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Heterointerface Engineering of β‑Chitin/Carbon 
Nano‑Onions/Ni–P Composites with Boosted 
Maxwell‑Wagner‑Sillars Effect for Highly Efficient 
Electromagnetic Wave Response and Thermal 
Management

Fei Pan1, Lei Cai1, Yuyang Shi1, Yanyan Dong1, Xiaojie Zhu1, Jie Cheng1, Haojie Jiang1, 
Xiao Wang1, Yifeng Jiang2, Wei Lu1 *

HIGHLIGHTS

• The squid pen-derived aerogel with intrinsic electropositivity is prepared to electrostatically assemble carbon nano-onion with low 
escape energy.

• Under the guidance of PNM model, the interface polarization is reinforced from the aspect of porous skeleton, nanomaterials and 
multilayer construction.

• Benefiting from boosted Maxwell-Wagner-Sillars effect, the aerogel and film display remarkable electromagnetic wave absorption 
(−50.83 dB) and electromagnetic interference shielding performance (66.66 dB), respectively.

ABSTRACT The rational construction of microstructure and composi-
tion with enhanced Maxwell-Wagner-Sillars effect (MWSE) is still a chal-
lenging direction for reinforcing electromagnetic wave (EMW) absorption 
performance, and the related EMW attenuation mechanism has rarely been 
elucidated. Herein, MWSE boosted β-chitin/carbon nano-onions/Ni–P com-
posites is prepared according to the heterointerface engineering strategy 
via facile layer-by-layer electrostatic assembly and electroless plating tech-
niques. The heterogeneous interface is reinforced from the aspect of porous 
skeleton, nanomaterials and multilayer construction. The composites exhibit 
competitive EMW response mechanism between the conductive loss and the 
polarization/magnetic loss, as describing like the story of “The Hare and the 
Tortoise”. As a result, the composites not only achieve a minimum reflection 
loss  (RLmin) of − 50.83 dB and an effective bandwidth of 6.8 GHz, but also present remarkable EMW interference shielding effectiveness of 
66.66 dB. In addition, diverse functions such as good thermal insulation, infrared shielding and photothermal performance were also achieved 
in the hybrid composites as a result of intrinsic morphology and chemicophysics properties. Therefore, we believe that the boosted MWSE 
open up a novel orientation toward developing multifunctional composites with high-efficient EMW response and thermal management.
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1 Introduction

In principle, multicomponent electromagnetic wave (EMW) 
absorber can endow materials with adequate heterogeneous 
interface and improved impedance matching, facilitating 
EMW response and dissipation to cope with the unwanted 
electromagnetic pollution problem in current 5G life [1, 2]. 
Maxwell-Wagner-Sillars effect (MWSE), is generated in 
the heterojunction structures because diverse charge distri-
bution at the boundary between two regions with different 
dielectric properties [3, 4]. Simultaneously, the capacitor-
like interfaces will accordingly form a local dipole electric 
field, and thus, assembled movements of interfacial dipoles 
intensify the responsive process with input EMW field, 
which boost the attenuation of EMW [5]. In view of this 
prerequisites, fabricating multicomponent composites with 
abundant heterogeneous interface becomes a mainstream 
strategy for enhancing MWSE, as well as obtaining highly 
efficient EMW response materials [6]. Hitherto, diverse 
adoptable routes have been established to optimize MWSE 
in multicomponent composites via heterogeneous interface 
engineering and rational construction. For all this, compos-
ites with maximized heterogeneous interface area is still 
regarded as a challenging direction for reinforcing EMW 
response, thereby putting forward brand-new requirements 
of the morphology and size within single-component as well 
as combination between multi-components [7, 8].

To overcome this challenge, two pivotal points should be 
grasped into consideration: (i) how to increase the loading 
area of the basal layer, and (ii) how to increase the contact-
ing area between basal layer and composite layer. According 
to the aforementioned considerations, a PNM model based 
on porous skeleton, nanomaterials and multilayer construc-
tion can provide a feasible approach, as shown in Fig. S1. 
It is unambiguous that the surface area of porous materials 
is higher than that of the solid counterparts at the same vol-
ume [9, 10]. In addition, on the basis of Maxwell-Garnett 
theory, the porous structure is conductive to manipulating 
the permittivity of the system due to the introduction of 
air medium as well, thus reinforcing impedance matching 
degree and internal multiple scattering. Owing to the char-
acteristics of lightweight, high porosity and specific surface 
area, aerogel is regarded as an idea basal layer for loading 
composite unit. In recent years, a variety of aerogels based 
on MXene, graphene, gelatin, bacterial cellulose, and so on 

have been successfully fabricated [11–13]. As the only posi-
tively charged basic polysaccharide in nature, β-chitin, can 
adhesion other dielectric loss type materials with negatively 
charged via electrostatic self-assemble, thereby dramatically 
increasing the MWSE in comparison with the aforemen-
tioned aerogel materials. This assembles method gives full 
play to intrinsic charge characteristics of the material itself, 
which greatly avoids the treatment of surfactant or com-
plicated process during conventional composite strategies. 
Besides, the parallel molecular chains interior the β-chitin 
reduce the intermolecular hydrogen bond force, which makes 
the β-chitin derived aerogel process have better chemical 
activity and absorbability as a skeleton. Unfortunately, few 
works about β-chitin derived aerogel were reported yet, mak-
ing it extremely indispensable to utilize the β-chitin derived 
aerogel as the basal layer.

For the composite layer, due to their superior specific 
surface area, nanomaterials are good choices, thus leading 
to the explosion of contract area between basal layer, as 
well as the promoted MWSE. The contacting area per unit 
increases with the decrease of the size. Moreover, since the 
particle size is at the nanoscale, the nanomaterials also gen-
erate expanded dipole polarization and electron polarization 
through the increased defect, dipoles and dangling bonds 
[14, 15]. As another attractive member of the fullerene fam-
ily after C60, carbon nanotubes and graphene, carbon nano-
onion (CNO) is composed of concentric graphite shells with 
an ultra-small size of about 5 nm. The CNO particles possess 
unique characteristic of large specific surface area, excellent 
electrical conductivity, stable thermal and chemical stabil-
ity, endowing it great application potential in the field of 
electromagnetic functional materials [16, 17]. At the same 
time, the hollow structure among the graphite shell also con-
tributes to the multiple reflections of incident EMW in the 
cavities [18]. In addition, as a low escape energy material 
similar to carbon nanotube, the electric field formed around 
CNO can easily cause electrons to emit. When CNO parti-
cles with negative charge approach to β-chitin with positive 
charge, it can be foreseen that a tightly connected interface 
will be generated under the electrostatic force, and the 
whole surface area of the porous structure with the assis-
tance of nanostructure can be effectively utilize. In view 
of these merits aforementioned, the combination of CNO 
with β-chitin aerogel makes a good use of the core strategy 
that high contacting area promotes interface polarization. 



Nano-Micro Lett. (2022) 14:85 Page 3 of 18 85

1 3

Besides, the introduction of CNO into aerogels also build a 
3D conductive loss network and improve the migration of 
charges on unpyrolyzed β-chitin.

Apart from the nanomaterial regulation, another underlying 
issue that we are considered to further increase the contacting 
area between heterogeneous interfaces is multilayer construc-
tion. Hamburger, the most typical layered structure in daily, is 
stood out as the basic design framework for the construction 
of multilayer composites, which can be simply divided into 
five layers. Magnetic nanoparticles have been selected as the 
most suitable outermost layer among the total multi-materials. 
It can not only further increase the MWSE for the formation 
of heterogeneous interfaces with the middle layer, but also 
enrich the mechanism of electromagnetic loss via the concep-
tion of electromagnetic coupling. As a kind of magnetic loss 
type material with internal long range disordered arrange-
ment, amorphous magnetic alloy has been neglected in the 
field of EMW absorption for its low permeability compared 
with crystalline magnetic substitute [19]. However, when the 
amorphous magnetic alloy is in contact with the air as its 
outermost layer, the impedance matching can be preferably 
optimized due to the moderate conductivity of the amorphous 
material, and it could reduce the reflection of the EMW when 
it contacts with the outermost layer. Among the methods for 
preparing amorphous magnetic alloys, because of its facile 
equipment, low pollution and low cost, electroless plating is 
widely spread and their product Ni–P has attracted extensive 
attention on account of its properties of good uniformity, com-
pact growth and corrosion resistance. Under the assistant of 
facial equipment, electroless plating can be used to obtain 
magnetic layers on the surface of carbon materials with vari-
ous shapes. The high-density amorphous coating on the sur-
face with no trace of fracture could build the second pathway 
for charge migration. Additionally, the intrinsic ferromagnetic 
characteristics also introduce magnetic loss into the system, 
thus enriching the loss mechanism to some extent [20]. There-
fore, it is evidently attempted to employ electroless plating for 
deeply elevating MWSE.

Inspired by above, a β-chitin/carbon nano-onions/Ni–P 
aerogel (CONA) based on PNM model was prepared in this 
work for the first time. Through layer-by-layer electrostatic 
assembly, samples with five layers were attained to boost 
the MWSE of composites and simultaneously regulate other 
loss mechanisms of EMW responses. In detail, under the 

guidance of PNM model, the porous skeleton, nanomaterials 
and multilayer construction maximizes the loading area and 
contact area of the composites. Ultra-tiny CNO and amor-
phous Ni–P was firstly served as the middle layer and outer 
layer, which help building 3D conductive loss and magnetic 
loss network, respectively. This microscopic manipulation 
and appropriate multicomponent design endow CONA with 
excellent thermal insulation and EMW absorption capacity, 
where the  RLmin of − 50.83 dB and effective bandwidth of 
6.8 GHz was obtained. By adjusting the rounds of electro-
less plating, the conductive loss and polarization/magnetic 
loss of CONA exhibit opposite trends, as describing like the 
story of “The Hare and the Tortoise”. Moreover, a flexible 
β-chitin/carbon nano-onions/Ni–P film (CONF) was also 
fabricated via similar method and shows outstanding elec-
tromagnetic interference (EMI) shielding (66.66 dB) and 
photothermal integrally. Overall, this work put forward an 
interesting construction in developing highly efficient mul-
tifunctional EMW response materials with boosted MWSE 
from aspect of increasing the heterogeneous interface area, 
providing a guiding pathway for the follow-up works.

2  Experimental

2.1  Materials

All chemicals including stannous chloride  (SnCl2), lead 
chloride  (PbCl2), sodium hypophosphite  (NaH2PO2·2H2O), 
nickel (II) sulfate hexahydrate  (NiSO4·6H2O), trisodium 
citrate  (Na3C6H5O7·2H2O), ammonium chloride  (NH4Cl), 
ammonium hydroxide  (NH4OH) sodium hydroxide (NaOH), 
hydrochloric acid (HCl), and acetic acid  (CH3COOH) were 
purchased from Sinopharm Chemical Reagent Co., Ltd., 
Beijing, China. Squid pen was purchased from supermarket 
nearby. CNO was purchased from Nanjing Mingchang New 
Material Co. All chemical reagents used as received without 
further purification.

2.2  Preparation of β‑Chitin Dispersions

The squid pen was firstly washed with deionized water and 
clipped into small slices of 0.5 × 1  cm2. 5 g squid pen was 
immersed in 1 mol  L−1 HCl aqueous solution for 1 h with 
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continuous stirring to remove minerals. Then, the obtained 
produce was dispersed in 500 mL of aqueous solution con-
taining 20% ethanol and stirred for 12 h to exclude the lipids. 
After washing with deionized water until the pH is neutral, 
products were dispersed to 2.5 M NaOH solution and stirred 
for another 12 h to exclude the protein, obtaining the pri-
mary β-chitin. After washing with same washing process, 
the above primary β-chitin go through a protonated process, 
where product was immersed into 4% acetic acid solution 
and stirred for 12 h. Finally, a wet grinder was employed to 
grind the primary β-chitin twice to fabricate refined β-chitin 
dispersions.

2.3  Preparation of COA

The pure β-chitin aerogel (CA) was prepared in a freeze 
drying, where 10 mL β-chitin dispersions (5 mg  mL−1) was 
placed in the refrigerator for 12 h and then freeze-dried 
at − 80 °C for 2 days. For preparing β-chitin/CNO aero-
gel (COA), the obtained CA were further coated by CNO 
through an electrostatic adhesion approach. Typically, CA 
was immersed into CNO solution (500 mg CNO and 100 mL 
deionized water) and placed in a shaker for 1 day. At last, the 
wet β-chitin/CNO composite was placed in the refrigerator 
for 12 h and then freeze-dried at − 80 °C for 2 days, obtain-
ing COA.

2.4  Preparation of CONA

The CONA were synthesized via electroless plating method, 
and the preparation process is similar to COA except for the 
final freeze drying. The wet β-chitin/CNO composite was 
firstly was dispersed into a mixed solution  (SnCl2 2 g;  H2SO4 
10 mL; deionized water 90 mL) with ultrasonic vibration 
for 15 min. Then, the treated product was dispersed into 
a mixed solution  (PbCl2 0.025 g; HCl 0.25 mL; deion-
ized water 99.75 mL) with ultrasonic vibration for another 
15 min. Afterward, the treated product immersed in mixed 
solution  (NaH2PO2·2H2O 1 g; deionized water 100 mL) with 
ultrasonic vibration for 3 min. Finally, the above-treated wet 
β-chitin/CNO composite were subsequently put into 150 mL 
nickel electroless plating solution at 60  °C for 20 min. 
Herein, electroless plating solution was mixed with of 6 g 
 NiSO4·6H2O, 3 g  NaH2PO2·2H2O, 15 g  Na3C6H5O7·2H2O 
and 7.5 g  NH4Cl. The pH value is adjusted to 9 via  NH4OH. 

The electroless plating process is repeated one to three times, 
and the resulting CONA is named as CONA-1, CONA-2, 
and CONA-3, respectively.

2.5  Preparation of CONF

The CONF were synthesized via hot press process and 
following electroless plating method. Typically, 2.5 mL 
β-Chitin dispersions (5 mg   mL−1) and 50 mg CNO are 
stirred and translate to the filtration device to get wet 
β-Chitin/CNO film (COF). Then, the wet COF is placed in a 
Teflon model for hot pressing in place, and COF is obtained 
by drying at 60 °C for 12 h. Afterward, the COF undergo the 
same electroless plating process as CONA. The electroless 
plating process is repeated one to three times, and the result-
ing CONF is named as CONF-1, CONF-2, and CONF-3, 
respectively.

2.6  Characterization

The chemical composition of the samples was character-
ized via X-ray diffractometer (XRD, DX-2700) and use 
Cu-Ka radiation (λ = 1.54 Å). The morphology and micro-
structure were observed with scanning electron micros-
copy (SEM) and transmission electron microscopy (TEM). 
Fourier transform infrared (FTIR) spectra of the samples 
were investigated by FTIR spectrophotometer (The Nicolet 
iN10). The surface composition and valence state of ele-
ments were measured by X-ray photoelectron spectroscopy 
(XPS, Thermo Scientific K-Alpha). A standard four-probe 
station (HPS2524) was investigated for measuring the elec-
trical conductivity of the samples. The photothermal perfor-
mance test was measured under an 808 nm NIR laser system 
with power densities from 0.1 to 0.9 W  cm−2, and the cor-
responded thermal images were captured by infrared thermal 
imaging device (FLIR ONE PRO). The EMW parameters 
measured by a vector network analyzer (VNA, 3672B-S, 
Ceyear). The samples were mixed in paraffin matrix with 35 
wt%, which were shaped into a circular ring with an internal 
diameter of 3.0 mm and external diameter of 7.0 mm. The 
EMI shielding performance of the samples were tested by a 
vector network analyzer (VNA, 3672B-S, Ceyear) utilizing 
the wavelength over the entire frequency range of the X-band 
(8.2−12.4  GHz), and the specific formula is described 
as supplementary material. Radar Cross-Section (RCS) 
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simulation was studied in CST software and described in 
the supporting information detailly.

3  Results and Discussion

3.1  Fabrication and Characterization of CONA 
and CONF

The synthetic processes for five-layered CONA are shown in 
Fig. 1a. In the initial step, the natural squid pen was regularly 
cut into flakelets and immerse into HCl, ethyl alcohol, NaOH 
and CH-COOH for removing minerals, oils and proteins, 
respectively. After following wet grinding and freeze-drying 
treatment, the obtained CA with positive charge electrostatic 
adhered CNO with negative charge, and formed COA that 
process strong coupling interface (detail electrostatic adhe-
sion is proved in Fig. S2). Finally, CONA was fabricated via 
conventional electroless plating. From the digital image of 
Fig. 1b, the porous structure and excellent binding force of 

CA skeleton endowed CONA with lightweight and compres-
sion resistance ability. The as-prepared CONA can stand on 
setaria viridis and tolerate 400 times pressure with its own 
weight. Similarly, CONF was prepared by using β-chitin 
dispersion as mechanical enhancing phase and CNO and 
Ni–P as electromagnetic response layer. After filtration, hot 
pressing, and subsequent electroless plating process, the 
black COF surface developed a silver sheen and the result-
ing CONF exhibits flexible characteristic, as displayed in 
Fig. 1c.

XRD is employed to reveal the crystallographic struc-
tures of the as-obtained composites (Fig. 2a). Typical char-
acteristic peaks appeared in 8° and 20° in pure β-chitin 
and β-chitin/CNO samples, confirming the existence of 
β-chitin. Besides, additional diffraction peak in near 27° 
is coincided with the (006) planes of carbon (JCPDS No. 
26–1076). After the electroless plating step, β-chitin/car-
bon nano-onions/Ni–P composites displayed obvious 
amorphous and nanocrystalline peaks at 44°, 51°, and 76°, 
which were assigned to (111), (200), and (220) planes of Ni, 

(a)

Freeze

drying

CA Dip-coating COA

Onion carbon

Hot
pressing

Extraction Filtration COF

CONA

β-Chitin
dispersion

Squid pen
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CONA
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COF CONF
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Electroless
plating

Freeze
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Fig. 1  a Schematic illustrating the synthetic processes of CONA/CONF; b digital images exhibit the CONA standing on dandelion and com-
pression resistance performance; c digital images display flexible COF and CONF
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respectively (JCPDS 04–0850) [21]. The chemical composi-
tion of β-chitin is further detected by the FTIR, as shown in 
Fig. 2b. CA sample shows characteristic peaks of amide I at 
1633  cm−1, amide II at 1548  cm−1, and C–H at 1372  cm−1, 
which can be ascribed to the β-chitin in accordance with 
previous report [22]. In particular, β-chitin has a coaligned 
molecular chain structure resulting in low hydrogen bond 
interaction. Thus, single characteristic peak at 1633  cm−1 is 
distinguished from bimodal state of α-chitin. The elemen-
tal chemical states of CONA-2 are characterized by XPS 
measurements (Figs. 2c–e and S3). The high-resolution C 
1s spectrum (Fig. 4b) showed CONA with a binding energy 
at 288.1, 285.4, and 284.2 eV, assigning to the C–O, C–N, 
and C–C bands, respectively [23]. The Ni 1s spectra of the 
CONA is fitted into four main peaks at 880.2, 873.4, 861.3, 
and 855.7 eV, which are corresponded to the satellite peaks 
I, Ni  2p1/2, satellite peaks II and Ni  2p3/2, the accompanied 
satellite peaks, respectively [24]. In addition, two peaks at 
132.5 and 129.4 eV are connected with the phosphate spe-
cies and  Pδ−  2p1/2 of phosphides, respectively [23]. This 
result, along with the XRD and FTIR analysis, illustrate 
that the ternary component of β-chitin/carbon nano-onions/
Ni–P is successfully fabricated. According to the result of 

magnetic hysteresis loops (Fig. 2f), the CONA possesses 
a higher saturation magnetization than COA as a result of 
the intrinsic ferromagnetic characteristics Ni–P, which is 
benefited to promote the initial permeability and hence the 
magnetic loss properties [23].

The microstructures of the obtained CONA and CONF are 
characterized by TEM and SEM (Fig. 3 and Fig. S4, S5). As 
elucidated from the high-resolution TEM image in Figs. 3a 
and S4, the distinct lattice fringe clearly demonstrates 
that each CNO, with the size of about ~ 5 nm, possesses 
an onion-like structure that consist of several concentric 
graphite shells. TEM images also unambiguously display 
that plenty of CNO with uniform size are piled and formed 
in each region, thereby increasing the specific surface area 
of the composite layer to a certain extent. For CA, due to the 
sublimation of ice crystals during the freeze-drying process, 
Fig. 3b exhibits the interlinked three-dimensional porous 
structure. After electrostatic adhesion with CNO, the cross-
sections of COA exhibit a rough porous structure with count-
less nanoparticles covering on the β-chitin, and the holes in 
the longitudinal plane became expansion (Fig. 3c–d). Fig-
ure 3e–f reveal the images of CONA-2, where Ni–P layer 
exhibit a coarser and denser distribution on the surface of 
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CA after electroless plating process. As shown in Fig. 3g, h, 
the amorphous Ni–P is a spherical structure with a diameter 
of about 2 μm. Meanwhile, the sufficient contact between 
aerogel and solution during electroless plating facilitates the 
uniform distribution of Ni–P particles on the surface and gap 
of porous structure, which indicates that the two layers are 
well combined. Besides, the densification of Ni–P particles 
increased with the increasing electroless plating rounds. Fig-
ure S5e-f display the SEM images of the CONF-2, confirm-
ing that the CNO is tightly wrapped by β-chitin, accompa-
nied by granular Ni–P on the surface. Moreover, according 
to the cross-sectional image, the thickness is about 82 µm. 
To investigate the distributions of elements in the CONA-2 
and CONF-2, elemental EDS mapping of carbon (C), nickel 
(Ni), and phosphorus (P) are further detected. As shown 
in Fig. 3i the C, Ni, and P elements are uniformly distrib-
uted over the β-chitin skeleton in CONA-2. And an obvious 
sandwich element distribution can be observed in CONF-
2, where Ni intersperses on both sides of C (Fig. 3j). The 
nitrogen adsorption/desorption curve is employed to detect 
the specific surface areas of porous samples. As shown in 

Fig. 3k, the curves of CONA-2 display an IV-type isotherm 
and the calculated specific surface areas 323.44  m2g−1.

3.2  EMW Absorption Performance of CONA

The tendency of the complex permittivity (εr = ε′ − jε″) and 
complex permeability (μr = μ′ − jμ″) with frequency from 2 
to 18 GHz is investigated for the EMW absorbing properties 
of the as-prepared samples. It is well-known that the real 
parts and imaginary parts of EMW parameters stand for the 
storage and the attenuation ability of EMW energy, respec-
tively [25, 26]. It is observed from Fig. 4 that the ε′ values 
of samples display a decreasing tendency in the frequency 
range of 2 to 18 GHz except CA, which is mainly caused 
by the polarization hysteresis phenomenon under reaction 
of high-frequency electric field. Due to intrinsic insulating 
properties, CA has the lowest ε′ and ε″ values, which rep-
resents poorest storage and dissipation capacity with inside 
EMW. Considering the introduction of the CNO with highly 
conductivity, it is reasonable that the COA exhibits boosted 
permittivity due to the reinforcement effect of dielectric 

900(k)

(a) (b)

onion-like carbon

10 nm 300 µm 500 µm 30 µm

5 µm50 µm500 µm

C

Ni P C

Ni

Sandwich structure

5 µm

(c) (d)

(e) (f) (g)

(i) (j)

(h)

750

600

450

300

150

0
0.0 0.2 0.4 0.6 0.8 1.0

Relative pressure (P/P0)

Sbet = 323.44 m2 g-1

CONA-2

Am
ou

nt
 a

ds
or

be
d 

(c
m

3  S
TP

 g
−1

)

Fig. 3  a TEM images of CNO; SEM images of b CA, c‑d COA, and e–h CONA-2; EDS of C, Ni, and P elements of CONA-2 i and EDS of C 
and Ni elements of CONF-2 j; k  N2 adsorption/desorption isotherms of CONA-2



 Nano-Micro Lett. (2022) 14:8585 Page 8 of 18

https://doi.org/10.1007/s40820-022-00804-w© The authors

loss, whose ε′ and ε″ values vary from 22.14 and 21.02 at 
2.0 GHz to 6.25 and 8.23 at 18.0 GHz, respectively. How-
ever, absorber with excessive permittivity will cause reflec-
tion of contacted EMW on the surface instead of accessing 
to the interior, thereby impeding subsequent EMW response. 
After electroless plating, as exhibited in Fig. 4c–e, CONA-
1, CONA-2, and CONA-3 exhibit optimized and tunable 
permittivity in the frequency range of 2.0–18.0 GHz. With 
the increased rounds of electroless plating, both the ε′ and 
ε″ values show a decreasing dependence, implying that the 
conductivity of amorphous Ni–P is lower than that of CNO. 
For example, CONA-1 presents the highest ε′ and ε″ values 
that gradually decrease from 16.12 and 13.62 at 2.0 GHz to 
4.45 and 2.88 at 18.0 GHz, respectively. When more Ni–P 
particles grow on the surface of CNO, ε′ values of CONA-2 
and CONA-3 are prospectively varied from 9.22 to 5.04 and 
from 6.82 to 3.20, respectively, and the corresponding ε″ 
values are decreased from 6.19 to 2.82 and from 1.85 to 
0.63, respectively. Based on acknowledged dielectric theory, 
the dielectric loss is mainly determined by conductive loss 
and polarization loss [27, 28]. The former generally gener-
ates from the energy transformation from electrical energy 
formed by charge migration to heat energy in dielectric loss 
medium, and later usually comes into being from MWSE 

or dipole polarization when the polarization of the dielec-
tric lags behind the applied EM field. The conductivity is 
proportional to ε″ according to the free-electron theory 
(ε″ = σ/2πfε0) [29]. Herein, one can find that the conductivity 
of the samples is in the order of COA > CONA-1 > CONA-2 
> CONA-3 > CA, that is, their intrinsic conductive loss is in 
the same order. The coating of CNO layer over CA achieve 
electric transportation throughout the 2D β-chitin laminas 
by migrating in conductive channels, and a 3D conductive 
network is further built via CA as a skeleton. The addition 
of Ni–P particles with relatively low conductivity disrupts 
the balance of the current network, thus forcing charges to 
consume more energy to overcome these “barriers”. There-
fore, the samples’ ability to convert EM energy into heat 
through conductive loss is significantly reduced, and this 
phenomenon becomes more significant as the number of 
absorbed particles increases. Besides, polarization loss is 
another crucial factor that is expressed by Cole–Cole semi-
circle model [30, 31]:

and the ε′ and ε″ can be deduced into:
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�s , �∞ , and � stand for the static dielectric constant, the 
dielectric constant at infinite frequency and the polariza-
tion relaxation time, respectively. In the ε’-ε’’ curves, the 
leftward standard semicircles area represents the polariza-
tion loss and the “tail” at the rightward area suggests con-
ductive loss on the basis of Liu’s work [32].The strength of 
the Debye dipolar relaxation and conductive loss is deter-
mined by the number/radius of semicircles, and the length 
of the “tail”, respectively [33]. When taking a close look in 
Fig. 4f, it is obvious to find out that the numbers of semi-
circles surge from CA to COA and from COA to CONA-1, 
further increasing as the electroless plating rounds intensify. 
Boosted Debye dipolar relaxation is a sign that MWSE is 
acting a dominant role in polarization loss, which can be 
explained by as-mentioned PNM model. In the heterostruc-
tures, the difference of electronegativity between two materi-
als will generate a capacitor-like structure, forming built-in 
electric fields and space charge regions, which influences 
charge transport and movements of interfacial dipoles [34]. 
When the assembled interfacial dipoles amplify the response 
to alternate EM field and thus contribute to EMW absorbing 
ability. The “tail” gradient on the ε’-ε’’ curves of samples 
firstly increase and then decreases with the increased round 
number of electroless plating. The absence of the tail for CA 
and the small slope of CONA-3 indicate the poor conductiv-
ity, being in keeping with the previous rule of conductive 
loss.

Figure 5a–f display the EMW absorption performance of 
aerogel samples in the frequency range of 2.0–18.0 GHz, 
which was depicted by following formula [35]:

Among them, Z0, Zin, d and c refer to the impedance of 
free space, impedance of the absorber, absorber thickness, 
and velocity of light, respectively. Besides, RL <  − 10 dB 
suggests that the absorber can attenuate 90% EMW, and the 
corresponding frequency range is called effective absorption 
bandwidth (EAB). From Fig. 5a–b, as for the CA and COA, 
from the intuitive information, it can be observed that RL 

(2)�
� = �∞ +

�s − �∞

1 + (2�f �)2

(3)�
�� = �∞ +

2�f �(�s − �∞)
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j(2�fd
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(5)RL(dB) = 20 log
|||
(
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)
∕
(
Zin + Z0

)|||

at all thickness are higher than −10 dB due to its insulation 
characteristics and impedance mismatch, respectively, which 
indicates the poor EMW response ability. Due to the uni-
form dispersion of magnetic Ni–P particles during electro-
less process, CONA-1, CONA-2, and CONA-3 display the 
improved RL and EAB value. The multilayer CONA-1 sam-
ple exhibits a  RLmin value of − 35.8 dB at 14.0 GHz at only 
a 2.30 mm thickness (Fig. 5c). And at the same thickness 
of 2.30 mm, the EAB of CONA-1 reaches up to 7.1 GHz 
(10.9–18.0 GHz), which reveals the ultrawide EMW absorp-
tion performance. For the CONA-2 composite with growing 
amorphous Ni–P shell, its bottommost RL peak at 9.0 GHz 
climb to − 50.8 dB at the thickness of 2.67 mm and the cor-
responded EAB reach 6.6 GHz (9.4–16.0 GHz), suggesting 
superior EMW absorption capability (Fig. 5d). When fur-
ther increasing the round of the electroless plating, the final 
EMW performance of CONA-3 present a downward trend, 
where the widest EAB of 2.4 GHz and the  RLmin value of 
−19.3 dB at 3.5 mm are achieved (Fig. 5e). Among the Ni–P 
coated absorbers, it can be concluded that CONA-2 exhibits 
the lowest  RLmin and the EAB covers 83% of the measuring 
frequency when the matching thickness is tuned from 0.5 to 
5.0 mm (Fig. 5f). Furthermore, the frequency corresponding 
to the lowest RL peak moves to the low frequencies with 
the increased of thickness, which can be well in accordance 
with the quarter-wavelength model (Fig. S8). When the 180° 
phase difference between the incident and reflected EMW 
in the absorber generates, the induced interference leads to 
the total offset of the reflected EMW at the absorber–air 
interface [32]. The  RLmin, EAB and matching thickness 
characteristics of representative aerogel materials with simi-
lar porous structure reported in recent literature are shown 
in Fig. 5g to comprehensively assess the EMW absorption 
performance of CONA 2 (detail in Table S1) [36–45]. It is 
noteworthy that CONA 2 assuredly achieve powerful RL and 
broad EAB in thin matching thickness, exhibiting prominent 
advantages to those reported EMW absorbers. Furthermore, 
the RCS simulation is adopted to evaluate EMW absorption 
performance of samples under actual application situations 
by the CST microwave software [46]. The double layered 
simulation model is composed of the as-prepared samples 
layer with 2.67 mm and perfect electric conductor (PEC) 
layer with 5.00 mm (Fig. S9). For Fig. 5h, the RCS distribu-
tion on the Y − O − Z surface between -90°-90° is illustrated 
and the corresponding RCS reduction is achieved by sub-
tracting the samples layer with the PEC layer. In addition 
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to the CA, the vertical reflected intensity of the samples is 
weaker than that of pure PEC, implying that EMW signal 
can be attenuated by the coating absorbing layer. In particu-
lar, it can be demonstrated that the CONA-2 displays the 
highest RCS reduction value (16.06 dB  m2) at 0° than that 
of other aerogels, which is in accordance with the EMW 
absorption results that are deduced by transmission line 
theory. In other words, when the substrate plane is coated 
with the CONA-2, the incident EMW energy will profitably 
dissipate.

To appraise the internal EMW absorption capacity of sam-
ples, two conditions, including attenuation constant (α) and 
impedance matching, are clearly illustrated in Fig. 6. α is 

related to the EMW energy assimilated by the absorber and 
impedance matching is associated with the degree that EMW 
propagates the inside of the absorber, which are evaluated by 
the following formulas [47, 48]:

where M and K parameter are calculated by the EM param-
eters and detailly descripted in Supporting Information (for-
mula S1). The large area with delta value ( ▵ ) between 0 and 
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0.4 represents a satisfactory degree of impedance matching 
[49, 50]. By calculation, it is obvious that α of tested aero-
gels is in the order of COA > CONA-1 > CONA-2 > CONA
-3 > CA (Fig. 6a) that follows the same rule of ε″, indicating 
that elevated conductive loss is beneficial to the attenua-
tion of EMW energy. However, owing to the superfluous 
reflection of EMW in high conductivity material, seriously 
impedance mismatching happens and lead to a poor EMW 
absorption property. The ▵ values of samples at different 
thicknesses are calculated and showed in Fig. 6b–f. As a 
comparison, the impedance matching area of the CA and 
CONA-3 is almost negligible, and most of them are higher 
than 1 in the entire frequency range, revealing the imped-
ance mismatching condition. On the contrary, CONA-1 and 
CONA-2 display enlarged area where more ▵ values close 
to zero, indicating an appropriate impedance matching con-
dition. It is supposed that MWSE engineering with hier-
archically coating lower conductive layer harmonizes the 
huge impedance gap between the CNO and air, leading to 
smooth channel for EMW transmission internally. All these 
inferences mentioned above certify that the CONA-1 and 
CONA-2 with integrated attenuation capability and imped-
ance matching are considered as significant factors for our 
samples as an ideal EMW absorber.

According to the previous elaboration of the EMW 
parameters and the EMW absorption performance, Fig. 7 

illustrates the cogitative EMW absorption mechanism, 
which includes the conductive loss, MWSE, dipole 
polarization, multiple reflection loss and magnetic loss. 
Firstly, as one of zero-dimensional carbon cluster, con-
ductive CNO act as a dominant part in the generation of 
the conductive network in the 3D β-chitin aerogel skel-
eton, where EMW energy is converted into heat energy 
and consumed [51]. Second and most important, boosted 
MWSE derives from heterogeneous interface between 
different layers, such as β-chitin-CNO, CNO-Ni–P, and 
several boundaries inside Ni–P, generating heterojunction 
capacitance to response with EMW due to unliked dielec-
tric properties [52]. The uneven distribution of positive 
and negative charges on the interface will generate spatial 
electric dipole moment and polarization relaxation, thus 
strengthening dielectric loss. On basic of PNM model, 
rational structural design and heterointerface engineer-
ing immensely optimize the area of heterogeneous inter-
face through core strategies, containing porous skeleton, 
nanostructures and multilayer construction. Moreover, 
large amounts of defects, functional groups, and dan-
gling bonds locate are located in β-chitin, CON or Ni–P, 
where these dipoles play as polarization centers for dipole 
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polarization loss. Thirdly, countless cavities in the β-chitin 
aerogel framework not only facilitates the filling of air that 
would enhance the impedance matching, but also act as 
dihedral angles to lengthen the propagation way of EMW, 
as well as assisting the multiple reflection of inside EMW 
[53]. Fourth, Ni–P particles, as a ferromagnetic medium, 
offer magnetic response under the alternating EM fields. 
Magnetic loss, including resonance and eddy current loss, 
is offered by magnetic Ni–P, which perform as a ferro-
magnetic medium to induce magnetic response under the 
alternating EM fields [54]. Evidently, fluctuated  C0-f curve 
means that the natural resonance and exchange resonance 
happen simultaneously at high or low frequencies, accom-
panying with eddy current loss in whole measured fre-
quency range (Fig. S10) [55]. And the moderate electrical 
conductivity of the outermost Ni–P layer also helps easing 
the reflection of EMW and thus promoting the absorp-
tion to a great extent. Finally, it’s worth noting that the 
conductive loss, MWSE and magnetic loss can be con-
trolled by adjusting the rounds of electroless plating. To 
be specific, when the rounds of electroless plating close 
to zero, the conductivity loss s plays a dominant role as 
a result of the few Ni–P coating on the surface of CNO 
layer. As the number of rounds increased, the MWSE and 
magnetic loss improved dramatically due to the strength-
ening of Ni–P-CNO interfaces, which in formed a sharp 
contrast with the degressive conductivity, thus leading to 

a shift in dominance. The whole process seems like the 
story of “tortoise and the Hare” in Aesop’s fable, where 
the tortoises are magnetic loss and MWSE while the hare 
is conductive loss.

3.3  EMI Shielding Performance of CONF

Figure 8 displays the conductivity (σ) and EMI shielding 
performances of the CONF, which is also prepared with 
β-chitin, CNO and Ni–P as constitutional component. In 
addition, the specific thickness of each film is given in 
Table S2. The luminous LED lights in digital image indi-
cate the low resistivity of CONF-2 (Fig. 8a). For Fig. 8b, 
the σ of the pure CF is close to 0, and the slightly improved 
σ (2.6 S  m−1) of COF is almost unchanged compared with 
the pure CF. After the treatment of electroless plating, the 
films covered with crescent Ni–P exhibit rapidly decreasing 
resistivity, and the σ of CONF-1, CONF-2, and CONF-3 
progressively grow to 10, 33, and 125 S  m−1, respectively. 
In view of close correlation between σ and EMI shield-
ing performance, the total shielding effectiveness  (SET) in 
X-band inherits a similar tendency with σ, which is also 
explained with Simon’s formula [56]. From Fig. 8c, it is eas-
ily found that the pure CF basically fails in obtaining EMI 
shielding performance. The combination of CNO slightly 
improves the  SET value of COF (10.0 dB), but the finite 
elevation still meets the actual requirements unsuccessfully 
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(at least 20 dB). For the electroless plating of amorphous 
Ni–P layer, the  SET of CONF-1 significantly increases to 
30 dB. With the rise in the round of electroless plating, the 
 SET of the CONF-2 and CONF-3 sequentially increase to 
51.9 and 66.6 dB, respectively, thus reaching the maximum 
6 times of EMI shielding efficiency than COF. Generally 
speaking, EMI shielding performance is divided into the 
reflection  (SER) part and absorption  (SEA) part, which cor-
responds to the charge migration, polarization relaxation, 
magnetic response and multiple reflection [57, 58]. As 
shown in Fig. 8d, a huge promotion of  SER is discovered 
from COF to CONF-1, implying that the outermost layer of 
Ni–P enhances the reflection of the film to EMW, so it plays 
an important role in ameliorating the shielding performance. 
Besides, a similar reinforcement also occurs in  SEA because 
electromagnetic coupling network from magnetic Ni–P layer 
and conductive CNO layer also enhances EMW absorption. 
With the increase of electroless plating rounds,  SER fluctu-
ates almost at a similar value about 13 dB while  SEA keeps 
rising. According to average EMI shielding parameter in 
X-band, the  SEA is always higher than the  SER, suggest-
ing an absorption dominant EMW shielding mechanism 
(Fig. 8f). Overall, as CNO is wrapped by β-chitin in the 
process of hot pressing, the continuous conductive network 
is limit to a certain extent, which is reflected in the low EMI 

shielding performance of COF. Under the circumstances, 
CNO with large specific surface areas induce boosted hetero-
geneous interface with β-chitin nearby, making great contri-
bution to the MWSE and following EMW energy response. 
Afterward, magnetic component modified CONF further 
strengthen the MWSE via interaction between β-chitin and 
Ni–P particles, which is also essential for concomitant mag-
netic loss and intensifying reflection. In addition, according 
to the principle of Tesla coil, a homemade wireless power 
transmission system is set as a typical example for EMI 
shielding effect visually, where the tunable light/off LED 
proves efficient EMI shielding performance of CONF-2 in 
50 Hz (Fig. 8g and Movie S1).

3.4  Thermal Management of CONA and CONF

Nowadays, the multifunction of EMW absorbers/shield 
is required to fulfill the ever-growing demands in complex 
environment and situation, and it is regarded as an advanced 
development direction of new-generation EMW materials 
[59]. Among them, thermal management, including joule heat-
ing, thermal conduction/insulation, photothermal and infra-
red stealth, attracts our eyes for its characteristic of energy 
storage and environmental protection [60–62]. Herein, the 
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thermal insulation and photothermal property of CONA-2 
and CONF-2 are visually investigated, respectively. Specifi-
cally speaking, CONA-2 is settled on the heating platform 
with setting temperature of 85 °C, and the practical tempera-
ture variation is calibrated in Fig. S1. For Fig. 9a1-d1, the 
top view thermal infrared images of the CONA-2 at 1, 10, 

30, and 60 min are presented. As displayed in top view ther-
mal infrared images (Fig. 9a1-d1), the surface temperature of 
CONA-2 still (thickness = 10 mm) remains unchanged with 
the increased time, and it fluctuates around 40 °C after being 
heated for 60 min, nearly 1/2 of the heating platform tempera-
ture, implying the satisfactory long-term thermal insulating 
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stability of fabricated CONA-2. Additionally, side view ther-
mal infrared images present that the temperature gradually 
decreases from the bottom in contact with the heating plate 
to the ambient temperature at half the thickness (Fig. 9a2-d2). 
The total thermal conductivity of samples depends on ther-
mal conduction, thermal convention and thermal radiation in 
solid medium, gas medium, and radiative heat transfer, respec-
tively. The low density and porous structure of the CONA-2 
encounter an obstruction in thermal transport because air in 
the CONA-2 processes a lower thermal conductivity than the 
solid phase, and thus, CONA-2 can ensure its usage in high 
temperature circumstances, as well as potential infrared stealth 
function. As seen in Fig. 9e, different from the high infra-
red radiation intensity of the bare hand, the color of the hand 
with CONA-2 covered turns red (36.7 °C) to green (29.7 °C), 
making it invisible in infrared detection device. Furthermore, 
photothermal property of CONF-2 is studied under expos-
ing to an 808 nm NIR laser with power densities from 0.1 
to 0.9 W  cm−2, and the measured sample (2.0 × 2.0  cm2) is 
put on the platform. The increase of saturated temperature of 
CONF-2 is not obvious at 0.1 W  cm−2 in comparison of ambi-
ent temperature (Fig. 9f). Whereafter, its saturated tempera-
ture raises with the increased power densities, which reach 
high values of 46, 97, and 131 °C at 0.3, 0.6, and 0.9 W  cm−2, 
respectively. It is noteworthy that CONF-2 can reach and leave 
its saturated temperatures in split second (within 15 s), sug-
gesting excellent photothermal response efficiency. Figure 9g 
reveals the temperature-times curve under the one periodic 
stepwise from 0.1 to 0.9 W  cm−2, and back to 0.1 W  cm−2. It 
clear that a tunable and quick-response photothermal property 
of the CONF-2 is obtained. For further analyzing the reliability 
and long-time stability of CONF-2 as a photothermal equip-
ment, a cyclic heating/cooling test (Fig. 9h) and long-term 
stability test (Fig. 9i) are employed with a power density of 
0.6 W  cm−2. The heating/cooling curve of 1th cycle and 20th 
cycle are almost same and the CONF-2 rises to its saturated 
temperature within 15 s and remains stable over 3400 s, sug-
gesting remarkable photothermal durability. On the one hand, 
CNO processes the characteristics of sp3 and sp2 hybridization, 
π electron cloud, close energy level, wide band gap and broad 
light absorption range, which promotes the absorption of the 
photons in the light wave, thereby causing electrons to undergo 
energy transition. On the other hand, CNO can absorbs photon 
more thoroughly due to its blackness property, and thus con-
verts photo-energy into heat energy efficiently. Besides, the 
EMI shielding performance of the CONF-2 after long-term 

photothermal stability test is measured in Fig. S12, where the 
CONF-2 still holds excellent EMI shielding performance. 

4  Conclusions

In summary, for the first time, a heterointerface engineer-
ing strategy is proposed for obtaining high-efficiency EMW 
absorbing/shielding materials with boosted MWSE. With the 
assistant of PNM model, the squid pen derived β-chitin/carbon 
nano-onions/Ni–P hierarchical aerogel was successfully fab-
ricated by electrostatic assembly and electroless plating tech-
niques. The heterogeneous interface area is optimized to the 
maximum extent due to the porous skeleton, nanostructure and 
multilayer construction on the basic of PNM model. By regu-
lating the round of the electroless plating, the tunable EMW 
parameter and absorption performance are achieved, where 
the  RLmin and EAB of CONA-2 at the thickness of 2.67 mm 
are − 50.83 dB and 6.8 GHz, respectively. The conductive 
loss and polarization/magnetic loss of CONA exhibit oppo-
site trends, as describing like the story of “The Hare and the 
Tortoise”. With similar material composition and preparation 
methods, a flexible CONF was prepared and the EMI shield-
ing in the X-band reach 66.66 dB at a thickness of 82 µm. In 
addition, the hierarchical CONA and CONF also possessed 
excellent thermal insulation and photothermal properties, 
respectively. Our findings provide a unique design perspec-
tive and inspiration for the construction of MWSE boosted 
EMW response materials, as well as the exploration of other 
multifunction to deal with harsh environment.
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