

For graphene/polymer composites, the large thermal 
resistance caused by phonon scattering at the interface 
between graphene sheets and matrix would hinder the effi‑
cient heat transfer seriously [52]. To reduce the interfacial 
thermal resistance for further increasing the thermal con‑
ductivity of the composite, surface modification of graphene 
sheets has been used to improve interfacial compatibility 
between graphene and matrices, as schematically shown in 
Fig. 4 [23, 37, 53, 54]. For example, the functional groups 
on ethylenediamine‑reduced graphene aerogel (EGA) could 
alter the hybrid and vibration modes and increase the vibra‑
tion coupling degree between carbon atoms of graphene and 
tetradecanol (TD) matrix, which could effectively reduce the 
energy loss at the interface during heat transfer. The TD‑
based composite made from EGA exhibited a thermal con‑
ductivity of up to 1.092 W  m−1  K−1 at a graphene loading of 
10 wt% [55]. Covalent grafting of polyamide 6 (PA6) chains 
onto reduced graphene oxide (RGO) sheets by in situ ther‑
mal polycondensation could improve the interfacial compat‑
ibility and reduce the contact thermal resistance between 
PA6 matrix and graphene. After the modification, the ther‑
mal conductivity of the GF/PA6 composite was improved to 
0.847 from 0.210 W  m−1  K−1 of neat PA6 [56]. It should be 

Fig. 2  Schematic illustrations of phonon scattering in crystalline materials caused by defects [37]
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noted that the surface modification is more effective for gra‑
phene with small sheet sizes. This is because small graphene 
sheets in the polymer would generate more filler‑matrix 
interfaces, which significantly hinder the phonon trans‑
portation, and the improved interfacial compatibility and 
enhanced thermal transfer could compensate for the reduc‑
tion in the intrinsic thermal conductivity of the graphene 
sheets after surface modification. When the size of graphene 
increases, fewer filler‑matrix interfaces can be formed and 
the quality of graphene would become the dominant factor 
for determining the thermal conductivity. In this case, the 
surface modification that decreases the intrinsic conductiv‑
ity of graphene sheets would lead to significant degrada‑
tion in thermal conductivity of the composites. Therefore, 
a critical lateral size exists for surface‑modified graphene, 
above which the positive effect of surface modification for 

graphene would be suppressed. Note that the critical size is 
dependent on the functionalization types, matrix types and 
filler content [23].

2.2  Effects of Ordered Dispersion and Distribution 
of Graphene Sheets on Thermal Conductivity 
of Composites

Directional thermally conductive networks, which can provide 
highly effective heat transfer pathways and lead to reduced 
percolation threshold along specific directions, can be formed 
by controlling the alignment/orientation of graphene sheets 
in the composites. Various methods have been reported to 
tune the aligning behavior of graphene in polymer matrix 
with the aid of external forces, electric fields, and magnetic 
fields. For example, the controllable alignment of graphene 

Fig. 3  Schematic illustrations showing the heat transfer in epoxy composites containing fillers with different sizes [37]
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fillers in polymers can be achieved by modifying the graphene 
with magnetic particles and adjusting their orientation by an 
external magnetic field during the processing process, and the 
thermal conductivity of the graphene/epoxy composite made 
by this method is twice higher than that of the composite with 
randomly dispersed graphene sheets [57–59]. Despite the 
great progress, it is challenging to effectively tune the orien‑
tation while achieving homogeneous dispersion of graphene 
sheets in polymers by conventional processing methods, such 
as solution mixing, and melt compounding. Functionalizing 
polymer materials with pre‑created graphene network with 
designed microstructures represents a promising way to allow 
for efficient control of graphene distribution in polymers. For 
example, Lian et al. prepared an epoxy composite by using 
a pre‑created vertically aligned and interconnected graphene 
network, and the resultant composite exhibited excellent ani‑
sotropic thermal conductivity of 2.13 W  m−1  K−1 along the 
vertical direction and 0.63 W  m−1  K−1 along the horizon‑
tal direction at an ultralow graphene content of 0.92 vol%. 

Evidently, graphene sheets can largely overlap with each other 
to provide highly continuous conducting pathways along the 
vertical direction and the thermally insulating epoxy resin that 
fills in the oriented graphene channels can effectively suppress 
the heat transfer along the horizontal direction, thus enabling 
the unique anisotropic properties of the composite [60]. Other 
efforts have also been made to tune the thermally conductive 
behaviors along the horizontal direction by creating hierarchi‑
cal bridging structures or designing radially oriented structures 
[61, 62].

2.3  Effect of Graphene Contents on Thermal 
Conductivity of Composites

The thermal conductivities of graphene/polymer composites 
defer to the percolation theory, and the content of graphene 
is the decisive factor determining the thermal conductivity 
of polymer composites [63, 64]. A higher graphene content 

Fig. 4  a Schematic illustrating the thermal conduction mechanism at the interface between the crystal filler and the polymer [37]. b, c Enhance‑
ment of thermal conductivity of graphene/polymer composites by graphene surface modification [23, 54]
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means more contact between the sheets and more heat trans‑
fer pathways in the composite, thus ensuring higher thermal 
conductivity [65–67]. In conventional compounding meth‑
ods by directly mixing graphene with polymers, high gra‑
phene contents usually cause the formation of agglomerates/
clusters, which hinders the enhancement in thermal conduc‑
tivity. This problem can be alleviated by preconstructing the 
conductive graphene networks [68, 69], which can ensure 
homogeneous distribution of graphene sheets in matrices 
and thus efficient enhancement in thermal conductivity. 
For example, Liu et al. preconstructed a graphene network, 
and its epoxy composite exhibited a thermal conductivity 
of 20.0 W  m−1  K−1 at a low graphene loading of 4.28 wt% 
[70]. On the other hand, the graphene content can be easily 
tuned by adjusting the structure details of the preconstructed 
3D graphene networks. Notably, ultrahigh graphene content 
and homogeneous dispersion can be simultaneously realized 
by reducing the pore size and increasing the density of the 
preconstructed 3D graphene network, enabling significant 
improvement in the thermal conductivity of polymer com‑
posites. For example, Mu et al. tuned the pore size of GAs 
by applying different reducing agents in the hydrothermal 
process and a higher thermal conductivity of the composites 
is achieved by using the preconstructed graphene network 
with smaller pore sizes [55]. Qi et al. synthesized a dense 
graphene network by a modified CVD method and demon‑
strated that the thermal conductivity of corresponding paraf‑
fin wax (PW) composite is 87% higher than that of the PW 
composite with a low‑density graphene network prepared by 
an ordinary CVD method [71].

Typically, most reported preconstructed graphene net‑
works are obtained by CVD synthesis and freeze‑drying/
supercritical carbon dioxide  (CO2) drying of their precursors 
including modified graphene suspension and RGO hydro‑
gels. The insufficient interconnections between the gra‑
phene sheets in low‑density graphene networks inevitably 
lead to large contact thermal resistance and low graphene 
concentration, limiting the enhancement in thermal conduc‑
tivity of polymer composites [72–74]. To tackle this issue, 
Wu et al. filled the graphene network fabricated by CVD 
with graphene nanosheets (GNs) and natural rubber (NR) 
to increase the graphene loading in the composite (Fig. 5a) 
[75]. The pore size and density of graphene networks can 
also be tailored by controlling the drying conditions of 

graphene hydrogels (GHs) to achieve better continuity of 
graphene conduction networks and higher graphene loading 
in the composite. For example, natural drying of GHs under 
ambient conditions is a facile and cost‑effective way to gen‑
erate 3D graphene networks with smaller pore size, better 
continuity and higher density (Fig. 5b) [76–79]. Note that 
excessive volume shrinkage, even structural collapse, might 
occur during the natural drying process and hence the poly‑
mers cannot be well impregnated into the pores of GAs, 
causing poor performances of the composites [76, 79–81]. 
Undesired volume shrinkage can be suppressed by adding 
fillers that can support the graphene network, or by modify‑
ing the evaporation behavior of solvents. Yang et al. syn‑
thesized a high‑density RGO/GNP aerogel by air‑drying, in 
which the conductive GNPs not only prevent the excessive 
volume shrinkage but also enhance the thermal conductance 
of the RGO network, and its 1‑octadecanol phase change 
composite exhibited an outstanding thermal conductivity 
of 5.92 W  m−1  K−1 at a graphene loading of 12 wt% [77]. 
Li et al. found that the structural robustness of GHs can be 
well improved by forming a secondary polymer (e.g., poly‑
acrylamide) network, ensuring high resistivity to structural 
collapse during vacuum‑drying or air‑drying processes, and 
the polymer can be removed easily by subsequent high‑tem‑
perature annealing [82]. Xu et al. developed a natural drying 
strategy with a pre‑freezing protocol, enabling the reduc‑
tion in solvent evaporation capillary force and thus effec‑
tively inhibiting volume shrinkage during the drying process 
[83]. Another cost‑effective method to generate high‑density 
GAs is freeze‑drying a concentrated putty‑like GO paste 
(55–100 mg  mL−1) followed by high‑temperature anneal‑
ing, by which a very high density of up to 100 mg  cm−3 for 
the resulting GAs can be achieved [84].

In summary, the enhancement of the thermal conductiv‑
ity for the composites is related to not only the quality and 
content of graphene but also the distribution and disper‑
sion of graphene filler in the polymer matrix. Generally, 
heat transfer is realized through lattice vibrations within the 
material. Thus, to achieve satisfactory thermal conductivity 
of the composites, creating a highly continuous graphene 
network that allows for a high‑speed heat transfer process in 
the polymer matrix is the most effective and convenient way, 
which can be achieved by proper processing/compounding 
processes.
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3  Constructing Graphene Networks 
in Composites by Blending Graphene Sheets 
with Polymers

Polymers are typically thermally insulative [37]. In gra‑
phene/polymer composites, the phonon scattering at the 
interface between graphene and polymer matrix hinders effi‑
cient heat transfer [85, 86], and the enhancement in thermal 
conductivity mainly relies on improving the interconnectiv‑
ity of the graphene sheets. Therefore, to obtain composites 
with high thermal conductivity, a highly continuous ther‑
mally conductive network should be formed in polymers, in 
which the graphene sheets can be well dispersed and inter‑
connected with each other to provide effective heat transfer 
pathways [87].

The thermally conductive network can be formed by 
directly dispersing the graphene sheets into polymer 
matrices by in situ polymerization, melt compounding, 
and solution mixing processes. These methods are very 
efficient and convenient for mass production. For exam‑
ple, Colonna et al. prepared graphene/poly(cyclic butylene 
terephthalate) (PCBT) composites by in situ ring‑opening 

polymerization of cyclic butylene terephthalate with GNPs 
uniformly dispersed in the monomers [88]. Compared with 
the in situ polymerization method, directly blending poly‑
mers with graphene sheets is a more time‑saving and scal‑
able method to fabricate thermally conductive composites. 
Polymers can be dissolved in appropriate organic solvents 
or melted to possess flowability at elevated temperatures 
(for thermoplastic polymers, e.g., PA6, polypropylene 
(PP), and high‑density polyethylene) [89], enabling favora‑
ble processability.

The challenge in the process of dispersing graphene 
sheets in polymers by the above‑mentioned methods is 
the easy aggregation of graphene sheets during the blend‑
ing processes as the van der Waals forces and π–π inter‑
actions between graphene sheets are stronger than the 
interactions between graphene and polymers. To tackle 
this issue, various methods, such as adding surfactants/
additives and modifying the surface of graphene sheets are 
developed. The addition of surfactants can lower the sur‑
face tension between the solid graphene sheets and poly‑
mer liquids, which is effective in promoting the dispersion 
of graphene sheets and suitable for many polymer systems. 

Fig. 5  a Schematic illustration of GNs/GF/NR composites with compact network [75]. b Comparison of freeze‑drying and air‑drying [79]
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The additives that possess good compatibility with both 
graphene and polymer matrices can be added during the 
compounding process. Chen et al. reported that the pres‑
ence of GO in graphene/PA6 composite can improve the 
dispersion of graphene in PA6 as the GO can simultane‑
ously interact with graphene by π–π interactions and with 
PA6 by forming covalent bonds [90]. Surface modification 
of graphene sheets relies on grafting functional groups or 
components that are compatible with polymers onto the 
graphene to facilitate the dispersion of graphene in the 
polymers [91]. For example, modifying graphene sheets 
with polydopamine (PDA) results in numerous hydrogen 
bonds between the modified‑graphene and the polyvinyl 
alcohol (PVA) matrix, leading to a uniform dispersion of 
graphene in PVA and thus a more effective thermal con‑
duction network in the composite [92]. However, it should 
be noted that the residual surfactants and additives in the 
composites might adversely affect their ultimate perfor‑
mances [93, 94].

Alternatively, the addition of second thermally conduc‑
tive fillers with specific configurations is also effective 
for improving thermal conductivity of graphene/polymer 
composites on the basis of the synergistic effect between 
different conductive fillers [95]. For example, the syner‑
gistic effect of 2D graphene sheets and 0D  Al2O3 particles 
can reduce the aggregation of graphene in polylactic acid 
(PLA) and the contact thermal resistance at the interface 
of fillers, resulting in an enhanced thermal conductivity of 
the graphene/Al2O3/PLA composite [96]. The synergistic 
effect between 2D graphene sheets and 1D conductive fillers 
can improve the interconnection between graphene sheets 
to enhance the continuity of the conductive network. For 
instance, the addition of 2 wt% multi‑walled carbon nano‑
tubes (MWCNTs) can increase the thermal conductivity of 
the graphene/polycarbonate composite by 23% as compared 
with the composite without the MWCNTs at the same gra‑
phene content [97]. Adding third organic or inorganic phases 
into graphene/polymer composites could allow graphene 
sheets to be selectively dispersed in polymer matrices out‑
side the third phases, which is beneficial for forming more 
continuous graphene networks at lower filler loadings on the 
basis of the volume exclusion effect [98–103]. For example, 
the introduction of PLA into the graphene/polystyrene (PS) 
composite enables a selective dispersion of the graphene 
sheets in the PS phase, which significantly reduced the per‑
colation threshold [104].

In summary, in the above‑mentioned methods to fabri‑
cate thermally conductive graphene/polymer composites, the 
aggregation of graphene sheets cannot be effectively avoided 
during direct blending/compounding processes, and thus the 
efficient thermal conducting networks can usually be formed 
at high graphene loadings, resulting in limited thermal con‑
ductivities and even degraded mechanical properties of the 
composites. Moreover, the conventional fabrication methods 
suffer from poor controllability of the filler distribution and 
configuration of conducting graphene network in polymers, 
resulting in composites with monotonous functions.

4  Preconstruction of Isotropic Graphene 
Networks and Their Thermally Conductive 
Composites

Preconstruction of 3D graphene networks followed by back‑
filling of polymers can enable the formation of efficient 
thermal conduction pathways and the fine control of gra‑
phene dispersion in composites, representing an effective 
way to fully utilize graphene for functionalizing polymers 
(Fig. 6). Because of the high continuity and integrity of the 
preconstructed 3D graphene networks in polymer matrices, 
outstanding thermal conductivities of the as‑fabricated com‑
posites can be achieved even at ultralow graphene contents 
(Table 1). The isotropic graphene networks exhibit a disor‑
dered structure, in which thermal conduction is uniform in 
all directions. The typical fabrication strategies of isotropic 
graphene networks include self‑assembly, the use of tem‑
plates, and 3D printing method [105–107].

4.1  Self‑Assembly Method

Fabrication of 3D graphene networks by self‑assembly relies 
on forming bonding, cross‑linking, or physical interactions 
between the graphene precursors (mainly GO and RGO), 
through which a balance between the electrostatic repul‑
sive forces and the bonding interaction is achieved, ensur‑
ing the integrity of the 3D interconnected networks while 
preventing the excessive aggregation of the graphene com‑
ponents [122, 123]. The functional groups on the GO and 
RGO sheets endow them excellent solution processability, 
and the regulation of interactions between the sheets can be 
easily realized by partially removing the surface oxygen‑
ated groups with hydrothermal reduction and/or chemical 
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reduction, enabling the formation of 3D graphene architec‑
tures by the self‑assembly (Fig. 7) [123–127]. Hydrothermal 
treatment is an simple yet effective method to reduce GO in 
aqueous mediums at elevated temperature and pressure for 
forming 3D GHs [123, 128]. Similarly, chemical reduction 
relies on the reducing agents used, such as ethylenediamine 
(EDA) [129, 130], ascorbic acid (VC) [131, 132], ammo‑
nia [133] and hydrazine hydrate [134, 135]. Compared with 
hydrothermal method, chemical reduction allows for a faster 
reaction rate under lower temperatures or even ambient con‑
ditions [136]. Among all the reported reducing agents, VC 
can reduce the GO to induce a mild gelation and would not 
generate toxic gaseous products during the reduction pro‑
cess, resulting in uniform 3D networks [137]. To improve 
the manufacturing efficiency, a well‑recognized treatment 
strategy has been widely used by adding reducing agents 
into hydrothermal systems [8, 131, 138]. For example, the 
addition of EDA into a dispersion of GO can significantly 
decrease the hydrothermal time and also introduce amino 
functional groups onto the RGO sheets to enhance the inter‑
layer interactions, through which the as‑obtained GA exhib‑
ited better structural robustness [138]. Tang et al. reported 
that paraphenylene diamine can facilitate the reduction in 
GO to form a 3D hydrogel and functionalize the surface of 
GO sheets by grafting reaction, which can effectively prevent 
the volume shrinkage of the 3D RGO structure during the 
hydrothermal process [72]. Zhang et al. prepared a GA by 
hydrothermal treatment of a GO hydrosol with the presence 

of EDA followed by freeze‑drying and high‑temperature 
annealing, and its silicone rubber composite presented an 
outstanding thermal conductivity of 1.26 W  m−1  K−1 (448% 
enhancement) at an ultralow GA loading of 0.50 wt% [139]. 
Note that adding the additives (e.g., water‑soluble polymers 
and multivalent metal ions) that can interact with the GO 
sheets into the precursor dispersion can also induce the gela‑
tion of GO sheets, leading to the formation of integrated 
graphene networks upon proper post‑treatments including 
thermal annealing, hydrothermal synthesis, and freeze‑dry‑
ing (Fig. 7c–e) [125–127].

4.2  Isotropic Template‑Assisted Assembly Method

In the template method, isotropic graphene 3D networks 
are formed by growing/depositing graphene layers on the 
skeletons of porous templates via chemical vapor deposi‑
tion (CVD) or impregnation with graphene dispersions, and 
the templates can be removed by post‑treatments [140–142]. 
Popular templates include Ni foam for CVD method [143, 
144] and polymer sponges (e.g., polyurethane (PU) sponge 
[145] and melamine sponge [146]) for the impregnation 
method.

Growing graphene on the template via a CVD method 
can generate 3D networks composed of ultra‑thin and high‑
quality graphene layers, which typically possesses better 
thermal conduction than the network formed with RGO. 

Fig. 6  Schematic illustrating the graphene dispersion in polymer composites fabricated by different compounding methods
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However, the challenge of this method lies in preventing 
the structure collapse during the template removing pro‑
cess because the as‑formed graphene networks are typically 

very brittle [140]. Great efforts have been made to solve 
the above‑mentioned problems (Fig. 8) [147]. For example, 
Chen et al. coated a PMMA layer on a Ni/graphene foam 

Table 1  Comparison of fabrication methods for thermally conductive graphene/polymer composites

SR silicone rubber, PVB polyvinyl butyral, PE polyethylene, BE Bio‑based polyester, PC polycarbonate, PA polyamide, MLG multilayer gra‑
phene, f-G functionalized grapheme, PCBT poly‑cyclic‑butylene terephthalate, GHF graphene hybrid foam, DAGF dual assembled graphene 
framework, VAIGN vertically aligned and interconnected graphene network, GWF graphene woven fabric, MGF multilayer graphene flake, 
mGNP modified graphene nanoplatelet, c-GA carbonized graphene aerogel

Methods Advantages Disadvantages Materials Thermal conductiv‑
ity (W  m−1  K−1)

Filler loading References

Solution mixing Simple preparation 
process

Organic solvents are 
needed

GNP/PVA 13.4 10 wt% [92]

Low processing tem‑
perature

Aggregation of graphene 
sheets

GO/SR 0.34 0.1 wt% [108]

Easy incorporation of 
functional components

GNP/PVB 4.521 30 wt% [109]
Graphene/PE 1.84 10 wt% [110]
Graphene/PP 1.53 10 wt% [110]
Graphene/PVA 1.43 10 wt% [110]
Graphene/PVDF 1.47 10 wt% [110]
Graphene/BE 0.542 1.45 vol% [111]
GO‑PDA/PS 4.56 0.96 vol% [112]

Melt mixing High productivity High processing tem‑
perature

GNP/PC 1.13 20 wt% [97]

Simple preparation 
process

Decomposition of func‑
tional components

Restricted to thermoplas‑
tic materials

RGO/PA 5.1 5 wt% [113]

Aggregation of graphene 
sheets

GNP/PC 7.3 20 wt% [50]

In‑situ polymerization Lower contact thermal 
resistance between gra‑
phene and polymer

Complex preparation 
process

Graphene/PA6 0.416 10 wt% [14]

Limited productivity Graphene‑MLG /Epoxy 5.1 10 vol% [63]
Graphene‑GO/PA6 2.14 10 wt% [90]
f‑G/PDMS 0.761 2 wt% [114]
GNPs/Epoxy 1.5 2.8 vol% [51]
GNP/PCBT 2.49 30 wt% [88]

Pre‑constructing 3D 
networks

Capability in fabricating 
highly conductive com‑
posites with ultralow 
filler content

Complex preparation 
process

GHF/Epoxy 35.5 19.0 vol% [41]

Uniform filler dispersion Relatively high process‑
ing costs

DAGF/Epoxy 62.4 13.3 vol% [115]
Efficient control of 

distribution/alignment 
of fillers

GA/Epoxy 20 2.30 vol% [70]

Composites with novel 
performances can be 
fabricated

GNPs/GF/NR 10.64 5.78 vol% [75]
VAIGN/Epoxy 2.13 0.92 vol% [60]
GWFs/PI 3.73 12 wt% [116]
MGF/GF/PDMS 1.08 2.7 vol% [28]
GF/mGNPs/PVDF 6.32 9.07 vol% [117]
c‑GA/MF/PEG 1.32 4.6 wt% [118]
Graphene/PA6 0.69 0.25 wt% [119]
GA/Epoxy 2.69 1.11 vol% [120]
GNPs/RGO/Epoxy 1.56 21.4 wt% [9]
GF/Epoxy 8.04 6.8 wt% [121]



 Nano‑Micro Lett. (2022) 14:129129 Page 12 of 40

https://doi.org/10.1007/s40820‑022‑00878‑6© The authors

to reinforce the structure before the Ni template etching 
process, which effectively prevents the structural collapse 
of graphene network, and the PMMA layer can be easily 
removed by acetone [140]. To date, this method has been 
widely used in enhancing the graphene network. Yang et al. 
combined the template method with self‑assembly to fab‑
ricate 3D graphene networks. In a typical process, the Ni 
foams were first dipped into GO/GNP/VC mixture followed 
by hydrothermal treatment and freeze‑drying to generate a 

hybrid graphene aerogel (HGA) inside the Ni foam template. 
Additional graphene was grown subsequently on the HGA/
Ni foam via a CVD approach, and the freestanding GF/HGA 
can be obtained by removing the Ni foam template. The 
construction of the HGA structure in the Ni foam template 
can effectively suppress the massive expansion and destruc‑
tion of the graphene network by gaseous products during 
the CVD process. Moreover, the HGA network also pro‑
vides thermal conduction pathways to enhance the thermal 

Fig. 7  a Schematic of formation of networks during hydrothermal reduction in microscale, optical photographs of GO suspension and GHs 
formed by hydrothermal reduction and the scanning electron microscope (SEM) image of the graphene network [123]. b Optical photographs of 
GO suspension and GHs formed by chemical reduction and the SEM image of the graphene network [124]. c–e Schematics of the microscopic 
mechanism of the formation of graphene 3D networks induced by adding multivalent metal ions and water‑soluble polymers and optical photo‑
graphs of the graphene foams formed after post‑treatment [125–127]
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conductivity, and its paraffin wax composite delivers a ther‑
mal conductivity of 1.82 W  m−1  K−1 along with outstanding 
shape stability [148].

Besides, graphene networks can be obtained by depositing 
graphene sheets on the skeleton of polymer sponge templates 
by vacuum‑assisted impregnation, and the templates can be 
removed by pyrolysis. For example, Liu et al. immersed a PU 
foam into a dispersion of graphene, and the foam was then 
dried after suction filtration or centrifugation. The surface of 
the PU foam skeleton was covered by a continuous graphene 
layer, and a freestanding graphene 3D network was obtained 
after the pyrolysis of the PU foam. In the above‑mentioned 
work, the as‑fabricated epoxy composite exhibited a thermal 
conductivity of 8.04 W  m−1  K−1 at a graphene content of 6.8 
wt%, which is 4473% higher than that of pure epoxy resin 
[121]. In another work by Xue et al., melamine foams (MFs) 
were used as the template, which were dipped into a GO/
GNP/ VC dispersion followed by hydrothermal treatment to 
obtain hybrid hydrogels, and corresponding graphene net‑
works were obtained by freeze‑drying and carbonization. 
The PCM composed of such a hybrid graphene network and 
PW had a high thermal conductivity of 1.46 W  m−1  K−1 at 
a filler content of 4.89 wt% [149]. In addition, mixing the 
polymeric microspheres with GO could enable the selected 
distribution of GO sheets in the gap between polymer 
spheres, providing an alternative strategy to generate highly 
continuous 3D graphene networks in polymer composites 

[150]. Meanwhile, the polymer microspheres as sacrificial 
hard templates can be easily removed by organic solvents 
to generate freestanding 3D graphene networks [151]. 
Although using polymer templates to induce the assembly 
of graphene sheets provides a cheaper and more scalable 
way to generate graphene networks than CVD method [121, 
152], further efforts are required to realize high quality of 
the as‑fabricated graphene networks, which is the key for 
achieving high thermal conduction [121, 152].

4.3  3D Printing Method

As a newly emerged manufacturing technology that promises 
high design freedom, 3D printing can be used to accurately 
produce objects with complex shapes/structures [153]. The 
outstanding solution processability of GO and RGO suspen‑
sions makes it possible to form viscous GO or RGO inks that 
can be printed to generate 3D structures, and corresponding 
graphene architectures can be obtained by post‑treatments 
including freeze‑drying and chemical/thermal reduction [154]. 
By designing the printing process, 3D graphene networks and 
corresponding functional composites can be fabricated eas‑
ily on demand to meet requirements for diverse application 
scenarios [155–157].

Designing of highly printable inks with appropriate rheo‑
logical properties is the key to applying 3D printing technique 

Fig. 8  Schematic of synthesis of GF and the GF/PDMS composite by isotropic template‑assisted assembly method [147]
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for generating 3D graphene architectures. In addition, post‑
treatment protocols, such as drying and thermal annealing 
after printing, should be carefully designed to convert the 3D 
printed wet materials to freestanding structures. The post‑
treatments can also largely determine the quality (e.g., shape 
fidelity, mechanical properties) of the printed devices. Ma 
et al. designed an aqueous GO ink, which presents favora‑
ble 3D printability even at a low solid concentration without 
requiring additional additives or freeze operations. With this 
ink, 3D graphene networks with desired configurations were 
easily fabricated via 3D printing followed by freeze‑drying, 
chemical reduction, and thermal annealing [158]. Zhang et al. 
also reported an aqueous GO/EDA ink that can be injected into 
a 3D printed template, and a corresponding graphene hydro‑
gel was obtained by hydrothermal treatment. By subsequent 
freeze‑drying and thermal annealing, the solvents and poly‑
mer templates can be easily removed, resulting in freestand‑
ing cellular graphene networks [159]. Zhu et al. used fumed 
silica powder as a removable additive to modify rheological 
properties (e.g., viscosity, shear yield stress and shear thinning 
behavior) and printability of GO inks. An organic solvent bath 
with isooctane was used to effectively prevent the nozzle clog‑
ging and structural collapse during the printing process [160]. 
Besides, other GO‑based ink modification strategies by add‑
ing polymers, like polyethylenimines and polyethylene glycol 
(PEG), were also reported, which can significantly increase the 
ink modulus and viscosity for 3D printing [161].

In summary, preconstruction of isotropic graphene 3D net‑
works followed by compounding with polymers is a simple 
and effective strategy to create thermally conductive compos‑
ites, through which significant enhancement of thermal con‑
ductivity can be easily realized even with very low graphene 
loadings. However, the resulting composites generally exhibit 
isotropic heat conductance and monotonous conducting behav‑
iors, which limit their potentials for advanced thermal manage‑
ment applications.

5  Preconstruction of Anisotropic Graphene 
Networks and Their Conductive Composites

The composites with anisotropic graphene networks can 
benefit from the anisotropic thermal conductivities of the 
conducting networks for enhancing heat transfer along with 
specific directions even at low graphene loadings. Due to 
the unique 2D layered structure and high intrinsic in‑plane 

thermal conductivity of graphene sheets, their alignment 
can be controlled to form anisotropic graphene networks 
with high continuity along specific directions, providing 
highly efficient thermally conductive pathways [162, 163]. 
Compared with the composites with an isotropic graphene 
network, the anisotropic graphene/polymer composites can 
exhibit much higher thermal conductivity along selected 
directions at the same graphene loading because the con‑
tinuity of the heat transfer pathways is less affected by the 
thermally insulating polymers [164–166]. This directional 
heat transfer capability enables a great potential for applica‑
tions as TIMs and thermal spreading materials (TSMs) [167, 
168]. Intuitively, successful preconstruction of anisotropic 
graphene networks relies on fine regulating the orientation 
of graphene sheets and achieving favorable robustness of the 
as‑formed structure. Hitherto, various methods such as self‑
assembly, directional freeze‑casting, and template method 
have been reported, all of which provide feasible routes for 
producing anisotropic graphene networks.

5.1  Self‑Assembly Method

Creating anisotropic graphene networks by self‑assembly is 
a simple method that allows on‑step synthesis of desirable 
structure without requiring complex processing procedures. 
However, it is quite challenging to control the alignment of 
graphene sheets during the assembly process, which requires 
rational compositional design of precursors. One of the most 
commonly used methods to achieve anisotropy of graphene 
structure is to form GO liquid crystals in precursor suspen‑
sions, and the orientation behavior of the graphene sheets in 
liquid crystals can be transferred to the ultimate macroscopic 
3D network after the assembly process [169].

According to Onsager’s theory, 2D sheets in dispersions 
can form liquid crystals once the concentration exceeds 
a critical value [170, 171]. Compared with pristine gra‑
phene that has very limited solubility/dispersibility either 
in water or organic solvents, GO has outstanding dispers‑
ibility and thus the capability for forming liquid crystals 
because of its rich surface chemistry. With increasing the 
GO concentration, there is an isotropic‑nematic phase 
transition of GO sheets (Fig. 9a) [171], and the nematic 
phase of GO liquid crystals could be transformed into 
layered phase [172–174]. Note that the reduction of GO 



Nano‑Micro Lett. (2022) 14:129 Page 15 of 40 129

1 3

sheets that removes the oxygenated groups and extends 
the rigid domains can also contribute to the formation of 
the liquid crystals in the dispersion and then facilitate the 
formation of an anisotropic structure in the resulting 3D 
network [175]. Based on this principle, controlling the 
reduction of GO to induce the formation of liquid crys‑
tals during the self‑assembly process represents a promis‑
ing way to prepare anisotropic graphene networks [175]. 
Wang et al., fabricated anisotropic GAs using HI‑assisted 
hydrothermal treatment followed by freeze‑drying. They 
revealed that a highly orientated porous structure of the 

GAs can be formed when the graphene content is higher 
than a threshold value, whereas the GAs fabricated with 
low‑concentration GO precursors present an isotropic 
structure [176]. Yao et al. found that strong alkalis (e.g., 
KOH) can facilitate the formation of GO liquid crystals 
even at low concentrations, and the as‑formed highly 
ordered microstructure can be inherited to the ultimate 
GAs upon applying hydrothermal reaction followed by 
freeze‑drying (Fig. 9b, c) [175].

The orientation of GO liquid crystals can be further tuned 
by creating shear flow during the processing processes. For 

Fig. 9  a Schematics of the phase transition of GO liquid crystal with the increase in concentration [171]. b Microscopic schematics of the 
formation of the anisotropic graphene 3D network by the orientation of GO liquid crystal [175]. c Polarized‑light optical microscope and SEM 
images of the anisotropic graphene 3D network formed by the orientation of GO liquid crystal [175]
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example, in the filtration process of graphene dispersion, 
the orientation direction of graphene sheets is perpendicu‑
lar to the direction of the liquid flow [177, 178], while in 
wet spinning, the orientation direction of graphene sheets 
is parallel to the flow direction [179]. Li et al. reported an 
interesting method to tune the orientation of GO sheets by 
creating tilted flowing. They found that repeatedly tilting the 
mold containing pre‑formed GO liquid crystals can impel 
the graphene liquid crystals to possess a long‑range order 
through flowing and an anisotropic GA was obtained after 
proper reduction and drying, in which the alignment of RGO 
sheets along the flow direction can be observed. The thermal 
conductivity of the GA/paraffin composite along the gra‑
phene orientation direction reached 1.2 W  m−1  K−1, which is 
nearly 3 times of the thermal conductivity perpendicular to 
the orientation direction of graphene sheets [180]. In another 
work reported by the same group, GO liquid crystals were 
loaded into a syringe and a more uniform sheet alignment 
was achieved by moving the pistons to generate shear forces 
[181]. Similarly, experimental results show that the align‑
ment of graphene sheets along the flow direction in noz‑
zle can be achieved by the shear stress during 3D printing 
process, resulting in an anisotropic porous structure in the 
filaments after freeze‑drying [182, 183]. Some experimental 
studies confirm that the heat flow can also affect the orienta‑
tion of GO liquid crystals. Huang et al. reported that creating 
temperature gradients in the GO dispersion by directional 
heating during the hydrothermal process can facilitate the 
alignment of GO sheets and lead to the formation of aniso‑
tropic GAs after freeze‑drying and microwave treatments. 
As a result, the thermal conductivity along the alignment 
direction of the anisotropic GA/paraffin composite can reach 
1.074 W  m−1  K−1 at an extremely low graphene loading 
of 0.32 vol% [162]. Moreover, other methods such as add‑
ing polymer components or adjusting the solvent polarity 
are also effective in affecting the orientation of graphene 
sheets during the self‑assembly process, resulting in GAs 
with well‑arranged or layered microstructures [184–186].

5.2  Directional Freeze‑Casting Method

Directional freeze‑casting is another simple yet effective 
method for fabricating graphene networks with orientated 
porous structures, which enables precise structural control‑
lability, easy scalability, and versatility [187, 188]. This 

technique is typically applied on wet graphene systems 
such as GHs and GO dispersions [189, 190]. By applying a 
temperature gradient in a GO/graphene suspension or GH 
during the freezing process, ice crystals could grow along 
the direction of the temperature gradient while excluding the 
graphene sheets, leading to close packing of graphene in the 
gap between ice crystals and the formation of anisotropic 
graphene walls. After freeze‑drying, anisotropic GAs with 
highly oriented porous structures can be obtained (Fig. 10) 
[40, 120, 189, 191, 192].

Using the directional freeze‑casting method to construct 
anisotropic graphene structures has been widely demon‑
strated for fabricating high‑performance thermally conduc‑
tive materials in recent advancements. For example, Lian 
et al. fabricated an anisotropic GA with GO liquid crystal 
dispersion as the precursor. After backfilling with epoxy, the 
composite exhibited a through‑plane thermal conductivity of 
2.13 W  m−1  K−1 at a graphene loading of 0.92 vol% [60]. It 
is worth noting that this method is very versatile and works 
well for various precursor systems with a wide range of gra‑
phene concentrations. In particular, more ordered structures 
can be generated by using GHs as precursors because the 
partially reduced GO sheets in the GHs are less hydrophilic 
and show considerable repulsive forces to the ice crystals 
[120, 193]. For example, Li et al. used a GH as the precur‑
sor to obtain a GA with highly anisotropic structures by the 
directional freeze‑casting method and the resulting epoxy 
composite exhibited an excellent vertical thermal conductiv‑
ity of 6.57 W  m−1  K−1 at an ultralow graphene loading of 
0.75 vol% [40].

The most significant advantage of using the directional 
freeze‑casting method to fabricate graphene 3D networks is 
its high controllability on the alignment of graphene sheets. 
Through rational design of the freeze‑casting process, 
many novel graphene 3D structures can be easily formed 
[194–197]. For example, bi‑directionally freeze‑casting 
method has been used to fabricate GAs with unique lamel‑
lar structures, which relies on modification of the mold with 
a PDMS wedge as the spacer (Fig. 11) [198, 199]. As shown 
in Fig. 11a, in addition to the temperature gradient along the 
Z direction, the existence of the PDMS wedge can generate 
a temperature gradient along the Y direction, ensuring that 
the ice crystals can grow along two directions simultane‑
ously to form the unique layered structures [199]. Liu et al. 
fabricated a high‑quality graphene network with a layered 
porous structure from a poly(amic acid) salts (PAAS)/GO 
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suspension by bi‑directional freeze‑casting. The conductive 
network composed of highly aligned and closely stacked 
graphene lamellae endowed the resultant epoxy composite 
with an excellent through‑plane thermal conductivity of 
20.0 W  m−1  K−1 at a low filler loading of 2.30 vol% [70].

In addition to the layered structures, radially aligned 
structures of graphene networks can be created by a modi‑
fied directional freeze‑casting method, as schematically 
shown in Fig. 12 [200]. During the freezing process, multi‑
directional temperature gradients are formed and ice crystals 
can grow radially, which can guide the alignment of gra‑
phene sheet to form a network with a corresponding radiat‑
ing structure [200]. Bo et al. made further improvements on 

the basis of this structure by growing tree‑leaf‑like graphene 
nano‑fins on the GA skeleton surface via CVD, which can 
provide additional thermal pathways and significantly reduce 
the boundary thermal resistance [61]. More importantly, 
recent progress has shown that the directional freeze‑cast‑
ing method can be combined with advanced manufacturing 
techniques, such as 3D printing, to realize the fine control 
on the hierarchical structures of the printed graphene mate‑
rials, demonstrating excellent manufacturing flexibility and 
versatility [201].

Another advantage of the directional freeze‑casting 
method is that the pore size, pore wall thickness, and layer 
spacing of the as‑fabricated graphene networks can be 

Fig. 10  a Schematic of the microscopic principle of directional freezing [189]. b Schematic of directional freezing of GO suspension and GA 
structure [192]. c Top‑view SEM images of vertically aligned graphene networks fabricated with freeze‑casting at different freezing rate and 
subsequent freeze‑drying [40]
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tuned by adjusting the freezing parameters [202–205]. For 
example, Zhou et al. demonstrated that lower freezing rates 
could lead to larger pore sizes of the final graphene cellular 
network [206]. In another research, Huang et al. observed 
that the layer thickness and spacing distance can be reduced 
for the layered graphene network when higher freezing rate 
is applied during the bi‑directional freeze‑casting process 
(Fig. 13) [207]. Additionally, it has been confirmed that the 
pore size or layer spacing can be adjusted by tuning the con‑
centration of the GO dispersion as the precursor [208–210]. 
Typically, using precursors with higher concentrations 
results in denser graphene networks [211]. Thanks to the 
high controllability and versatility, the directional freeze‑
casting method shows great potential for generating 3D gra‑
phene networks to possess tunable structures, ensuring the 
fine control of the functionality and conductive behaviors of 
the resulting polymer composites.

5.3  Anisotropic Template‑Assisted Assembly Method

The template method allows the materials to inherit the 
structure of the templates, and therefore, anisotropic gra‑
phene networks can be obtained by depositing graphene on 
the skeleton surface of the templates with an anisotropic 
porous structure (Fig. 14) [212, 213].  SiO2 and Ni foams 
are commonly used anisotropic templates for materials that 
can be deposited by CVD method [212, 214]. Anisotropic 
3D tubular graphene networks were fabricated by growing 
graphene layers with CVD on a home‑made mesoporous 
 SiO2 template, which can be removed later by hydrofluo‑
ric acid (HF) solution [215, 216]. Shen et al. prepared an 
anisotropic template by compressing the stacked Ni foam, 
and a corresponding 3D graphene network with multilayer 
oriented structure was generated by CVD approach. This 
unique graphene network endowed its epoxy composite 

Fig. 11  Schemes of bidirectional freezing techniques and resulting scaffolds [198, 199]
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with an in‑plane thermal conductivity of 8.8 W  m−1  K−1 
at a filler loading of 8.3 wt% [217]. Some naturally occur‑
ring porous materials (e.g., woods with vertically aligned 
micro‑channels) can also serve as templates for creating 
anisotropic graphene networks [218–220]. For example, a 
GO suspension can be filled into the porous wood‑based 
template, and subsequently a 3D graphene/carbon network 
with highly aligned pores can be obtained by freeze‑drying 
and thermal annealing [221, 222]. Other porous cellulose 
materials, such as the waste cigarette filters, which show 
affinity with graphene components, have also been used 
as templates for preparing anisotropic graphene networks. 
These templates can absorb GO dispersions and finally 
anisotropic carbon scaffolds coated with graphene sheets 
can be obtained after drying and annealing [223]. Liu et al. 
fabricated an anisotropic graphene network by using a ciga‑
rette filter template and converted it into a thermally con‑
ductive composite by impregnating the network with epoxy 
resin (Fig. 14b). The composite showed an anisotropic con‑
ductive behavior with a vertical thermal conductivity of 
1.2 W  m−1  K−1 [213].

5.4  Compaction and Rolling Processes

The anisotropy of graphene networks can be realized 
by post‑processing, such as stacking, compaction [224] 
and rolling [225]. Gong et al. deposited graphene on the 
surface of Ni meshes by a CVD method and prepared 
graphene woven fabrics after the removal of the Ni tem‑
plate. An anisotropic graphene structure was obtained 
by stacking these graphene woven fabrics layer by layer 
(Fig.  15a), which endows the PI composite with an 
in‑plane thermal conductivity of 3.73 W  m−1   K−1 at a 
graphene content of 12 wt% [116]. In another study, a 
hollow vertically aligned graphene tube (VAGT) with 
macro‑anisotropic properties was obtained by rolling up 
graphene/Ni composite fabric followed by cutting and 
removing the Ni skeleton. After being infiltrated with 
PDMS, the composite showed a thermal conductivity of 
1.7 W  m−1  K−1 at the graphene loading of 4.5 wt% [226]. 
Dai et al. used a roller equipment to stretch and roll up the 
porous PU‑graphene film to get a large‑scale monolith, in 
which a vertically aligned structure is formed (Fig. 15b). 

Fig. 12  Scheme of the fabrication process of radiating GA [200]
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After graphitization and infiltration with epoxy resin, the 
resultant composite can deliver an unprecedented ther‑
mal conductivity of 62.4 W  m−1  K−1 [115]. Rolling 2D 
graphene materials into 3D vertically aligned structure 
represents a flexible and efficient alternative to create 
anisotropic conducting networks. Commercially available 
graphene films can also be rolled up and infiltrated with 
polymers to fabricate high‑performance thermally con‑
ductive composites [227].

In summary, designing anisotropic graphene conduc‑
tion networks in composites can greatly take advantage 
of the intrinsic in‑plane thermal conductivity of gra‑
phene sheets and enable highly efficient heat transfer 
along selected directions, which is very promising for 
thermal management applications. However, creating ani‑
sotropic graphene networks requires complicated synthe‑
sis processes, which might limit mass production. Thus, 
further efforts are still needed to explore more efficient 
and cost‑effective ways, ensuring their future practical 
applications.

6  Preconstruction of Hybrid Graphene 
Networks and Their Conductive Composites

Although pure graphene networks have great potentials in 
forming thermally conductive pathways for polymer com‑
posites, their low density and relatively weak sheet inter‑
connections would inevitably hinder the further improve‑
ment in thermal conductivity of their polymer composites. 
Thus, functional additives, especially commercially avail‑
able thermally conductive materials, such as GNPs [9, 77, 
228], boron nitride (BN) nanoplatelets [229–231], carbon 
nanotubes (CNTs) [62, 232], carbon fibers [233], cellulose 
nanocrystals [234], copper nanowires [235], and silicon 
carbide nanowires [236], are usually incorporated into the 
graphene networks to obtain hybrid graphene networks for 
enhancing the structural robustness and thermally conduc‑
tive properties.

Commercial GNPs suffer from the poor processability and 
easy aggregation when serving as fillers. However, GNPs 
have higher thermal conductivities than the RGO sheets 

Fig. 13  Effect of freezing rate on GA layer spacing [207]
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because of their low‑defect feature. To improve the thermal 
conductivity of graphene networks and their polymer com‑
posites, GNPs can be added into the graphene networks to 
form 3D hybrid networks. The graphene network serves as 
not only a main thermally conductive network but also a 
supporting framework for accommodating the GNPs and 
preventing their aggregation, while the presence of the GNPs 
can prevent excessive shrinkage of the graphene network 
during the fabrication process, reflecting a favorable syn‑
ergy effect [237]. An et al. fabricated highly anisotropic 
3D RGO/GNP hybrid networks by hydrothermal treatment 
of an aqueous suspension containing GNPs, GO, polyvi‑
nylpyrrolidone (PVP) and potassium hydroxide (KOH) [41]. 
PVP was used to facilitate the dispersion of GNPs while the 
KOH can restore the conjugated structures of GO sheets 
to induce their orderly alignment during the hydrothermal 
treatment. With the presence of the GNPs, the as‑prepared 
hybrid hydrogel exhibited minimal volume shrinkage even 

after air‑drying followed by the high‑temperature annealing 
at 2800 °C (Fig. 16). The epoxy composite with this hybrid 
network showed a through‑plane thermal conductivity of 
35.5 W  m−1  K−1 at the graphene content of 19.0 vol%, much 
higher than that of the composite fabricated with pristine 
GAs without the adding of GNPs [41]. Another strategy 
to incorporate GNPs into the graphene network is to infill 
pre‑fabricated GAs with GNP dispersions. After drying to 
remove the solvents, the GNPs can be evenly distributed in 
the GA framework, which improves the continuity of the 
thermally conducting pathways. In particular, polymer pre‑
cursors can be mixed with the GNPs dispersion and infil‑
trated into the GFs, and corresponding composites can be 
formed after polymerization or thermal curing. For example, 
the GF/GNP/poly(1,1‑difluoroethylene) (PVDF) composite 
fabricated using this protocol exhibited a thermal conductiv‑
ity of 6.32 W  m−1  K−1 [117].

Fig. 14  Schematic illustrations of anisotropic graphene 3D networks prepared by template method and their polymer composites [212, 213]
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Fig. 15  The application of a compaction [116] and b rolling [115] processing in the fabrication of anisotropic graphene networks and their com‑
posites

Fig. 16  a Schematic illustrating the fabrication of conductive epoxy composite with vertically aligned RGO/GNP hybrid foam. b Through‑plane 
conductivity (red column) and in‑plane conductivity (blue column) of the epoxy composite containing the vertically aligned RGO/GNP hybrid 
foam annealed at different temperatures (inset: Raman ID/IG mapping) [41]
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BN nanoplatelets are also ideal fillers for fabricat‑
ing thermally conductive polymer composites because of 
their 2D layered structure, excellent chemical stability, and 
extraordinary anisotropic thermal conductivity [238–240]. 
Meanwhile, the strong van der Waals forces allow the GO 
or RGO networks to have sufficient binding interactions 
with BN, ensuring integrity of the as‑prepared hybrid net‑
works [241, 242]. Therefore, BN nanoplatelets have been 
used to enhance thermal conductivity of graphene/polymer 
composites [204]. To improve solution processability and 
dispersibility of BN, surface functionalization is required. 
For example, the modification of BN with 3‑aminopropyl‑
triethoxysilane (APTES) can endow BN with a positively 
charged surface, resulting in a more homogeneous GO/BN 
dispersion, and the modified BN with hydrophilic amino 
and hydroxyl groups can interact better with the negatively 
charged GO sheets due to the electrostatic interactions 
[243, 244]. An et al. synthesized a RGO/BN hybrid aerogel 
by hydrothermal treatment of an aqueous GO/BN disper‑
sion. The GO provides excellent self‑assembly capability 
to form an interconnected network, where the BN sheets 
can be evenly distributed in and contribute to the forma‑
tion of a denser network for more efficient thermal conduc‑
tion paths. As a result, the corresponding epoxy composite 
exhibited a very high through‑plane thermal conductivity of 
11.01 W  m−1  K−1 [229]. Shao et al., found that adding of 1.6 
wt% of BN nanoplatelets into the graphene/PA6 composite 
can enhance the thermal conductivity by 87.6% [245]. It has 
been elucidated that the synergy between BN nanoplatelets 
and graphene nanoplatelets is based on three aspects: (1) the 
BN nanoplatelets can fill in the voids between the graphene 
sheets, which improves the continuity of the thermally con‑
ducting network; (2) the interactions between graphene and 
BN can result in compactly stacked structure, which signifi‑
cantly reduces the interfacial thermal resistance; and (3) the 
smooth surface of small BN nanoplatelets with high aspect 
ratio can minimize the geometric contribution to the thermal 
interface resistance between fillers (Fig. 17c) [65, 246].

Additionally, CNTs are 1D carbon nanomaterials with a 
hollow cylindrical fiber‑like structure, performing excellent 
thermal conductivity and mechanical properties [247, 248]. 
The incorporation of CNTs into graphene networks can form 
a secondary CNT network covered on the cell wall of the 
graphene skeleton, which significantly enhances the thermal 
transfer between graphene sheets while strengthening the 

structure, ensuring the formation of a more efficient ther‑
mally conducting network (Fig. 17a) [249–251]. Liang et al. 
synthesized an anisotropic RGO/SWCNT hybrid hydrogel 
by hydrothermal treatment of an aqueous suspension of GO 
and single‑wall carbon nanotubes (SWCNTs) and converted 
it into a highly conductive network by freeze‑drying and 
subsequent high‑temperature annealing. As schematically 
shown in Fig. 17b, the SWCNTs in the network effectively 
bridged the graphene sheets [62]. In addition, Liang et al. 
used the SWCNTs functionalized with hydroxyl group to 
enhance the coupling and bonding interactions between the 
conducting fillers and the epoxy matrix, resulting in a much 
lower interface thermal resistance. The thermal conductiv‑
ity of the RGO/SWCNT/epoxy composite is 4 times higher 
than that of pure epoxy resin when the filler content is kept 
at 3.65 vol% [62]. Since both the graphene and CNT can be 
synthesized by CVD methods, an alternative method is pro‑
posed to generate graphene/CNT hybrid foams by designing 
a two‑step CVD process with Ni foam as the template [252].

Cellulose nanofibers (CNFs) are usually incorporated into 
the graphene networks to improve the connectivity between 
GNPs while strengthening the resulting graphene‑function‑
alized PCMs [253–255]. The cellulose/GNP network can 
not only accommodate the phase change material of PEG 
but also impart the PEG with enhanced thermal conduc‑
tivity, excellent shape stability and mechanical properties 
[68, 256]. In another study, Wang et al. dispersed CNFs 
into graphene dispersions to improve the dispersibility of 
the graphene sheets and modify the interactions between the 
graphene and the template, so that the graphene sheets can 
be absorbed more efficiently on the template to form a highly 
continuous network [257, 258]. Other graphene hybrid net‑
works, such as graphene/carbon foams, can be prepared by 
incorporating polymers (e.g., melamine) as carbon sources 
(Fig. 17d) [149, 259–261]. For example, graphene‑coated 
hybrid carbon networks with a unique core–shell structure 
were obtained by annealing of the GO/melamine composite 
foams prepared by dip‑coating [262, 263].

7  Applications

Thermally conductive graphene/polymer composites are 
highly promising for applications where efficient heat 
dissipation and thermal management are needed [1, 118, 
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264–266]. For example, electrical devices (e.g., high‑
frequency communication equipment) generate a lot of 
heat during operation and the excessive heat should be 
dissipated or transferred away timely to avoid overheat‑
ing and ensure proper functions of the devices. To tackle 
the overheating problem, TIMs are urgently required to 
improve the heat transfer between the target devices and 
the heat sink and promote the heat dissipation [45, 70]. 
In other situations (e.g., battery system and space condi‑
tioning), the system temperature should be kept within a 
certain range and dynamic thermal management by PCMs 

or thermal switches are typically needed. PCMs can reduce 
temperature variation by absorbing and releasing heat via 
the phase change processes, and thermal switches can con‑
tinuously tune the thermal transfer/dissipation behaviors 
by varying their own thermal conduction properties [118, 
267–269] (Fig. 18). Compared with conventional manu‑
facturing methods of graphene/polymer composites, the 
pre‑construction of graphene networks followed by back‑
filling polymers enables more controllability and flexibil‑
ity for fabricating high‑performance thermally conductive 

Fig. 17  a, b Schematic illustrations of synergies of GNPs and CNTs on thermal conduction [62, 251]. c Schematic illustrations of synergies of 
GNPs (blue slices) and BN (red spheres) [65]. d Schematic illustrating the preparation of graphene/MF foam and the derived graphene/carbon 
foam [149]
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polymer composites and would offer new opportunities to 
boost their applications for efficient thermal management.

7.1  Thermal Interface Materials

TIMs are a kind of materials that are located in between two 
components to reduce thermal resistance between them for 
preventing overheating of the powerful devices by efficiently 
transferring heat from heat‑producing devices (e.g., central 
processing unit) to heat‑dissipating components (e.g., heat 
sink). In addition to high thermal conductivity, an ideal TIM 
should also possess satisfactory mechanical properties and 
long‑term stability, which can prevent performance failure 
during operation [60, 270]. Epoxy is a typical matrix used for 
fabricating TIMs because of its favorable mechanical proper‑
ties and high thermal/chemical resistances. Thus, high‑per‑
formance TIMs can be fabricated by pre‑constructing highly 

conductive graphene networks and subsequent backfilling and 
curing of epoxy resins. Li et al. synthesized an anisotropic 
GA/epoxy composite with a vertical thermal conductivity of 
2.69 W  m−1  K−1 at an extremely low graphene content of 1.11 
vol%, showing a great potential as TIMs [120]. Hou et al. infil‑
trated epoxy resin into a prepared graphene skeleton, and the 
horizontal thermal conductivity of the graphene/epoxy com‑
posite was 55 times higher than that of pure epoxy resin at a 
low graphene loading of 5.5 wt%, which was suitable for being 
used as heat spreading materials [271]. Liu et al. inserted an 
anisotropic epoxy/graphene TIM in between the light‑emitting 
diode (LED) chip and the copper plate for heat dissipation, 
and the results showed that the stabilized surface temperature 
of the LED chip is 13.2 °C lower than that of the chip with 
commercial silicone rubber‑based TIM [70]. Although sig‑
nificant progresses have been made in designing graphene/
polymer TIMs, current studies focused primarily on enhanc‑
ing the thermal conduction performances of materials, while 

Fig. 18  Situations where efficient thermal management of excessive heat is needed and thermally conductive polymer composites containing 3D 
graphene networks for various applications: TIMs [6, 45], PCMs [287, 288], energy conversion materials [283, 289] and thermal switches [269]
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technical issues related to practical applications (e.g., thermal 
expansion during operation and installation difficulties) are 
less considered. Further effort is also needed to develop TIMs 
with favorable application flexibility.

7.2  Phase Change Composites and Photothermal 
Conversion Materials

PCM promises sustainable energy conversion and can pro‑
vide useful thermal management by absorbing and releas‑
ing thermal energy during its phase changing process. An 
ideal PCM should have high thermal conductivity, high heat 
of fusion, high specific heat, proper density, high melting 
point, high shape stability, and long‑term reliability during 
repeated cycling. However, most of conventional pristine 
PCMs (e.g., paraffin wax) suffer from problems of low ther‑
mal conductivity and poor shape stability, which hinder the 
wide applications of these PCMs. Incorporating graphene 
sheets as the thermally conductive fillers into pristine PCMs 
is promising for enhancing their thermal conduction and 
comprehensive performances [272–274]. The graphene 
network in the PCMs can not only enhance the heat trans‑
port properties but also serve as a supporting framework to 
improve structural robustness of the PCMs, which enables 
high shape stability even at temperatures above the melting 
points of PCMs. For example, Liu et al. reported that the 
combination of an air‑dried RGO/GNP hybrid network with 
1‑octadecanol PCM can result in a great enhancement of 
thermal conductivity from 0.21 W  m−1  K−1 for the 1‑octade‑
canol to 9.50 W  m−1  K−1 and the resultant composite has a 
high melting enthalpy of 196.2 J  g−1 [267]. Notably, typical 
pristine PCMs, such as PEG, paraffin wax, n‑hexadecane, 
and 1‑octadecanol, possess favorable fluidity at elevated 
temperatures. Thus, high‑performance phase change com‑
posites (PCCs) can be produced by backfilling the melted 
PCMs into the pre‑constructed graphene 3D networks. Opti‑
mization of PCCs can be achieved by structural/composi‑
tional designs of graphene networks. The embedded gra‑
phene skeletons can effectively prevent the leakage of PCMs 
due to the capillary forces, which significantly improves the 
shape stability of PCCs and ensures outstanding durability 
for practical applications [267, 275–277].

With the rapid industrial development, the energy crisis 
and related water pollution problems are becoming increas‑
ingly serious. Different from non‑renewable fossil resources, 

solar energy is considered a kind of green energy resource. 
Obviously, efficient conversion of solar energy to usable 
thermal energies represents one of the most promising and 
sustainable routes to relieve energy crisis and environmental 
issues [278, 279]. Because of the unique combination of 
excellent thermal conduction, phase‑changing enthalpy, and 
photothermal conversion performance, graphene‑functional‑
ized PCCs are ideal for converting solar energy and storing 
thermal energy [280]. Xue et al. reported that the tempera‑
ture of PCMs functionalized by graphene can reach 79.6 °C 
with a high photothermal conversion efficiency of 78% at 
one‑sun illumination. Moreover, since the maximum temper‑
ature of the composite under solar light illumination is above 
the phase change temperature, the heat energy can be stored 
in the PCM matrix during the phase transition [257]. For 
real‑life application scenarios, PCCs can be placed on the 
roof of buildings to keep temperature within a certain range. 
In the daytime, PCCs absorb solar energy for photothermal 
conversion and maintain the temperatures near the melting 
points. After the disappearance of sunlight in the night, the 
PCCs would release the heat through the phase transforma‑
tion process to slower the indoor temperature drops [263]. In 
another application scenario, graphene‑based photothermal 
conversion materials were connected to the thermoelectric 
conversion device to output electric energy, realizing suc‑
cessful photo‑thermal‑electric conversion [204, 240, 281, 
282]. Cao et al. assembled a photo‑thermo‑electric conver‑
sion device by combining the graphene‑functionalized PCC 
with a temperature differential power generator, which ena‑
bles an output voltage of 144 mV under an illumination of 
200 mW  cm−2 [282]. Liu et al. designed a PEG‑based PCC 
containing a radially aligned GO/BN network, which was 
then assembled with a thermoelectric generator to obtain a 
solar thermoelectric generator. Since the unique conductive 
GO/BN network in the PCC endows the device with rapid 
heat diffusion capability to reduce local thermal accumula‑
tion, a convex lens can be applied to concentrate the solar 
light. Under real sunlight conditions, the output voltage and 
the output power density of the solar thermoelectric genera‑
tor can reach 251 mV and 40.28 W  m−2, respectively [283].

7.3  Thermal Switches

In addition to the above‑mentioned applications, thermal 
switch is an emerging application of graphene composites, 
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which provides dynamic thermal management to allow the 
devices to function well at dramatically varied conditions. A 
thermal switch can provide switchable regulation of the heat 
dissipation pathways via changing its thermally conducting 
properties. Thus, the materials for this application should 
be thermally conductive and their thermal conductivity 
should be sensitive to external stimuli (e.g., compressing and 
stretching). In addition, these materials are also required to 
have satisfactory mechanical properties and durability [193, 
284]. For example, a compressive switch should have good 
elasticity and outstanding fatigue resistance, which could 
ensure long‑term stability of the functions upon repeated 
compressive deformation during operation. It is reported 
that favorable thermal regulating function can be realized 
by preparing elastic thermally conductive graphene/polymer 
composites, such as composite foams. These elastic foams 
are designed to be poorly thermally conductive at the initial 
state, representing an “off” state. Upon compression, the 
conductivity increases because the conductive network is 
denser, leading to the formation of more efficient conduct‑
ing pathways (“on” state) and the conductivity can be eas‑
ily modulated by adjusting the degree of compression [285, 
286]. For example, Du et al. fabricated a thermal switch 
based on an elastic graphene foam, which presents continu‑
ous tunability, wide tuning range, and fast response. The 
graphene foam switch provides a large (~ 8x) continuous 
adjustment of its thermal resistance from uncompressed 
state (“off” state) to full compression (“on” state) and can 
accurately stabilize the operating temperature of the target 
device, holding great potential for dynamic thermal manage‑
ment applications in electronic devices and batteries [269].

8  Conclusion and Perspective

In this review, we have discussed the recent progress in 
improving thermally conductive properties of graphene‑
functionalized polymer composites with a focus on precon‑
struction of 3D graphene conducting networks. Achieving 
high thermal conductivity for polymer composites relies on 
the formation of highly continuous and high‑quality thermal 
conduction network in polymer matrices, which is the key 
to ensuring efficient heat transfer. Conventional processing 
methods, such as solution mixing and melt compounding, 
usually suffer from the aggregation of graphene sheets dur‑
ing the mixing/compounding processes, and thus effective 

thermal conduction networks can only be formed at high 
graphene loadings, which would result in limited thermal 
conductivities, high cost, and degraded mechanical proper‑
ties of the composites. In comparison, preconstruction of 
3D graphene networks followed by backfilling polymers/
monomers provides a promising route to fabricate thermally 
conductive composites with improved performances. The 
preformed conductive networks can be well maintained 
during the mixing/compounding process without produc‑
ing agglomeration of graphene sheets in polymer matrices, 
ensuring the high thermal conductivity of the as‑fabricated 
composites at low filler loadings while avoiding perfor‑
mance degradation of polymer matrices. The thermally con‑
ductive behavior of the resultant composites can be modified 
according to practical application scenarios by configura‑
tional/microstructural designs of preconstructed 3D net‑
works, such as designing anisotropic conductive networks 
for enabling directional conduction behavior, which provides 
unique flexibility and versatility for composite fabrication. 
Although significant progress has been achieved, many chal‑
lenges remain and there is still much to be developed for 
controllable preconstruction of graphene networks and the 
fabrication of their composites.

(1) From the aspects of graphene networks, their thermal 
conduction is largely affected by the quality of the 
graphene building blocks. The most popular method 
to construct high‑quality 3D graphene networks is 
using GO as the precursor for assembly followed by 
high‑temperature annealing. The defect‑free feature 
of thermally healed graphene can endow the 3D net‑
work with excellent thermal conductivity but would 
also lead to poor structural stability due to the poor 
interfacial interactions between the high‑quality gra‑
phene sheets, which brings difficulty to subsequent 
compounding process, especially in mass production. 
Thus, scalable and efficient approaches to combine 
superb conductivities and good structural robustness 
into one high‑quality graphene network are highly 
demanded.

(2) Regarding the design of anisotropic networks, various 
methods, e.g., ice templating method, has been proved 
to be effective. However, the long‑range order and cus‑
tomizability of the as‑obtained graphene network still 
needs to be improved. Thus, some efforts should be 
focused on optimizing the existing methods and under‑
standing their fundamental principles and mechanisms 
for achieving better controllability.
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(3) Although the preconstruction of 3D graphene networks 
can ensure the high continuity of the conductance path‑
ways in polymer matrix, the interfacial thermal resistance 
between graphene and polymer is still a critical obstacle 
for further enhancement of thermal conductivity of the 
composites. More attention should be paid to this issue, 
making it possible to approach the upper limit of thermal 
conductivity of graphene‑based polymer composites.

(4) Most previous efforts have been focused on improving 
thermal conductivity of materials. However, integrating 
more functions (e.g., fire‑retardant and self‑extinguish‑
ing properties, sensing capability, electromagnetic inter‑
ference shielding, and self‑adhesive property) into the 
graphene‑based polymer composites might bring more 
opportunities for broadening their future applications. 
In addition, more investigation is needed to understand 
the roles of graphene‑based polymer composites in 
practical applications for expanding their commercial 
potentials. At present, there is still a long way to go 
for scalable production and commercial application 
of polymer composites with preconstructed graphene 
conductance networks. However, the development of 
techniques for tuning the graphene dispersion behavior 
in polymer matrices will continue to support the design 
and preparation of next‑generation functional compos‑
ites for thermal management applications.
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