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HIGHLIGHTS

• The review discusses the key concepts, loss mechanisms and test methods of electromagnetic interference (EMI) shielding.

• The research progress of polymer matrix EMI shielding composites with different structures is detailedly illustrated, especially their 
preparation methods and corresponding evaluations.

• The key scientific and technical problems for polymer matrix EMI shielding composites with different structures are proposed, and 
their development trend are prospected.

ABSTRACT With the widespread application of electronic communica-
tion technology, the resulting electromagnetic radiation pollution has been 
significantly increased. Metal matrix electromagnetic interference (EMI) 
shielding materials have disadvantages such as high density, easy corro-
sion, difficult processing and high price, etc. Polymer matrix EMI shielding 
composites possess light weight, corrosion resistance and easy process-
ing. However, the current polymer matrix composites present relatively 
low electrical conductivity and poor EMI shielding performance. This 
review firstly discusses the key concept, loss mechanism and test method 
of EMI shielding. Then the current development status of EMI shielding 
materials is summarized, and the research progress of polymer matrix 
EMI shielding composites with different structures is illustrated, especially 
for their preparation methods and evaluation. Finally, the corresponding 
key scientific and technical problems are proposed, and their development 
trend is also prospected. 
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1 Introduction

With the rapid development of 5G technology, artificial 
intelligence, Internet of Things, big data and their wide 
applications in unmanned systems, high-speed communica-
tions, industrial internet, future energy, aerospace and other 
fields, the development level of information technology has 
become a reflection of the comprehensive national power. 
However, the electronic devices can generate undesirable 
electromagnetic interference (EMI) to the outside world 
during operation, which not only affects the normal opera-
tion of nearby electronic devices, but also increases the risk 
of related workers suffering from headaches, depression, 
immune deficiency, and other diseases [1–3]. Therefore, 
there is an urgent need for high-efficiency EMI shielding 
materials to attenuate electromagnetic waves to protect the 
normal operation of electronic equipment and human health. 
In this context, devoting to the development of various high-
performance EMI shielding materials has become a research 
hotspot [4–6].

Polymer matrix composites have been widely used in the 
field of EMI shielding due to their low density, corrosion 
resistance, competitive prices and good processability [7, 
8]. However, most of the polymer matrix is inherently insu-
lating, which severely limits the applications in electronic 
products, new energy vehicles, medical equipments, flex-
ible circuit boards and other fields with high EMI shielding 
requirements [9, 10]. Currently, researchers have effectively 
solved the problem of poor EMI shielding performance of 
polymer matrix composites by compounding conductive 
fillers with resin matrix. Meanwhile, carbon nanotubes, 
graphene, metal nanowires/particles, and MXene have been 
widely used as conductive fillers for polymer matrix com-
posites, and the current status of polymer matrix EMI shield-
ing composites based on different types of conductive fillers 
has also been outlined and discussed in detail [11–13].

However, the current polymer matrix composites have 
disadvantages such as low electrical conductivity and poor 
EMI shielding properties compared to the metallic mate-
rials. How to improve the EMI shielding performance of 
polymer matrix composites through efficient structural 
design has become a technical difficulty and scientific prob-
lem that needs to be solved urgently [14]. In addition to the 

significant influences of the amount and type of conduc-
tive fillers on the EMI shielding performance of polymer 
matrix composites, the structural design of composites and 
the distribution orientation of the conductive fillers in the 
resin matrix are equally important. So far, few reviews based 
on different structural types of polymer matrix EMI shield-
ing composites have been reported. Therefore, a compre-
hensive overview of the relationship between structure and 
EMI shielding performance of polymer matrix composites 
can help identify possible research directions to overcome 
the bottleneck of the existing technology and promote the 
further development of polymer matrix composites in the 
field of EMI shielding.

In view of this, the review first discusses the key concepts, 
loss mechanisms and test methods of EMI shielding. Then, 
the current development status of EMI shielding materials 
is totally summarized, and the research progress of polymer 
matrix EMI shielding composites with different structures 
is detailedly illustrated, especially their preparation methods 
and corresponding evaluations. Finally, the key scientific 
and technical problems for polymer matrix EMI shielding 
composites with different structures are proposed, and their 
development trend is prospected, which is expected to pro-
vide some guidance for the design, developments and indus-
trial applications of the high-performance polymer matrix 
EMI shielding composites.

2  Overview of EMI Shielding

At present, the most effective means to eliminate electro-
magnetic radiation pollution is the implementation of EMI 
shielding. EMI shielding means that to cut off or attenuate 
the electromagnetic waves generated by the work of high-
frequency circuits to the outside world. This not only elimi-
nates interference to neighboring electronic equipment and 
radiation to the human body, but also ensures that electronic 
equipment itself is not affected by external equipment [15, 
16]. Due to the rapid development of electrical equipment 
such as satellite communications, radio and television, peo-
ple have been unable to avoid exposure to a wide range of 
electromagnetic radiation pollution in most parts of the 
world [17–19].
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2.1  EMI Shielding Classification

In daily life, the high-precision electronic components and 
human being are often exposed to different kinds of elec-
tromagnetic radiation threats. It is crucial to use effective 
protection measures to shield electromagnetic radiation. 
According to the electromagnetic wave interference sources, 
EMI shielding can be classified as electrostatic field shield-
ing, magnetic field shielding and electromagnetic field 
shielding.

2.1.1  Electrostatic Field Shielding

For the electrostatic field radiation, a conductive cavity can 
be applied to protect the electromagnetic sensitive equip-
ment (external electric field shielding), as shown in Fig. 1a. 
Under the effect of an external electrostatic field, the left 
and right sides of the conductive cavity induce the oppo-
site electric charges with equal intensity. According to the 
principle of electrostatic balance, the conductive cavity is 
an equipotential body with the internal potential difference 
and electric field intensity of zero. Therefore, the electro-
magnetic sensitive equipment inside the conductive cavity 
is protected from the interference of the external electro-
static field. In addition, for the electrostatic field radiation, 
the radiation source can also be shielded by the conduc-
tive cavity to protect the electromagnetic sensitive equip-
ment (internal electric field shielding), as shown in Fig. 1b. 
Under the effect of the charged body inside the conductive 
cavity (generating electrostatic field), the inner surface of 
the cavity induces an equal negative charge opposite to the 
charged body, while the outer surface of the cavity induces 

an equal positive charge. As the outer surface is connected 
to the earth through the ground wire, the positive charge 
induced on the outer surface and the electric field outside 
the conductive cavity disappear, thereby realizing the pro-
tection of electromagnetic sensitive equipment outside the 
conductive cavity [5].

2.1.2  Magnetic Field Shielding

For the shielding of low-frequency magnetic field, the 
shielding cavity with low reluctance is used in parallel with 
the protected space area, and the low-frequency magnetic 
field always tends to pass through the shielding cavity pref-
erentially to realize the shielding protection of the internal 
space in the cavity, as shown in Fig. 2a. The higher perme-
ability results in the lower magnetic resistance of the materi-
als. Therefore, iron, cobalt, nickel and their alloys with high 
magnetic permeability are ideal materials for low-frequency 
magnetic field shielding. For the shielding of high-frequency 
magnetic field, the shielding cavity is used to generate an 
induced current under the external magnetic field, which 
excites an induced magnetic field opposite to the original 
magnetic field. As shown in Fig. 2b, the two magnetic fields 
achieve the shielding of high-frequency magnetic field by 
canceling each other. The high-frequency current in the coil 
generates a high-frequency radiating magnetic field, and the 
induced current in the shielding coil is opposite to that in the 
coil according to Faraday’s law of electromagnetic induc-
tion. Therefore, the magnetic fields generated by the two 
coils are always in opposite directions outside the shielded 
coil, and the shielding of high-frequency magnetic field is 
achieved by canceling each other [5].

(a) (b)

E (V m−1)
Shielding area

Fig. 1  Schematic diagram of EMI shielding mechanism of a external electric field and b internal electric field
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2.1.3  Electromagnetic Field Shielding

In practical applications, most shielding refers to electro-
magnetic field shielding. In the alternating electromagnetic 
field, the shielding of electric and magnetic fields must be 
considered together as the electric field and magnetic field 
always exist simultaneously. The electromagnetic radia-
tion can be divided into near-field and far-field radiation 
depending on the electromagnetic waveform. When the 
distance between the electromagnetic radiation source and 
the shielding body is less than /2 ( is the wavelength of the 
electromagnetic radiation source), it is defined as the near-
field radiation. There is a phase difference of 90° between 
the electric and magnetic fields of electromagnetic waves 
in the near-field radiation. The energy of the electric and 
magnetic fields of electromagnetic waves attenuates as the 
distance between the electromagnetic radiation source and 
the shield increases. If the electromagnetic radiation source 
has a large current with low voltage, the electromagnetic 
radiation source is dominated by a magnetic field. At this 
time, only the magnetic field shielding should be consid-
ered, and the electric field shielding should be ignored. If 
the electromagnetic radiation source has a small current with 
high voltage, the electromagnetic radiation source is domi-
nated by an electric field. At this time, only the electric field 
shielding can be considered, and the magnetic field shielding 
can be ignored. When the distance between the electromag-
netic radiation source and the shielding body is larger than 
/2, it is defined as the far-field radiation. The electric and 
the magnetic fields of the electromagnetic waves in the far-
field radiation have the same phase and are perpendicular 

to each other. Therefore, the electric and magnetic fields 
of the electromagnetic waves have the same energy, and 
their shielding cannot be ignored. According to Maxwell’s 
classical electromagnetic theory, the electric and magnetic 
fields of high-frequency electromagnetic waves are always 
closely linked together to form a unified electromagnetic 
field rather than exist in isolation. Therefore, as long as the 
radiation from the electric or magnetic field is completely 
shielded, the other radiation will no longer exist in practical 
applications.

2.2  Mechanism of EMI Shielding

In order to understand the EMI shielding more intuitively, 
various shielding mechanisms have been proposed, such as 
the eddying effect theory, electromagnetic field theory, and 
transmission line theory. Among these, the transmission line 
theory has been most widely recognized [20–22]. The trans-
mission line theory means that the electromagnetic waves 
passing through the shielding materials will be affected by 
three different shielding mechanisms, including the reflec-
tion, absorption and multiple reflection. Specifically, when 
the electromagnetic waves are incident on the surface of the 
shielding materials, the electromagnetic waves are reflected 
due to the impedance mismatch between the shielding 
materials and the external free space. The unreflected elec-
tromagnetic waves enter the inside of the shielding materi-
als and are continuously attenuated by dielectric loss and 
magnetic loss. In addition, the electromagnetic waves can 
be dissipated through multiple reflections at the interface 
inside the materials. The residual electromagnetic waves will 

)b()a(
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Fig. 2  Schematic diagram of EMI shielding mechanism of a low-frequency magnetic field and b high-frequency magnetic field
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pass through the shielding materials and become transmitted 
waves [11, 23]. The EMI shielding mechanism is shown in 
Fig. 3.

The attenuation or loss of electromagnetic waves is one 
of the key indicators for the materials to evaluate the abil-
ity of shielding electromagnetic waves. It can qualitatively 
describe the difference in electromagnetic wave intensity 
before and after the shielding process. EMI shielding effec-
tiveness (EMI SE, unit: dB) can be used to quantitatively 
evaluate the ability of materials to shield electromagnetic 
waves. It is defined as the ratio of the electric field strength 
(E), magnetic field strength (H) or power (P) of the elec-
tromagnetic waves before entering the shielding materials 
and those after passing through the shielding materials, 
expressed as Eq. 1 [7, 24]:

In Eq. 1, the subscripts i and t represent the incident elec-
tromagnetic waves and transmitted electromagnetic waves, 
respectively. Ei, Hi, and Pi represent the incident electric 
field, magnetic field and power intensity respectively, while 
Et, Ht, and Pt represent the transmitted electric field, mag-
netic field, and power intensity, respectively. According to 
Schelkunoff theory, EMI SE is defined as the sum of three 
shielding mechanisms including reflection  (SER), absorp-
tion  (SEA) and multiple reflections  (SEM) for attenuation of 
electromagnetic waves by shielding materials.

In Eq. 2,  SER,  SEA and  SEM can be calculated by Eqs. 3–5:

where, σr is the relative electrical conductivity, μr is the rela-
tive magnetic permeability, f is the frequency of electromag-
netic waves (Hz), t is the thickness of the shielding materials 
(m), δ is the skin depth (m), and r is the distance from the 
radiation source to the shielding materials (m). From Eq. 5, 
 SEM and  SEA are correlated with each other.  SEM plays a 
crucial role in the geometric morphological structures. 

(1)SE = 20 lg

(
Et

Ei

)

= 20 lg

(
Ht
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)

= 20 lg

(
Pt
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)
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(
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(
1 − 10
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)

However,  SEM can be neglected for relatively thick shielding 
materials, as the amplitude of electromagnetic waves is neg-
ligible when they reach the second boundary of the shielding 
materials. In other words, when the  SEA of the shielding 
materials is ≥10 dB, the  SEM can be neglected [12]. It can 
also be seen from the equation that  SER is inversely related to 
f and μr, and positively related to σr.  SEA is positively related 
to the t, f, μr, and σr of the shielding materials. Therefore, 
the increase of magnetic properties can improve the  SEA and 
reduce the  SER of the shielding materials. The increase of 
electrical conductivity can simultaneously improve  SER and 
 SEA of the shielding materials, thereby enhancing their EMI 
shielding performances [25, 26].

2.3  Test Methods for EMI Shielding

For the tests of EMI SE in the near-field and far-field radia-
tion, the researchers developed the corresponding shielded 
room method and the network analyzer method, as shown in 
Fig. 4a, b respectively. The shielded room method is a com-
mon technique used for the near-field EMI SE measurement. 
The test process is as follows: A specific test window is 
opened on the wall of a shielded room made of metal plates, 
and electromagnetic wave transmitters and electromagnetic 
wave receivers are placed on opposite sides of the test win-
dow, respectively. The signal intensity of the electromag-
netic waves with the test window free of the materials (elec-
tric field strength E0, magnetic field strength H0 or power 
P0) and the signal intensity of the electromagnetic waves 
with the test window covered by the materials (electric field 

Incident wave
Shielding material

Primary reflex

Secondary reflex

Tertiary reflex

Primary
transmission

Secondarytransmission

Tertiary
transmission

Multiple
reflections

Fig. 3  Schematic diagram of EMI shielding mechanism based on 
transmission line theory
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strength E1, magnetic field strength H1 or power P1) are both 
tested. Thereby, the ratio of the two kind of received sig-
nal intensity is used as the EMI SE of the test materials, as 
shown in Eq. 6 [2]:

The network analyzer method is a common technique 
used for the far-field EMI SE measurement. The EMI SE in 
the far field can be calculated by the measured S-parameters 
(S11, S21, S22, S12) from a vector network analyzer, where 
Sij indicates the transmission from port j to port i. Based 
on the S-parameters, the reflectance (R), absorbance (A) 
and transmittance (T) can be calculated by Eqs. 7, 8, and 9, 
respectively [3]:

SET,  SER and  SEA can be obtained by calculating R, A and 
T as shown in Eqs. 10, 11, and 12, respectively:

(6)SE = 20 lg
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= 20 lg

(
H0
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= 20 lg

(
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(7)R = ||S11||
2
= ||S22||

2

(8)T = ||S12||
2
= ||S21||

2

(9)A = 1 − R − T
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(
1

T

)
= 10 lg

(
1

||S12||
2

)

(11)SER = 10 lg
(

1

1 − R

)
= 10 lg

(
1

1 − |
|S11

|
|
2

)

3  Classification of EMI Shielding Materials

The shielding technology plays a vital role in controlling 
or reducing the electromagnetic radiation pollution, among 
which high-performance EMI shielding materials are the 
key to the realization of shielding technology [27, 28]. 
According to the EMI SE values, EMI shielding materials 
can be divided into various categories: (a) low-level shield-
ing materials (10–30 dB), which can be used in low-end 
shielding applications; (b) medium-level shielding materials 
(30–60 dB), which can meet most industrial-grade shield-
ing needs; (c) high-level shielding materials (60–90 dB), 
which can meet the shielding needs of the military industry 
and aerospace fields; (d) high-precision shielding materi-
als (>90 dB), which can meet the shielding needs of high-
precision and high-sensitive precision electronic devices 
[11, 29]. According to the matrix, EMI shielding materials 
can be divided into metallic EMI shielding materials, mag-
netic EMI shielding materials and conductive polymer EMI 
shielding materials. In order to obtain a more comprehen-
sive understanding of EMI shielding materials, this section 
provides a brief classification and overview of current EMI 
shielding materials.

(12)SEA = 10 lg
(
1 − R

T

)
= 10 lg

(
1 − |

|S11
|
|
2

|
|S12

|
|
2

)

)b()a(
Shielded room

Receiving
antenna

Receiver

Test window

Emitter

Transmitting
antenna

Test materials
Vector network
analyzer (VAN) Ring flange

Waveguide cavity
Test materials

Coaxial-cable

Fig. 4  Schematic diagram of the test principle of a shielded room method and b network analyzer method
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3.1  Metallic EMI Shielding Materials

Conventional metallic materials (e.g., metal sheets, metal 
blocks, and metal foams, etc.) have been widely used in the 
field of EMI shielding due to their high electrical conductiv-
ity [30–32]. Park et al. [33] prepared the NiFe/Cu multilayer 
sheets by a DC magnetron sputtering technology. The results 
show that the 4 μm thick NiFe/Cu multilayer sheets have a 
batter EMI SE of 90 dB compared with the single-component 
Cu or NiFe sheets in the frequency range of 0.7–10 GHz, 
owing to the multiple reflections of electromagnetic waves 
between the interfaces of NiFe/Cu multilayer sheets. Sam-
byal et al. [34] synthesized the FeSiAl sendust/metal hybrid 
materials with magnetic cores and highly conductive metal 
shells by electroless plating Ag or Ni metal on the surface 
of FeSiAl sendust. The results show that the FeSiAl sendust 
coated with Ag and Cu exhibits an absorption-dominated 
EMI SE of 65 and 58 dB, respectively, in the frequency range 
of 300 kHz–10 GHz. Song et al. [35] used the coaxial cable 
method to fabricate the EMI SE of AZ31 sheets (Mg-3 wt% 
Al-1 wt% Zn) with different texture strengths. The results 
show that the EMI SE of the AZ31 sheets reaches 72–98 dB 
in the frequency band of 30–1500 MHz. Although the metal 
materials exhibit ultra-high EMI shielding performance, their 
shallow skin depth leads to the high reflectivity of electro-
magnetic waves, causing the secondary radiation pollution in 
the environment. In addition, the metal materials have disad-
vantages such as high density, expensive, easy to corrode and 
difficult to process, which greatly limit their wider applica-
tions. Moreover, the metal materials usually show magnetic 
and wave leakages at the joints, which will seriously affect 
their EMI SE [36–38].

3.2  Magnetic EMI Shielding Materials

According to the classical electromagnetic theory, the mag-
netic materials can shield the electromagnetic waves mainly 
through the hysteresis loss, eddy current loss, domain wall 
resonance, ferromagnetic resonance, and natural resonance 
mechanisms [39, 40]. Common magnetic shielding materi-
als are mainly divided into two categories: the metal alloy 
materials based on iron, cobalt, nickel, etc., and the metal 
oxide materials such as carbonyl iron, carbonyl nickel, fer-
rite, and garnet [41, 42]. Fei et al. [43] prepared the zeolitic 

imidazolate framework-67/cellulose nanofiber (ZIF-67/
CNF) aerogel via the directional freeze-casting technique, 
and then obtained magnetic Co/C@CNF aerogel by the high-
temperature thermal reduction. The results show that the 
EMI SE of the magnetic Co/C@CNF aerogel after thermal 
reduction at 900 °C reaches 35 dB. Ren et al. [44] prepared 
the graphene nanosheets/carbonyl iron-nickel alloy/cyanate 
ester (GNSs/CINAP/CE) composites by the combination of 
solution blending and hot pressing. The results show that the 
EMI SE of the GNSs/CINAP/CE composite reaches 55 dB 
when the contents of CINAP and GNSs are 20 wt% and 5 
wt%, respectively. Luo et al. [45] used the electroless plating 
and spraying techniques to coat silver (Ag) nanoparticles, 
ferroferric oxide  (Fe3O4) nanoparticles and polydimethylsi-
loxane (PDMS) on the surface of polypropylene (PP) fabrics. 
The EMI SE of the obtained PP@Ag@Fe3O4@PDMS fabric 
reaches 56 dB. The magnetic metal materials generally have 
high magnetic permeability and strong saturation magnetiza-
tion, and are suitable for the radiation shielding in the field 
of high-frequency weak electric field or low-frequency mag-
netic field. In addition, among many loss mechanisms, only 
natural resonance loss can dissipate electromagnetic waves 
in the GHz band. Thus, the magnetic materials have some 
limitations in practical applications, so they are usually used 
in combination with conductive materials [46–48].

3.3  Conductive Polymer EMI Shielding Materials

Compared with the traditional metal materials, the con-
ductive polymer materials developed in recent years have 
become more promising alternatives for EMI shielding due 
to their high specific strength, corrosion resistance, low cost, 
and easy processing [49–51]. Depending on the conductive 
mechanism, the conductive polymer materials used for EMI 
shielding can be divided into two categories: One is the 
intrinsic conductive polymer materials, and the other is the 
composite conductive polymer materials [52–54].

3.3.1  Intrinsic Conductive Polymer Materials

The matrix polymer of intrinsic conductive polymer mate-
rials possesses conductive ability, such as polypyrrole 
(PPy), polyaniline (PANI) and polythiophene (POT) [55]. 
Qiu et al. [56] prepared PANI doped with hydrochloric 
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acid (PANI-HCl), PANI doped with camphorsulfonic acid 
(PANI-CSA), and PANI doped with phosphoric acid (PANI-
H3PO4). It is noted that the PANI-CSA exhibited the high-
est σ and EMI SE of 1.28 S  cm−1 and 21 dB, respectively, 
owing to the more complete oxidation, higher crystallinity 
and larger crystal size. Muller et al. [57] prepared poly-3, 
4-ethylenedioxythiophene/bacterial cellulose nanofiber com-
posite films by in-situ chemical oxidation method, with the 
σ up to 1.5 S  cm−1. Currently, the conductivity of intrinsic 
conductive polymer materials is relatively low, and the prep-
aration process is complicated. The process often requires 
the introduction of some high-cost and corrosive dopants 
through chemical methods. Moreover, the modified conduc-
tive polymer materials generally have the disadvantages of 
poor stability, high rigidity and difficulty in melt, thus lead-
ing to the difficulties in the later processing and molding 
processes [58–60].

3.3.2  Filled Conductive Polymer Composites

The filled conductive polymer composites refer to multi-
phase composite system with conductive/EMI shielding 
functions prepared by compounding the polymer matrix with 
conductive fillers. The filled conductive polymer composites 
can be used as polymer matrix EMI shielding composites. 
The commonly used polymer matrixes include polyvinyl 
alcohol (PVA), polyethylene (PE), polylactic acid (PLA), 
polyurethane (PU), etc. [61–63]. The conductive fillers are 
mainly divided into three categories: carbon-based fillers 
such as graphite, reduced graphene oxide (rGO), multiwalled 
carbon nanotubes (MWCNTs), carbon black (CB), metal-
based fillers such as silver nanowires (AgNWs), copper 
nanosheets (CuNSs), aluminum powder, composite fillers 
such as transition metal carbon/nitride grafted with ferric 
oxide (MXene@Fe2O3), graphene grafted with ferroferric 
oxide (rGO@Fe3O4), silver-plated carbon fiber [64–66]. 
Liang et al. [67] prepared the graphene/epoxy composites 
by doping functionalized graphene into epoxy resin matrix 
by a solution blending method. The results show that the 
graphene/epoxy composite shows a σ of 0.1 S  cm−1 and 
an EMI SE of 21 dB when the content of graphene is 15 
wt%. Li et al. [68] embedded a copper-plated graphene 
fiber mesh into the PDMS film, and the results showed that 
the σ and EMI SE of PDMS film reached 3.21 ×  105 S  m−1 
and 74 dB, respectively. Gu et al. [69] prepared the silver 

nanowire (AgNW)/CNF composite film by the combination 
of vacuum-assisted filtration and hot pressing. The results 
show that the AgNW/CNF composite film shows a high σ of 
5.57 ×  105 S  m−1 and an excellent EMI SE of 101 dB when 
the content of AgNWs is 50 wt%. Compared with the intrin-
sic conductive polymer materials, the composite conductive 
polymer materials (or polymer matrix EMI shielding com-
posites) have been widely used in many fields such as aero-
space, energy transportation, sporting goods, construction 
facilities, and defense industry thanks to their high strength, 
easy processing, good flexibility and low production cost, 
etc. [70–72].

4  Research Progress of Polymer Matrix 
EMI Shielding Composites with Different 
Structural Designs

The preparation methods have great effects on the distribu-
tion of fillers and the microstructures, thereby influencing 
the overall performance of polymer matrix EMI shield-
ing composites. Table 1 summarizes the EMI shielding 
performance of polymer matrix composites with different 
structural types. It can be seen that the structure, density 
and thickness play a decisive role in the EMI shielding 
performance of the composites. Therefore, it is crucial to 
use a suitable preparation method to fabricate the poly-
mer matrix EMI shielding composites that can meet the 
practical application requirements. Depending on the dif-
ferent structural designs, polymer matrix EMI shielding 
composites can be classified into homogeneous structure, 
segregated structure, porous structure, layered structure 
and preformed structure.

4.1  Homogeneous Polymer Matrix EMI Shielding 
Composites

The homogeneous polymer matrix EMI shielding compos-
ites are prepared by the uniform compounding of polymer 
matrix and conductive fillers through solution blending, melt 
blending and in-situ polymerization methods. The homoge-
neous polymer matrix EMI shielding composites have been 
widely used in practical industrial production due to their 
simple preparation process [73, 74].
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Table 1  Comparison of EMI shielding performances of the polymer matrix composites with different structures

Type Materials Thickness 
(mm)

EMI SE (dB) Frequency 
(GHz)

Density (g 
 cm−3)

SSE (dB  cm3 
 g−1)

SE/t (dB 
 cm−1)

SSE/t (dB 
 cm2  g−1)

Refs

Homogene-
ous polymer 
composites

GnPs@PDA-
MWCNTs/
PPSU

3 62 8–12 / / 207 / [75]

nAg-MWC-
NTs/NBR

0.02 45 0.030–1.5 / / 225 / [76]

ABS/CB 1.1 21 8.2–12.4 / / 190 / [77]
ABS/CF 1.1 35 8.2–12.4 / / 318 / [77]
ABS/MWC-

NTs
1.1 51 8.2–12.4 / / 464 / [77]

MWCNTs/
PVDF

2 56 8–12 0.79 71 280 354 [80]

SCF/EVA 3.5 34 8–12 / / 97 / [81]
PP/EPDM/

NCGF
2 41 8.2–12.4 / / 205 / [82]

PPy/PDA/
AgNW

/ 48 8–12 0.28 171 / 611 [85]

PANI-MWC-
NTs

2 39 12.4–18.0 / / 195 / [86]

Segregated 
polymer 
composites

graphite/PE 1 26 26–37.5 / / 260 / [94]

CB/UHM-
WPE

2.1 33 8.2–12.4 / / 157 / [95]

rGO/PS 2.5 45 8.2–12.4 / / 180 / [96]
MXene@PS 2 62 8.2–12.4 / / 310 / [97]

Porous 
polymer 
composites

f-G/PVDF / 20 8–12 / / / / [105]

PMMA/
GNPs-
MWCNTs

2.5 36 8–12 0.6 60 144 240 [106]

AgNS/epoxy 2 42 8–12 0.172 244 210 1221 [107]
MWCNTs/

WPU
2.3 50 8.2–12.4 0.126 397 217 1722 [109]

RGO/LDC 2 49 8.2–12.4 0.008 6125 245 30,625 [110]
AgNW/CNF 2 40 8.2–12.4 0.0017 23,888 200 178,235 [111]
MXene/CNF 2 35 8.2–12.4 0.0015 23,633 175 118,167 [112]
AgNW/PVB/

MS
5 60 8–12 0.0019 31,579 120 63,158 [116]

Fe3O4@
MXene/GF/
PDMS

1 80 8.2–12.4 / / 800 / [117]

PU@PDA@
Ag

5 84 8.2–12.4 0.032 2625 168 5250 [118]

Layered 
polymer 
composites

ANF-
MXene/
AgNW

0.091 80 8.2–12.4 1.63 8769 8791 5379 [124]

CNF@
MXene

0.035 40 8.2–12.4 1.62 25 11,429 7029 [125]

MXene/c-
PANI

0.04 36 8.2–12.4 / / 9000 / [126]
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4.1.1  Solution Blending Method

The solution blending method refers to fabricating the poly-
mer matrix EMI shielding composites by dispersing the con-
ductive fillers in the polymer matrix using a suitable solvent 
and then removing the solvent. In the solution mixing system 
with lower viscosity, the polymer and the conductive fill-
ers can be uniformly mixed to ensure the formation of con-
ductive pathways inside the final composites. He et al. [75] 
dissolved the polydopamine-modified graphite nanosheets 
(GnPs@PDA), MWCNTs and polyphenylsulfone (PPSU) 
in N, N-dimethylformamide (DMF), and then the GnPs@
PDA-MWCNTs/PPSU composite powder was obtained by 
flocculation under an ice-water bath. Finally, the GnPs@
PDA-MWCNTs/PPSU composites were obtained after hot 

pressing. The results show that the EMI SE of the com-
posites reaches 62 dB when the content of GnPs@PDA-
MWCNTs is 17.6 vol%. Kwon et al. [76] first dissolved the 
nitrile butadiene rubber (NBR) and MWCNTs grafted with 
silver nanoparticles (nAg-MWCNTs) in a toluene solvent, 
and then completely removed the toluene solvent with con-
tinuous stirring. Finally, the nAg-MWCNTs/NBR compos-
ites were obtained after curing (Fig. 5a). The results show 
that the EMI SE of the nAg-MWCNTs/NBR composites 
reaches 45 dB when the content of nAg-MWCNTs is 83 
wt%. Al-Saleh et al. [77] fabricated the ABS/CB, ABS/car-
bon nanofibers (CF), and ABS/MWCNTs composites via the 
similar method. When the contents of the three fillers is 15 
wt%, the ABS/CB, ABS/CF and ABS/MWCNTs composites 
exhibit EMI SE values of 21, 35, and 51 dB, respectively. 

Table 1  (continued)

Type Materials Thickness 
(mm)

EMI SE (dB) Frequency 
(GHz)

Density (g 
 cm−3)

SSE (dB  cm3 
 g−1)

SE/t (dB 
 cm−1)

SSE/t (dB 
 cm2  g−1)

Refs

Fe3O4@rGO/
MWCNTs/
WPU

0.8 35.9 8.2–12.4 / / 449 / [40]

PVA/MXene 0.027 44.4 8.2–12.4 1.76 25 16,444 9343 [129]
Ag/NWF/

FeCo@
rGO/WPU

0.4 77 2–18 / / 1925 / [130]

Fe3O4@
rGO/T-
ZnO/Ag/
WPU

0.5 87 8.2–12.4 / / 1740 / [131]

Cu-Ag/ITO/
PET

0.05 26 8–40 / / 5200 / [137]

AgNW/PVA/
PET

/ 44 8.2–12.4 / / / / [138]

AgNW/
PDDA

/ 31 8–12 / / / / [139]

AgNW/
MXene/
PET

/ 49 8.2–12.4 / / / / [140]

Preformed 
polymer 
composites

Graphene/
PDMS

5 42 8.2–12.4 / / 84 / [146]

GF/h-Fe3O4/
PDMS

2 70 8.2–12.4 1.179 59 350 297 [147]

Epoxy/wood-
derived 
carbon

2 27.8 8–12 1.17 24 139 119 [148]

Fe3O4/
TAGA/
epoxy

3 35 8.2–12.4 / / 117 / [149]

TCTA/epoxy 2 74 8.2–12.4 1.2 62 370 308 [150]
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The solution blending method can significantly reduce the 
viscosity of the composite system, thereby improving the 
dispersion of the fillers in the polymer matrix. However, 
the method also has significant disadvantages such as the 
needs to add a large amount of solvent during the prepara-
tion process. Many polymer materials can only swell but 
not dissolve in the solvent, and the incomplete subsequent 
treatment of the solvent can shorten the service life of the 
materials. Moreover, the removal of the solvent will bring 
the environmental problem and cost concern. Therefore, the 
industrial large-scale production of the solution blending 
method still needs further exploration [78, 79].

4.1.2  Melt Blending Method

The melt blending method refers to the homogeneous mix-
ing of the molten polymer and conductive fillers by a mix-
ing equipment above the viscous flow temperature of the 
polymer matrix, after cooling, the polymer matrix EMI 

shielding composites are obtained. Compared with the solu-
tion blending method, the melt blending method has simple 
operation, low cost, and no third-party solvent. The method 
has a wide range of industrial applications, and most of the 
thermoplastic EMI shielding composites can be prepared 
by this method. Wang et al. [80] used MWCNTs as conduc-
tive filler and polyvinylidene fluoride (PVDF) as matrix to 
prepare the MWCNTs/PVDF composites through the melt 
blending and compression molding. The results show that 
the EMI SE of the MWCNTs/PVDF composites reaches 
56 dB when the MWCNT content is 15 wt%. Das et al. [81] 
used short carbon fiber (SCF) as conductive filler, natural 
rubber (NR) and ethylene–vinyl acetate copolymer (EVA) as 
matrix, and fabricated the SCF/NR and SCF/EVA compos-
ites by the similar method. When the content of SCF is 17.5 
wt%, the SCF/NR composites exhibit an EMI SE of 20 dB. 
However, the EMI SE of SCF/EVA composites reaches the 
same level with only 8 wt% of SCF owing to the low viscos-
ity of EVA. Duan et al. [82] used nickel-coated glass fiber 
(NCGF) as the conductive filler, polypropylene (PP) and 
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Fig. 5  Schematic illustrating the fabrication of a nAg-MWNTs/NBR and b PP/EPDM/NCGF composites [76, 82]. Copyright © 2013 Elsevier
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ethylene-propylene-diene monomer (EPDM) as the matrix 
to prepare the PP/EPDM/NCGF composites via the melt 
blending and injection molding (Fig. 5b). The EMI SE of the 
resultant composites reaches 41 dB when the NCGF content 
is 15 wt%. The melt blending method has been widely used 
in actual industrial production due to its good processing 
performance and low-cost advantage. However, the high 
shear forces generated by the equipment during the mixing 
process can damage the structure of the conductive fillers, 
thereby leading to the decrease of the EMI shielding per-
formances. The polymer matrix composites prepared by the 
melt blending method require high filler content to achieve 
the construction of three-dimensional conductive network, 
so the selection of conductive fillers is limited [83, 84].

4.1.3  In‑situ Polymerization Method

The in-situ polymerization method refers to uniformly mix-
ing the conductive fillers and the polymer monomers, and 
the polymerization reaction is initiated by adding an initia-
tor to obtain the polymer matrix EMI shielding composites. 
This method have no very high shear force, so the surface 
structure of the fillers is not easy to be destroyed. The in-
situ polymerization process can promote the uniform and 
stable dispersion of the conductive fillers, so it has more 
applications. Wang et al. [85] synthesized the PPy/PDA 
matrix by an in-situ polymerization and then obtained the 
PPy/PDA/AgNW composites by mixing with the AgNWs. 
The results show that when the AgNW content is 50 wt%, 
the σ and EMI SE of PPy/PDA/AgNW composites are 1206 
S  cm−1 and 48 dB respectively, which are 120,000 times 
and 6.9 times higher than those of pure PPy. Saini et al. 
[86] fabricated the PANI-MWCNTs composites by an in-
situ polymerization based on free radical chemical oxidation 
(Fig. 6a). The results show that when the MWCNT content 
is 25 wt%, the σ and EMI SE of the composites are 19 S 
 cm−1 and 39 dB, respectively, which are 9.5 times and 1.4 
times higher than those of pure PANI. Yun et al. [87] intro-
duced the iron trioxide  (Fe2O3) nanoparticles into the PANI-
MWCNTs composites prepared by in-situ polymerization, 
and further improved the EMI SE of composites (Fig. 6b). 
The above researches show that the composites prepared 
by the in-situ polymerization method exhibit a strong inter-
face interaction between the conductive fillers and polymer 
matrix, and the conductive fillers have good dispersibility in 

the polymer matrix. However, the conductive fillers usually 
require surface modification, which will damage the physical 
and chemical properties of the fillers [88–90].

4.2  Segregated Polymer Matrix EMI Shielding 
Composites

The segregated polymer matrix EMI shielding composites 
are prepared by hot pressing of polymer particles coated 
with conductive fillers on the surface at high temperature. 
For homogeneous polymer matrix EMI shielding compos-
ites, the conductive fillers are randomly dispersed in the 
polymer matrix. In contrast, the conductive fillers are selec-
tively distributed between the micro-zone interfaces of poly-
mer matrix in the segregated polymer matrix EMI shielding 
composites. The probability of interlap between the conduc-
tive fillers is significantly increased, which facilitates the 
formation of perfect conductive networks at a low content 
of conductive fillers. Currently, the conductive fillers used to 
construct the segregated polymer matrix EMI shielding com-
posites are mainly divided into two categories: micro-scale 
conductive fillers (graphite and CB) and nano-scale con-
ductive fillers (graphene, MWCNTs and MXene) [91–93]. 
Vovchenko et al. [94] prepared the graphite/PE composites 
with a segregated structure based on the PE particles coated 
with graphite by a thermo-compression molding. The results 
show that the σ and EMI SE of graphite/PE composites reach 
1.23 S  m−1 and 26 dB, respectively, when the graphite con-
tent is 5.0 vol%, which are 17.6 times and 2.6 times higher 
than those with a homogeneous structure, respectively. Cui 
et al. [95] prepared the CB/ultra-high molecular weight 
polyethylene (UHMWPE) composites via the hot pressing 
of UHMWPE particles coated with CB obtained by a high-
speed ball milling. The results show that the CB is selec-
tively distributed in the interfacial region of the UHMWPE 
matrix, forming a typical segregated structure (Fig. 7c). The 
σ and EMI SE of the CB/UHMWPE composites are 14.1 S 
 m−1 and 33 dB, respectively, with the CB content of 15 wt%. 
Yan et al. [96] coated the rGO on the surface of polystyrene 
(PS) particles by the in-situ reduction, and then compressed 
the obtained composite particles into the segregated rGO/
PS composites by a high-pressure solid-phase compression 
molding (Fig. 7a). The rGO is selectively distributed in the 
interface between PS particles, instead of uniformly dis-
tributed in the PS matrix. The rGO/PS composites with a 
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segregated structure can effectively reduce the percolation 
threshold and significantly improve the electrical conduc-
tivity. The EMI SE of the segregated rGO/PS composites 
reaches 45 dB when the rGO content is 3.47 wt%. Sun et al. 
[97] loaded the negatively charged MXene onto the surface 
of positively charged PS microspheres by an electrostatic 
self-assembly, and then prepared the highly conductive seg-
regated MXene@PS nanocomposites by pressing (Fig. 7b). 
The MXene forms the effective three-dimensional conduc-
tive networks in the PS matrix. The resultant MXene@PS 
nanocomposites not only exhibit a low percolation threshold 
of 0.26 vol%, but also have an excellent σ of 1081 S/m and 
an high EMI SE of 62 dB.

The above studies show that although the micro-scale 
conductive fillers such as graphite and CB are low-cost and 
not easily agglomerated in the polymer matrix, the σ and 
EMI SE of the prepared polymer matrix composites are still 
not satisfied even at a high content of conductive fillers. The 
nano-scale conductive fillers such as rGO and MXene can 
easily form the conductive pathways within the polymer 
matrix due to their large specific surface area and excellent 

conductive property, thereby improving the σ and EMI SE 
of the polymer matrix composites. However, the nano-scale 
conductive fillers are costly and highly prone to agglomera-
tion in the polymer matrix. In addition, the conductive fillers 
form a single continuous network structure and the polymer 
particles tend to exist in isolation after the polymer particles 
covered with conductive fillers are hot pressed, resulting in 
poor mechanical properties of polymer matrix EMI shielding 
composites. Therefore, while maintaining the excellent EMI 
shielding performance of segregated polymer matrix EMI 
shielding composites, further optimization of mechanical 
properties and manufacturing costs is the key to achieving 
large-scale applications [98–100].

4.3  Porous Polymer Matrix EMI Shielding Composites

The porous polymer matrix EMI shielding composites 
use polymer matrix as the support skeleton, which is then 
modified or loaded with conductive fillers. Compared with 
homogeneous and segregated polymer matrix EMI shielding 
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composites, the porous polymer matrix EMI shielding com-
posites have the advantages of low cost, good toughness, and 
low density. At the same time, the porous structure can con-
tribute to the multiple reflection and absorption of electro-
magnetic waves, which will further improve the EMI shield-
ing performance of the composites. Currently, the foaming 
method, sol–gel method and template method are widely 
used to prepare the porous polymer matrix EMI shielding 
composites [101–103].

4.3.1  Foaming Method

The foaming process includes the chemical foaming method 
and physical foaming method. The chemical foaming 
method refers to mixing a foaming agent (azo compounds, 
sulfonyl hydrazide compounds and nitroso compounds, etc.) 
into the polymer matrix composites, and the foaming agent 
can decompose gas during the heating process to foam the 
composites. The physical foaming method means that the 

gas produced by the supercritical fluids  (CO2,  N2, butane, 
pentane, etc.) in a thermodynamically unstable state is 
nucleated, grown, and stabilized to achieve the foaming of 
polymer matrix EMI shielding composites [104]. Eswaraiah 
et al. [105] prepared the functionalized graphene (f-G)/
PVDF composites with a porous structure by chemical foam-
ing using functionalized graphene (f-G) as the conductive 
filler, PVDF as the polymer matrix, and azobisisobutyroni-
trile (AIBN) as the foaming agent. The results show that 
when the f-G content is 0.5 wt%, the EMI SE of the f-G/
PVDF composites are 18 and 20 dB at the frequencies of 1–8 
and 8–12 GHz, respectively. Zhang et al. [106] prepared the 
PMMA/GNPs-MWCNTs composites with porous structures 
by the direct blending and supercritical  CO2 foaming tech-
niques, using MWCNTs and graphene nanoplates (GNPs) as 
the conductive fillers and polymethyl methacrylate (PMMA) 
as the matrix. (Fig. 8a). The results show that when the con-
tents of MWCNTs and GNPs are 4 wt% and 1.5 wt%, respec-
tively, the EMI SE of the porous PMMA/GNPs-MWCNTs 

Fig. 7  Schematic illustrating the fabrication of a rGO/PS and b MXene@PS composites [96, 97]. c SEM images of CB/UHMWPE composites 
[95]. Copyright © 2014 Wiley–VCH. Copyright © 2017 Wiley–VCH
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composites reaches 36 dB, which is much higher than that of 
the homogeneous composites prepared by the direct blend-
ing. Fan et al. [107] prepared the silver nanosheets (AgNS)/
epoxy composites with porous structures by the direct 
blending and supercritical  CO2 foaming technique, using 
AgNS as the conductive filler and epoxy resin as the matrix 
(Fig. 8b). When the AgNS content is 20 wt%, the EMI SE 
of the porous AgNS/epoxy composites reaches 42 dB, which 
is much higher than that of the composites with the homo-
geneous structure prepared by direct blending. The above 
researches show that the foaming method for preparing the 
EMI shielding composites are suitable for a variety of poly-
mer matrices, and the conductive fillers can be dispersed 
again during the foaming process. However, the improve-
ment of EMI SE for polymer matrix composites by a single 
foaming technique is limited, which is far from that of metal 
materials. In practical applications, it is also necessary to 
combine other methods to further improve the EMI shielding 
performance of the composites.

4.3.2  Sol–gel Method

The sol–gel method used to prepare porous polymer matrix 
EMI shielding composites is very common in laboratory 
research. Usually, the highly active conductive fillers and 
polymer monomers are uniformly mixed in the liquid phase 
to form a stable sol system. The sol forms a gel with three-
dimensional network structure in solution by hydrolysis 
reaction, condensation reaction and hydrogen bonding. The 
gel is freeze-dried to obtain porous polymer matrix EMI 
shielding composites [108]. Zeng et al. [109] uniformly 
mixed the MWCNTs and waterborne polyurethane (WPU) 
in an aqueous solution to form a stable sol system, which 
was directly freeze-dried to obtain the MWCNTs/WPU aero-
gels with an anisotropic porous structure. The results show 
that the EMI SE of the MWCNTs/WPU aerogels reaches 
50 dB at a density of 126 mg/cm3. The excellent EMI shield-
ing performance is attributed to the highly conductive net-
work of MWCNTs, the anisotropic porous structure and the 
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polarization effect between MWCNTs and WPU matrix. Lu 
et al. [110] first mixed the GO and lignin homogeneously in 
an aqueous solution to form a stable sol–gel system. Then 
the system was unidirectionally freeze-dried to prepare the 
ultralight GO/lignin aerogels with micro-channel. Finally, 
the aerogels were thermally reduced to obtain the reduced 
GO/lignin-derived carbon (RGO/LDC) composites (Fig. 9a). 
The introduction of lignin enhances the interfacial polari-
zation effect and the absorption of electromagnetic waves 
in the RGO/LDC composites. The obtained composites 
achieve an EMI SE of 49 dB at an ultra-low density of 
8.0 mg  cm−3, which is higher than that of a single-phase 
RGO foam. Nyström et al. [111, 112] dispersed the AgNW 
and MXene in the CNF sol system, and then directly freeze-
dried to prepare the AgNW/CNF and MXene/CNF aerogels, 
respectively (Fig. 9b, c). The EMI SE of the AgNW/CNF 
aerogel reaches 40 dB at a density of 1.7 mg  cm−3, while 
that of the MXene/CNF aerogel reaches 35 dB at a den-
sity of 1.5 mg  cm−3. The above researches show that the 
polymer matrix composites prepared by the sol–gel method 
achieve a rapid increase in EMI SE per unit density due to 
their internal porous structure. However, the polymer matrix 
networks prepared by this method have weak connection 

strength, resulting in poor mechanical properties of the com-
posites [113, 114].

4.3.3  Template Method

The template method refers to the preparation of porous poly-
mer matrix EMI shielding composites by uniformly attaching 
conductive fillers to the surface of porous polymer matrix 
skeletons through chemical plating, chemical vapor depo-
sition (CVD), electrostatic adsorption, etc. The conductive 
fillers are oriented and continuously distributed along the 
polymer matrix porous framework, which helps to form a 
conductive network efficiently, thereby improving the EMI 
shielding performance of the composites [115]. Lin et al. 
[116] immersed the melamine sponge (MS) in the AgNW/
polyvinyl butyral (PVB) solution so that the AgNW/PVB was 
evenly coated on the surface of the MS framework, which 
was dried to obtain the AgNW/PVB/MS sponge (Fig. 10a). 
The EMI SE of the AgNW/PVB/MS sponge with a thick-
ness of 5 mm reaches 60 dB, which is higher than that of a 
commercial EMI shielding sponge with the same thickness. 
Nguyen et al. [117] successively deposited the graphene (GF), 
 Fe3O4@MXene and PDMS on the surface of the nickel foam 
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template through a CVD process. The  Fe3O4@MXene/GF/
PDMS foam was obtained after the nickel foam template was 
etched by a ferric chloride solution (Fig. 10b). The EMI SE of 
 Fe3O4@MXene/GF/PDMS foam is 80 and 77 dB in X-band 
and Ku-band, respectively. Gu et al. [118] reported the PU@
PDA@Ag sponge by a bio-response template method, which 
could be obtained by two steps: (i) PDA was decorated on 
the surface of PU sponge by dopamine self-polymerization. 
(ii) Ag nanoparticles were in-situ grown on the surface of PU 
sponge by electroless plating. The EMI SE of the obtained 
PU@PDA@Ag sponge is as high as 84 dB at a thickness of 
5 mm (Fig. 10c). The above researches show that the advan-
tages of template method include the low density, the simplic-
ity of preparation process, and the possibility of large-scale 
preparation. However, if the porous composites prepared by 
template method are deformed during applications, the con-
ductive fillers are easily detached from the polymer matrix 
skeleton, which will affect the EMI shielding lifetime of the 
composites [119, 120].

4.4  Layered Polymer Matrix EMI Shielding 
Composites

The layered polymer matrix EMI shielding compos-
ites are a class of materials with a layered structure. The 

electromagnetic waves can be reflected for multiple times 
inside the composites due to the layered structure, thereby 
improving their EMI shielding performance greatly. The 
lightweight and flexible polymer matrix EMI shielding films 
are the most representative type of material with a layered 
structure, and has attracted wide attention from researchers. 
At present, the preparation of polymer matrix EMI shielding 
films is mainly through vacuum filtration method, coating 
method and polymer-assisted method [121–123].

4.4.1  Vacuum Filtration Method

The vacuum filtration method refers to prepare the poly-
mer matrix EMI shielding films by removing the solvent in 
the mixed solution of conductive fillers and polymer matrix 
under pressure difference. The films prepared by the vacuum 
filtration method have an obvious layered structure and can 
efficiently reflect the electromagnetic waves for multiple 
times. Ma et al. [124] used the two-dimensional MXene 
and one-dimensional AgNWs as the conductive functional 
layer and aramid nanofibers (ANFs) as the high-performance 
enhancement layer to fabricate the flexible and high-strength 
ANF-MXene/AgNW composite films with a bilayer struc-
ture by the vacuum-assisted filtration and hot-press molding 
techniques (Fig. 11a). This work provides theoretical and 
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technical guidance for the design and fabrication of flexible 
and high-strength layered polymer EMI shielding compos-
ites. The EMI SE of the ANF-MXene/AgNW films with a 
thickness of 0.091 mm is about 80 dB in the X-band, which 
is higher than that of the films with a homogeneous structure 
with the same MXene/AgNW content. Zhou et al. [125] pre-
pared the CNF@MXene multilayer films with an alternating 
structure by an alternating vacuum filtration method using 
CNF and MXene as raw materials (Fig. 11b). The EMI SE 
of the CNF@MXene multilayer films with a thickness of 
0.035 mm in the X-band is about 40 dB, which is higher than 
that of the films with a homogeneous structure. The main 
reason is that the alternating multilayer structure of CNF@
MXene films increases the "zigzag" reflection mechanism 
of electromagnetic waves. Gu et al. [126] first co-doped the 
modified polyaniline (c-PANI) with dodecyl benzene sul-
fonic acid and hydrochloric acid, then prepared less layers of 
MXene using the ionic intercalation and ultrasound-assisted 
techniques, and finally prepared the MXene/c-PANI EMI 
shielding films by a vacuum filtration method (Fig. 11c). The 
σ and EMI SE of the MXene/c-PANI EMI shielding films 

with a thickness of 0.040 mm are 24.4 S  cm−1 and 36 dB, 
respectively, which are 81 times and 2.3 times higher than 
those of the pure c-PANI films. It can be seen that the thick-
ness of the EMI shielding films prepared by vacuum filtra-
tion method is easy to control and the utilization rate of raw 
materials is relatively high. However, the area of the EMI 
shielding films is restricted by the size of the equipment, and 
the system containing two-dimensional sheet materials takes 
a long time to form films by vacuum filtration [127, 128].

4.4.2  Coating Method

The coating method refers to the preparation of polymer 
matrix EMI shielding films by curing a mixed system con-
taining conductive fillers and resin matrix in an appropriate 
mold. Obviously, the coating method is relatively simple 
and widely used in actual production. In order to build a 
more complete conductive network inside the EMI shield-
ing films, the viscosity and curing time of the resin matrix 
are the keys to the process. Sheng et al. [40] constructed 
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the ordered multilayer  Fe3O4@rGO/MWCNTs/WPU films 
by the layer-by-layer coating method. The  Fe3O4@rGO and 
MWCNTs provide negative magnetic gradient and positive 
electrical conductivity gradient, respectively (Fig. 12a). 
The EMI SE of  Fe3O4@rGO/MWCNTs/WPU films reaches 
35.9 dB when the MWCNT content is 60%. Jin et al. [129] 
prepared the multilayer PVA/MXene films by alternate 
coating using PVA and MXene as raw materials. The con-
tinuous MXene layers provide the compact networks for 
conducting electrons, allowing the multilayer PVA/MXene 
films to exhibit excellent EMI shielding performance. The 
PVA/Mxene films with 27 μm thickness exhibits the σ of 
716 S  m−1 and the maximum EMI SE of 44.4 dB when the 
MXene content is 19.5 wt%. Ren et al. [130] first prepared 
the FeCo@rGO/WPU hybrid system using the reduced gra-
phene oxide grafted with FeCo alloy (FeCo@rGO) as filler 
and WPU as matrix, and then applied the hybrid system 
to the encapsulation of silver-plated nonwoven fabric (Ag/
NWF) by coating method to obtain the Ag/NWF/FeCo@
rGO/WPU films (Fig. 12b). The EMI SE of the Ag/NWF/
FeCo@rGO/WPU films reaches 77 dB when the Ag and 
FeCo@rGO contents are 10.5 wt% and 10 wt%, respectively. 
Xu et al. [131] prepared the  Fe3O4@rGO/T-ZnO/Ag/WPU 

films by the coating method using  Fe3O4@rGO and silver-
plated tetra-needle ZnO whiskers (T-ZnO/Ag) as fillers and 
WPU as matrix (Fig. 12c). Because of the differences of 
 Fe3O4@rGO and T-ZnO/Ag in density, a gradient structure 
is automatically formed during the film formation process. 
The  Fe3O4@rGO is uniformly distributed throughout the 
thickness range of the film, forming the effective three-
dimensional electromagnetic wave absorption network. The 
T-ZnO/Ag is uniformly deposited at the bottom of the film, 
forming the effective two-dimensional electromagnetic wave 
reflection network. When electromagnetic waves penetrate 
the  Fe3O4@rGO/T-ZnO/Ag/WPU films, its specific struc-
ture can trigger the "absorption-reflection-reabsorption" 
mechanism. The EMI SE of the  Fe3O4@rGO/T-ZnO/Ag/
WPU films with a thickness of 0.5 mm reaches 87 dB under 
the contents of 0.8 vol%  Fe3O4@rGO and 5.7 vol% T-ZnO/
Ag. The above researches show that the EMI shielding films 
prepared by the coating method are not restricted by the 
equipment and can be produced on a large scale. The EMI 
shielding films with a gradient structure can be prepared 
by using the density difference of the conductive fillers, 
thereby making the films have excellent electromagnetic 
wave absorption performance. However, the coating method 
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also faces some problems, such as the time-consuming cur-
ing process of the resin matrix, and the interlayer of the films 
are not dense [132–134].

4.4.3  Polymer‑assisted Method

The polymer-assisted method refers to the direct deposition 
of conductive fillers on the surface of the polymer matrix 
films through laser printing, high-pressure spraying, sput-
tering deposition, etc., to prepare the polymer matrix EMI 
shielding films. The method is the main technical tool for 
the preparation of transparent EMI shielding films [30, 135, 
136]. Wang et al. [137] used the sputtering deposition tech-
nique to deposit copper-doped silver and indium tin oxide 
(ITO) films sequentially on a polyethylene terephthalate 
(PET) film substrate. The obtained Cu-Ag/ITO/PET films 
transmit 96.5% of visible light and show an EMI SE of 
26 dB over the wide frequency range of 32 GHz. Gu et al. 
[138] first constructed a regular AgNW grid on the glass 
surface by a laser printing technique, and then transferred 
the AgNW grid to the PVA/PET substrate by a printing tech-
nique, and finally prepared the AgNW/PVA/PET films by a 
hot pressing. The resultant films obtain an EMI SE of 44 dB 
and a visible light transmittance of 67.8%. Zhu et al. [139] 
first coated the AgNW network on the glass substrate by 
the Meyer rod coating method, and then encapsulated the 
AgNW network through poly dimethyl diallyl ammonium 
chloride (PDDA) to obtain the AgNW/PDDA films. The 
EMI SE and visible light transmittance of the resultant films 
are 31 dB and 91.3%, respectively. Chen et al. [140] succes-
sively constructed the dense AgNW and MXene conductive 
grids on PET substrates using the high-pressure air-assisted 
spraying technology (Fig. 13). The EMI SE and visible light 
transmittance of the obtained films can reach 49 dB and 
83%, respectively. Although the polymer-assisted method 
can quickly and continuously prepare composite films, the 
connection strength between the conductive filler network 
and the polymer matrix is not high, which easily leads to 
interface separation [141].

4.5  Preformed Polymer Matrix EMI Shielding 
Composites

The preformed polymer matrix EMI shielding composites 
are a class of materials in which the conductive fillers are 

pre-constructed in the resin matrix with a specific three-
dimensional structure by freeze-drying, hydrothermal, or 
CVD methods [142, 143]. The conductive fillers in the pre-
formed composites have formed a stable three-dimensional 
conductive framework, and the polymer matrix with very 
low viscosity does not destroy the original conductive net-
work during the backfilling process. Therefore, the com-
posites can achieve rapid improvement of EMI SE with low 
contents of conductive fillers [144, 145]. Gao et al. [146] 
prepared a biaxially arranged graphene network with a lam-
inar structure by bi-directional freezing technique, which 
was thermally reduced at 2500 °C and impregnated with 
PDMS to obtain the graphene/PDMS composites with a 
mother-of-pearl-like structure (Fig. 14a). When the graphene 
content is 0.42 wt%, the EMI SE values of the graphene/
PDMS composites in the parallel and perpendicular direc-
tions to the graphene plane reach 16 and 42 dB, respectively. 
Fang et al. [147] first prepared the graphene foam (GF) by 
a CVD method using nickel foam as a template, then grew 
 Fe3O4 in situ on the surface of GF to obtain GF/h-Fe3O4, 
and finally obtained the GF/h-Fe3O4/PDMS composites by 
impregnating the GF/h-Fe3O4 with PDMS. The composites 
exhibit an EMI SE of 70 dB when the GF/h-Fe3O4 content 
is 12 wt%. Shen et al. [148] prepared the carbon skeleton 
with a continuous structure by carbonizing the natural wood, 
which was backfilled with epoxy resin to prepare the epoxy/
wood-derived carbon composites. The σ and EMI SE of the 
obtained composites are 12.5 S  m−1 and 27.8 dB, respec-
tively, when the carbon content is 7.0 vol%. In our previous 
works, a series of preformed polymer matrix EMI shielding 
composites with the controllable structure were prepared. 
Gu et al. [149] first prepared the homogeneous hybrid sys-
tem of amino-functionalized  Fe3O4  (NH2-Fe3O4) nano-
particles, GO and L-ascorbic acid, then the hybrid system 
was hydrothermally reacted to obtain the  Fe3O4/graphene 
aerogel  (Fe3O4/GA), which was thermally annealed and 
backfilled with epoxy resin to obtain the  Fe3O4/thermally 
annealed GA  (Fe3O4/TAGA)/epoxy composites (Fig. 14b). 
When the mass ratio of GO to  NH2-Fe3O4 is 2:1 and the 
total  Fe3O4/TAGA content is 2.7 wt%, the EMI SE of the 
resultant composites reaches 35 dB, which is much higher 
than that of the epoxy composites prepared by the direct 
blending method with the same fillers content. Furthermore, 
Gu et al. [150] prepared the anisotropic and highly conduc-
tive CNF/MXene aerogel (CTA) based on the unidirectional 
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freeze-drying technique, and obtained the thermally reduced 
CTA (TCTA)/epoxy composites after the thermal reduction-
vacuum-assisted impregnation (Fig. 14c). The results show 
that the obtained composites have the complete and effi-
cient three-dimensional conductive network and the low 
percolation threshold. When TCTA fraction is 1.38 vol%, 
the radial σ and axial EMI SE of composites are 1672 S 
 m−1 and 74 dB, respectively, which are much higher than 
those of epoxy composites prepared by the direct blending 
method with the same TCTA content. The above researches 
show that the multiple reflection ability of the composites for 
electromagnetic waves can be improved by pre-constructing 
a stable three-dimensional conductive network skeleton in 
the resin matrix, which in turn enhances the EMI shielding 
performance of the composites. However, the preconstruc-
tion of a three-dimensional conductive network skeleton 

in the resin matrix also faces some problems, such as poor 
interfacial compatibility between the three-dimensional skel-
eton structure and the resin matrix, and the continuous phase 
of the fillers hinders the continuous phase structure of the 
resin matrix. These problems eventually lead to the weak 
mechanical strength of the composites [108, 151, 152].

5  Conclusions and Outlook

This review first discusses the key concepts, loss mecha-
nisms and test methods of EMI shielding. Then, the cur-
rent development status of EMI shielding materials is 
totally summarized, and the research progress of polymer 
matrix EMI shielding composites with different structures 
is detailedly illustrated, in which their preparation methods 
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and corresponding evaluations are highlighted. It is worth 
noting that the purpose of the preparation methods for all 
polymer matrix EMI shielding composites with different 
structures is to build more complete conductive networks 
and more conductive-insulating interfaces, thereby achieving 
stronger polarization loss and conduction loss. Although a 
series of favorable advances have been made in the prepara-
tion of polymer matrix EMI shielding composites, there are 
still many problems. The details are summarized as follows:

(1) Although the homogeneous polymer matrix EMI 
shielding composites are simple to process, they require 
a high content of conductive fillers to build an effec-
tive conductive network in the polymer matrix, and to 
ensure that their EMI SE is higher than the industrial 
application standard of 20 dB. However, the high con-
tent of conductive fillers will cause the decrease of 
mechanical properties and processing difficulties. The 
homogeneous polymer matrix EMI shielding com-
posites are suitable for applications where the EMI 
shielding performance requirement is not high, while 
the mass-production and application are needed.

(2) The conductive fillers in the segregated polymer matrix 
EMI shielding composites are confined in the interfaces 

of the polymer micro-zones. The probability of interlap 
between the conductive fillers is significantly increased, 
thereby enhancing the EMI shielding performance of 
the composites. However, the conductive fillers form a 
single continuous network structure inside the compos-
ites, and the polymer particles tend to exist in isolation, 
which will result in relatively poor mechanical prop-
erties. This type of EMI shielding composites can be 
applied to the non-load-bearing parts that require high 
EMI shielding performances.

(3) The porous polymer matrix EMI shielding composites 
have the advantages of low density and good toughness. 
However, the polymer matrix used for the preparation 
of porous composites is mostly concentrated in PU, 
MS, PDMS, WPU, etc., which have poor heat resist-
ance and mechanical strength. These problems limit the 
applications of porous composites in high-density and 
high-integration electronic components. As a represent-
ative of lightweight EMI shielding materials, they have 
great potentials for sandwich parts in areas of aircraft, 
military engineering and automobile industry.

(4) The layered polymer matrix EMI shielding compos-
ites can induce multiple reflections of electromagnetic 
waves between the internal layers due to unique strati-
fied structure. However, the layered polymer matrix 
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EMI shielding composites prepared based on vacuum 
filtration, layered coating, and polymer-assisted meth-
ods have weak interface connection strength and are 
time-consuming. The ultra-thin structure makes the 
layered polymer matrix EMI shielding composites gain 
widespread attention in the fields of visual shielding 
windows, microelectronic devices and electronic com-
munication equipment.

(5) The preformed polymer matrix EMI shielding compos-
ites have the advantages such as low content of conduc-
tive fillers, high overlap efficiency of the conductive 
network and excellent EMI shielding performance. 
However, a series of preformed polymer matrix EMI 
shielding composites developed based on freeze-dry-
ing, hydrothermal, and CVD methods are facing prob-
lems such as scarcity of candidate conductive fillers, 
harsh preparation conditions and long reaction cycles. 
This type of EMI shielding composites is expected 
to be used in small-scale equipment components that 
require superior EMI shielding performance.

Therefore, the development of next-generation high-
performance polymer matrix EMI shielding composites 
based on the reasonable structural design and new prepara-
tion methods has become a key research direction, which is 
necessary to promote the full replacement of metallic EMI 
shielding materials. It is believed that in the near future, pol-
ymer matrix EMI shielding composites will be more widely 
and comprehensively applied in various fields including 
aerospace, automobile manufacturing, artificial intelligence 
and precision instruments.
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