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Separator Wettability Enhanced by Electrolyte 
Additive to Boost the Electrochemical Performance 
of Lithium Metal Batteries

Ying Wang1 *

Lithium (Li) metal has been regarded as one of the most 
promising candidates to replace graphite anode due to its 
high theoretical specific capacity and the lowest electrochem-
ical potential [1–3]. However, the immoderate growth of Li 
dendrite during Li plating/stripping causes serious safety 
problem and poor performance that severely impedes the 
practical application of lithium metal batteries (LMBs) [4–6]. 
Until now, there have been numerous kinds of strategies be 
proposed to inhibit Li dendrites growth and protect lithium 
metal anode such as high concentration electrolytes [7], con-
struction of the solid electrolyte interface layer [8], structural 
design of anode materials [9], regulation of  Li+ solvation 
[10], and solid-state electrolytes [11]. As an important part 
of battery structure, separator plays a vital role in the perfor-
mance of battery [12]. The main function of separator is to 
divide the anode and cathode that prevents internal short cir-
cuit caused by direct contact between anode and cathode. So, 
the separator needs to be electrically insulated. At the same 
time, the separator also needs to ensure that the electrolyte is 
conductive between anode and cathode [13]. Therefore, it is 
necessary to render the separator fully wetted. Nevertheless, 
there are few researches on enhancing the wettability of the 
separator especially functional electrolyte additives.

Recently, Ma’s group conducted a detailed research and 
discussion on the study of separator wettability [14]. They 
employed heptafluorobutyric anhydride (HFA) as a multi-
functional additive to modify the commercial electrolyte (1 M 
 LiPF6 in EC/DMC 1:1). Benefited by the special chain struc-
ture, HFA can serve as the surfactant to promote the wetting 
of separator. Good wettability can make the separator easily 

to be wetted that facilitates the permeation of electrolyte. As 
shown in Fig. 1a, the schematic diagram visually describes the 
effect of different separator wettabilities toward electrolyte on 
 Li+ transportation. The electrolyte must entirely fill the holes 
in the separator so that the channels for  Li+ transferring can be 
built. The poor wettability of the electrolyte will cause some 
invalid channels in the separator that result in uneven  Li+ flux 
for the whole Li metal surface. To assess the wettability, Ma’s 
group carried out the electrolyte uptake test and calculated 
the degree of electrolyte filling. After adding 1.0 wt% HFA, 
the electrolyte can wet the separator immediately, while the 
blank electrolyte forms into a droplet after dropping on the 
surface of the separator, as shown in Fig. 1b. In addition, the 
HFA-contained electrolyte uptake is 92.1%, much higher than 
10.5% for blank electrolyte uptake. The degree of electrolyte 
filling increases from 11.1% in blank electrolyte to 97.3% in 
HFA-contained electrolyte, implying that the holes in separa-
tor have been sufficiently filled to build continuous pathways 
for  Li+ flux. The poor wettability of separator also causes a 
higher resistance, resulting from the blocked paths for  Li+ 
transportation (Fig. 1c). More intuitively, the introduction of 
HFA can reduce the surface tension of the electrolyte, reflect-
ing in the smaller contact angle of electrolyte dropping on the 
separator, from 65.4° in blank electrolyte (Fig. 1d) reduce to 
40.5° in HFA-contained electrolyte (Fig. 1e).

The sufficient  Li+ transport channels can render uniform 
Li-ion flux, making the deposition of the lithium more 
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uniform in the surface of anode. This will inhibit the growth 
of Li dendrites. As shown in Fig. 1f, the Li||Li symmetric 
cells assembled with HFA-contained electrolyte have excel-
lent life performance that steadily cycles more than 320 h 
without severe polarization, while the cells with blank elec-
trolyte rapidly fail only after 120 h. In addition, the surface 
of Li anode after 50 cycles in blank electrolyte is full of 
needle-like Li dendrites (Fig. 1g). In sharp contrast, there is 
no Li dendrite on the surface of anode cycling in HFA-con-
tained electrolyte (Fig. 1h), implying a uniform deposition 
of lithium. Moreover, the addition of HFA also improves the 
cyclic stability performance of Li||NCM622 full cells, ren-
dering higher capacity retention and Coulombic efficiency 
(CE), as shown in Fig. 1i.

In summary, this work from Ma’s group systematically 
and comprehensively explained the influence of separator 
wettability toward battery performance. The study on ion 

flux can also become a new research direction for LMBs to 
inhibit the growth of dendrite. In addition, they proposed 
the concept of electrolyte filling degree in separator, which 
could be a new index to study electrolytes in future.
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Fig. 1  a Schematic illustration of the impacts of separator wettability toward electrolyte on  Li+ transportation. b The photograph of different 
electrolytes dropped on the separator. c EIS result of SS||SS symmetric cells in different electrolytes. d The contact angles on separator for blank 
electrolyte. e The contact angles on separator for 1.0 wt% HFA-contained electrolyte. f The cycle performance of Li||Li symmetric cells in dif-
ferent electrolytes. g SEM image of Li anode after 50 cycles in blank electrolyte. h SEM images of Li anode after 50 cycles in 1.0 wt% HFA-
contained electrolyte. i Cycling performance of Li||NCM622 cells in different electrolytes
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