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Interface Engineered Microcellular Magnetic 
Conductive Polyurethane Nanocomposite Foams 
for Electromagnetic Interference Shielding

Guolong Sang1, Pei Xu1 *, Tong Yan1, Vignesh Murugadoss2,3, Nithesh Naik4, 
Yunsheng Ding1, Zhanhu Guo3 *

HIGHLIGHTS 

• Carbon nanotubes/polymerizable ionic liquid copolymer (CNTs/PIL) provides nucleation sites and inhibits the combination of micro-
cellular structures.

• The increase in evaporate time improves the conductive network of composite foams.

• Electromagnetic interference shielding effectiveness (EMI SE) and specific EMI SE of the composite foam displays 69.9 dB and 
211.5 dB/(g  cm−3).

• Polarization, conduction and magnetic loss attenuate microwave energy.

ABSTRACT Lightweight microcellular polyurethane (TPU)/
carbon nanotubes (CNTs)/ nickel-coated CNTs (Ni@CNTs)/
polymerizable ionic liquid copolymer (PIL) composite foams 
are prepared by non-solvent induced phase separation (NIPS). 
CNTs and Ni@CNTs modified by PIL provide more heterogene-
ous nucleation sites and inhibit the aggregation and combina-
tion of microcellular structure. Compared with TPU/CNTs, the 
TPU/CNTs/PIL and TPU/CNTs/Ni@CNTs/PIL composite foams 
with smaller microcellular structures have a high electromagnetic 
interference shielding effectiveness (EMI SE). The evaporate time 
regulates the microcellular structure, improves the conductive network of composite foams and reduces the microcellular size, which 
strengthens the multiple reflections of electromagnetic wave. The TPU/10CNTs/10Ni@CNTs/PIL foam exhibits slightly higher SE values 
(69.9 dB) compared with TPU/20CNTs/PIL foam (53.3 dB). The highest specific EMI SE of TPU/20CNTs/PIL and TPU/10CNTs/10Ni@
CNTs/PIL reaches up to 187.2 and 211.5 dB/(g  cm−3), respectively. The polarization losses caused by interfacial polarization between 
TPU substrates and conductive fillers, conduction loss caused by conductive network of fillers and magnetic loss caused by Ni@CNT 
synergistically attenuate the microwave energy.
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modification methods of CNTs include physical noncova-
lent modification and chemical covalent approaches [39, 
40]. For the chemical approaches, the modifier forms the 
covalent linkage with a skeleton of the CNT by means such 
as radical polymerization and click chemistry to enhance the 
dispersion and solubilization of the CNT. However, chemical 
treatment would damage the translational symmetry of CNT 
by changing sp2 carbon atoms to sp3 carbon atoms, and the 
properties of nanofillers, including both the electronic and 
transport properties, are influenced [41]. Noncovalent modi-
fication of CNTs such as surfactants, charge-transfer agents 
and ionic liquids (ILs) is suitable for the facile and mild 
approaches that may not disrupt the structure and electron 
characteristics of CNTs [42]. Specifically, CNTs are nonco-
valently functionalized with modifiers such as cetyltrimethyl 
ammonium bromide (CTAB), polyvinylpyrrolidone (PVP) 
and ionic liquid (IL) through π-cation stacking, π-π stack-
ing, H-bonds and hydrophobic interactions. For example, 
Narayan et al. used PVP as a destacking cum stabilizer of 
graphene nanosheets. Nonionic surfactant (PVP) adsorbed 
on the surface of graphene forms a covering layer, thereby 
preventing contact agglomeration between graphenes. How-
ever, the large aspect ratio of CNTs has a certain degree of 
entanglement, so a stronger force is required to stabilize the 
dispersion [41, 43]. Poly(ionic liquid)s and polymerizable 
ionic liquid copolymer (PIL) containing anion-cation pairs 
have strong cation-π physical interactions with CNTs, which 
make them promising candidates for noncovalent modifi-
cation of CNTs [44–47]. PIL-modified CNTs can have a 
promoted dispersion and increase the electrical conductiv-
ity of polymer matrix composites. Compared with other 
modification technologies of dispersing CNTs in polymer, 
this method is simpler, more effective and environmentally 
friendly [48, 49]. For example, Bose et al. reported that 
imidazolium-based ILs were used to modify noncovalently 
CNTs through a π-cation stacking interaction. The improved 
dispersion of IL-CNTs enhanced the electrical conductivity 
and electromagnetic radiation of polyvinylidene difluoride 
(PVDF) blends significantly [50].

Thermoplastic polyurethane (TPU) has aroused more 
interests owing to its high tensile strength and flexibility, 
good abrasion resistance, excellent chemical and thermal 
resistance [51–55]. TPU is widely used in flexible displays, 
smart clothing, electronic textiles and durable elastomeric 
wheels because TPU mainly consists of hard segments and 

1 Introduction

With extensive deployment and development of electronic 
equipment and communication devices, serious electromag-
netic interference (EMI) interrupts the functions of equip-
ment and affects the human organs [1–6]. Recently, more 
efforts have been made to seek for novel lightweight and 
high-performance EMI shielding materials [7–12]. Con-
ductive polymer composites (CPCs) containing conductive 
nanofillers have excellent properties such as lightweight, 
excellent processability and resistance to corrosion com-
pared with traditional metal-based EMI shielding materials 
[13–16]. CPCs with porous structures can further lighten 
the matrix weight and enhance the electrical performance 
of the composites even at a lower loading of fillers [17–20]. 
In addition, the preparation methods of electrically CPCs for 
EMI shielding materials also exert a profound impact on the 
performance of EMI shielding effectiveness (SE) [21–23].

Phase inversion method, subcritical  CO2 foaming, freeze-
drying, gas foaming, micro-molding and 3D printing have 
been widely used to prepare EMI shielding materials with 
porous structures [24–26]. Phase separation methods include 
non-solvent-induced phase separation (NIPS), thermally 
induced phase separation (TIPS) and vapor-induced phase 
separation (VIPS) [27, 28]. Since porous polymer materi-
als can be prepared by phase separation methods, NIPS as 
the most commonly and widely employed technique can be 
used to fabricate EMI shielding materials with microcel-
lular structures [29]. In NIPS method, a substrate is covered 
with a thin layer of polymer solution and then immersed 
in a non-solvent bath, which causes the phase separation 
between the polymer-rich and polymer-dilute phases due 
to thermodynamic instability of the solution [30, 31]. The 
matrix via gelation and/or solidification can be formed in 
a polymer-rich phase, whereas the pores can be formed in 
the polymer-dilute phase [32]. A facile NIPS method can 
be used to prepare lightweight microcellular polyetherim-
ide (PEI)/graphene foams with a density of 0.3 g  cm−3 and 
specific EMI SE of 44 dB/(g  cm−3) [33].

Multi-walled carbon nanotubes (CNTs), which exhibit an 
exceptional structure, outstanding mechanical and electri-
cal properties, can provide excellent EMI SE for polymer 
composite foams [34–36]. However, CNTs are hard to be 
dispersed in the polymers because of their large specific 
surface area and strong internal interaction [37, 38]. The 
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soft segments [56–58]. The addition of CNTs into TPU can 
improve the mechanical and electrical properties in the non-
conducting matrix for EMI shielding [59, 60]. The light-
weight microcellular CPCs are particularly desirable for 
practical EMI shielding applications. To obtain the light-
weight EMI materials, foaming makes the processing pro-
cedure easier and improves the EMI shielding performance. 
For example, Zeng et al. assembled anisotropic porous TPU/
CNTs composite foams by the freeze-drying method, and 
the low-density porous composite with the loading of 76.2 
wt% CNTs achieved a SE of about 50 dB [22]. Kim et al. 
used nickel-coated carbon fiber (NCCF)/CNTs hybrid fillers 
as conductive fillers to prepare electrically conductive PU 
composite foams [61]. The EMI SE of PUF/NCCF/CNTs 
composites was 24.7 dB because NCCF and CNTs synergis-
tically contributed to the conductance and magnetic perme-
ability loss. A lightweight microcellular PVDF composite 
foam containing 10 wt% Ni-chains showed an enhanced EMI 
SE (26.8 dB) due to the tailored microcellular structure and 
high-aspect-ratio magnetic-conductive Ni chains [62]. The 
metallic nickel nanoparticles and CNTs can synergistically 
enhance the electrical conductivity, magnetic permeability 
and dielectric loss of the fillers to the electromagnetic wave.

In this study, CNTs were noncovalently modified with 
imidazolium-based PIL by the cation-π noncovalent bond 
interaction and composed with Ni-coated CNT (Ni@CNT) 
to form hybrid fillers. The TPU nanocomposite foams 

(TPU/CNTs/Ni@CNT/PIL) with microcellular structures 
were produced by a non-solvent induced phase separation 
(NIPS), which was a simple and environmentally friendly 
method. Scheme 1 shows the formation of TPU nanocom-
posite foams via the NIPS. The effects of IL content, filler 
content and evaporation time on the microcellular struc-
ture and EMI shielding properties were explored in details. 
In addition, the mechanism of micropore structure regu-
lation was emphasized, and the influences of micropore 
structure regulation on the electrical conductivity and the 
EMI SE were investigated. The EMI shielding mechanism 
of this system was disclosed considering the microstruc-
tures and the network-induced conduction, magnetic loss 
and polarization loss. This research provides a novel and 
efficient way to prepare lightweight and high-performance 
electromagnetic shielding materials.

2  Experimental Section

2.1  Materials

TPU particles were purchased from Bayer AG and were 
polyester-based thermoplastic TPU pellets (790) with a 
density of 1.21 g  cm−3. CNTs and Ni@CNTs (10–20 nm 
in outer diameter, 10–30 μm in length) were supplied 
by Nanjing XFNANO Materials Tech Co., Ltd., China. 
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N,N’-dimethylformamide (DMF) and other reagents were 
provided by Sinopharm Chemical Reagent (China). The 
synthesis and characterization of PIL are shown in Scheme 
S1, Figs. S1 and S2.

2.2  Preparation of TPU Nanocomposite Foams 
via NIPS

The fabrication of TPU nanocomposite foams is schemati-
cally illustrated in Scheme 1. Firstly, the TPU and PIL 
were dissolved in anhydrous DMF with magnetic stirring 
at 80 ℃ for 2 h. Simultaneously, CNTs and/or Ni@CNTs 
were dispersed in the solution of PIL with the aid of soni-
cation. The weight ratio of CNTs to PIL was 4 to 1. The 
suspension of modified CNTs or pristine CNTs was added 
to the TPU solution, and the mixture was subjected to the 
ultrasonic treatment for 2 h to form a homogeneous slurry. 
The resulting slurry was degassed under vacuum and then 
casted on a pre-cleaned planar glass substrate. DMF was 
chosen as polymer solvent, whereas deionized (DI) water 
was used as a non-solvent. The casted film was allowed to 
evaporate for a certain time (3, 15, 30, 60, 90 and 120 min) 
before immersed in the coagulation bath to induce phase 
inversion. The symbol “x” in the TPU/CNTs-x, TPU/
CNTs/PIL-x and TPU/CNTs/Ni@CNTs/PIL-x represents 
the evaporate time (3, 15, 30, 60, 90 and 120 min). This 
step was crucial for forming a porous structure. Then, the 
casted film was immersed into the coagulation bath for 6 h. 
In the casted film, porous structure was formed and solidi-
fied by phase separation process through the exchange of 
solvent (DMF) and non-solvent (water) in the coagulation 
bath. Finally, the TPU composite foams were obtained 
after washing with deionized water to remove the residual 
solvent and drying at 40 ℃ for 24 h. Table 1 shows the 
formulation of TPU composite foams.

2.3  Characterization

The Raman spectroscopy was performed with a Raman 
spectrometer (LABRAM-HR), which is equipped with an 
excitation wavelength of 532 nm. The XPS spectra of the 
samples were obtained via an X-ray photoelectron spec-
troscopy (ESCALAB250Xi, Thermo Fisher). The mor-
phology of sample was observed by a scanning electron 

microscope (SEM, HITACHI, SU-8020). The density (ρ) 
of microcellular foams can be calculated by the water 
displacement method. The electrical conductivity per-
formance was determined using a multi-function digital 
electric meter by a homemade fixture (Victor Tech, Victor 
86-e).

The EMI SE performance of TPU composite foams 
was measured using a vector network analyzer (N5247A, 
Agilent Technologies) in X band [63]. The correspond-
ing dimension of samples was 22.86 × 10.16 × 2  mm3. The 
EMI shielding properties of the as-prepared materials were 
evaluated with S parameters, which were used to calculate 
 SET (total shielding effectiveness),  SER (reflection loss) 
and  SEA (absorption loss) [28].

3  Results and Discussion

3.1  Characterization of CNTs and CNTs/PIL

Figure 1a shows the Raman spectra of CNTs and CNTs/
PIL hybrids. Pristine CNTs generally show three char-
acteristic peaks. The D-band (1348  cm−1) derives from 
amorphous carbon and lattice defects in the structure, the 
G-band (1581  cm−1) corresponds to the tangential vibra-
tions of carbon atoms, and the 2D-band (2697  cm−1) is 
closely related to the electronic band structure of car-
bon nanomaterials [38]. The characteristic peaks of D, 

Table 1  Formulation of TPU composite foams

Sample TPU CNTs Ni@CNTs PIL DMF

TPU 15 – – – 85
TPU/10CNTs 13.5 1.5 – – 85
TPU/15CNTs 12.75 2.25 – – 85
TPU/20CNTs 12 3 – – 85
TPU/25CNTs 11.25 3.75 – – 85
TPU/10CNTs/PIL 13.13 1.5 – 0.38 85
TPU/15CNTs/PIL 12.19 2.25 – 0.56 85
TPU/20CNTs/PIL 11.25 3 – 0.75 85
TPU/25CNTs/PIL 10.31 3.75 – 0.94 85
TPU/15CNTs/5Ni@CNTs/

PIL
11.25 2.25 0.75 0.75 85

TPU/10CNTs/10Ni@CNTs/
PIL

11.25 1.5 1.5 0.75 85

TPU/5CNTs/10Ni@CNTs/
PIL

11.25 0.75 2.25 0.75 85
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G and 2D-bond of CNTs/PIL appear at 1324, 1574 and 
2650  cm−1, respectively. The blue shift of the character-
istic peaks indicates that the electron density of CNTs is 
strengthened owing to the cation-π interaction between 
imidazolium groups in PIL and π-electrons in CNTs. The 
increased intensity ratio of ID/IG from 0.75 to 0.96 indi-
cates that the cation-π interaction affects the π–π electronic 
conjugation and the increase in vibration energy [47].

The C 1 s spectra of CNTs and CNTs/PIL from the XPS 
analysis are shown in Fig. 1b. As shown in Fig. 1b, the C 
1 s signal is reduced in the full scan XPS spectra of CNTs/
PIL sample, whereas there is an obvious presence of F ls, O 
ls and N ls elements because of the modification of CNTs 
by PIL. As calculated, the elemental concentrations ratio 
of C and O in the CNTs/PIL is 14.2, which is much lower 
than that of pristine CNTs (44.9) because of the cation-π 
interactions [41]. The fitted curves of C 1 s spectra of CNTs 
and CNTs/PIL are shown in Fig. 1c, d, respectively. These 
C 1 s spectra can be deconvoluted into various sub-peaks 
with different binding energies: sp2 C=C (284.8 eV), sp3 
C–C (285.1 eV), C–N at 285.7 eV, C–O at 286.3 eV, C=O 

at 287.2 eV, O–C=O at 288.3 eV and π–π* at 290.9 eV. 
The XPS spectra data are displayed in Tables S1 and S2. 
Compared with CNTs, the C 1 s peaks of the CNTs/PIL 
hybrids appear to have two new sub-peaks at around 285.1 
and 288.3 eV because the π-π electronic conjugation of pris-
tine CNTs is affected by noncovalent modifications of the 
PIL [44]. All these results indicate that PIL has successfully 
modified CNTs by noncovalent cation-π interaction, thereby 
improving their dispersion and compatibility in the polymer 
matrix.

3.2  Morphology of TPU Composite Foams

The typical SEM microstructures shown in Figs. 2 and 
S3 are used to explore the effect of CNTs modification 
by PIL on the morphology of TPU composite foams with 
3 min evaporate time and different filler contents. The pore 
size distribution of TPU/10CNTs −3(a) and TPU/10CNT/
PIL−3(b) with 3 min evaporate time is shown in Fig. S4 
and Table S1. The honeycomb microcellular structure of 
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TPU/CNTs and TPU/CNTs/PIL foams was both well-
defined when the filler loading was less than 20 wt% 
because the diffusion of water to casting solution of the 
composite can induce physical gelation and phase separa-
tion [64]. However, the honeycomb microcellular structure 
of TPU/20CNTs and TPU/25CNTs foams was destroyed 
when the filler loading was increased to 20 and 25 wt%, 
because a higher content of CNTs led to the increased 
viscosity of the casting solution. After modifying CNTs 
via PIL, the cell size of TPU/CNTs/PIL composite foams 
is smaller and the microcellular structure is homogene-
ous with the same filler content compared with the TPU/
CNTs composite foams. The reason for this phenomenon 
is that PIL decreases the surface tension gradient at the 
surface of the non-solvent phase and thereby attenuates 
the Marangoni convection. This in turn decreases the 
mass-transfer and the size of solvent dilute phase [65]. In 
addition, the cation-π interaction between PIL and CNTs 

improved the dispersion of CNTs in the casting solution 
and increased the heterogeneous nucleation sites. The 
uniform microcellular structure of TPU/25CNTs/PIL was 
slightly destroyed because of the higher viscosity of the 
suspension. The driving force induced by the solvent con-
centration is affected by the physical barrier of the high 
content filler, which inhibits the mass-transfer and forms 
irregular honeycomb microcellular structure [32, 66].

3.3  Electrical and EMI Shielding Properties of TPU 
Composite Foams

The EMI SE of TPU composite foams containing different 
filler contents with 2 mm thickness and 3 min evaporate 
time is shown in Fig. 3a, b. The EMI SE exhibits fluctua-
tions with frequency because the microcellular structure in 
the entire composite material results in the non-uniformity 

Fig. 2  Typical SEM images for fracture morphology of microcellular TPU/CNTs and TPU/CNTs/PIL composite foams with 3 min evaporate 
time
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of the discrete conductive network size [34]. The EMI SE 
value of TPU composite foams increases with increasing the 
filler content. As the filler content is increased to 20 wt%, 
the EMI SE of TPU/20CNTs and TPU/20CNTs/PIL foams 
is improved to 25.5 and 27.2 dB at 9.0 GHz, respectively. 
By increasing the loading to 25 wt%, the EMI SE value of 
TPU/25CNTs and TPU/25CNTs/PIL foams reaches 30.2 and 
34.1 dB, respectively. The TPU/CNTs/PIL composite foams 
have a higher EMI SE value because PIL coating on the 
surface of CNTs reduces the surface energy and enhances 
the interface between the substrates of TPU [67]. The modi-
fication of CNTs by PIL enhances the dispersion of CNTs 
and increases the viscosity of casting solution in the phase 
separation process. It provides more heterogeneous nuclea-
tion sites and inhibits the aggregation and combination of 
microcellular structure, which plays a role in regulating the 
microcellular morphology and reducing the size of micro-
cellular [33, 34].

The  SET is mainly composed of  SEA,  SER and  SEM. 
 SEM can be ignored when the  SET is greater than 15 dB 

[68]. To further illuminate the EMI shielding mecha-
nism of the TPU composite foams, the measured scatter-
ing parameters are used to calculate the  SEA and  SER at 
9.0 GHz as shown in Fig. 3c, d. Clearly, the  SEA and  SER 
of composite foams increase with increasing the filler 
content. In addition, the  SER occupies a small propor-
tion of the  SET and the  SEA is the main EMI shielding 
mechanism in the X-band for TPU composite foams. The 
multiple reflections of electromagnetic waves caused by 
the microcellular structure and conductive network in the 
foams converted the microwave power into heat dissipa-
tion [52]. The absorption efficiency of TPU/CNTs/PIL 
is slightly higher than that of TPU/CNTs. The absorption 
originates from the electrical conductivity of CNTs, and 
polarization loss between TPU substrates and conductive 
fillers. It can be considered that the smaller microcellular 
structure and more uniformly dispersed CNTs enhance the 
multiple reflection and energy conversion through con-
ductivity and polarization loss [69].
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3.4  Effect of Evaporate Time on Morphology of TPU 
Composite Foams

Evaporate time refers to the time interval between the 
casting solution pouring into the mold and immersing it in 
the coagulation bath. The effect of evaporate time on the 
kinetics and thermodynamic equilibrium of phase separa-
tion process was revealed by SEM. As shown in Figs. 4 
and S5, the morphology of composite foams gradually 
becomes dense with the increase in the evaporation time. 
In contrast, the morphology of TPU/20CNTs is rough and 
has many voids because of the increased viscosity and 

the introduced physical barrier of CNTs. The microcel-
lular structure of PU/CNT composite is almost completely 
destroyed when the evaporation time exceeds 30 min. But 
the microcellular structure of TPU/20CNTs/PIL compos-
ites is not destroyed and becomes more uniform compared 
with that of TPU/20CNTs [53].

The morphological differences can be attributed to the 
effects of PIL and evaporation time during the NIPS pro-
cess. Firstly, PIL-modified CNTs improved the disper-
sion of CNTs, acted as nucleation agents and provided 
numerous nucleation sites for the NIPS foaming process. 
Subsequently, PIL as a surfactant can be dissolved in the 
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Fig. 4  SEM images of TPU/20CNTs and TPU/20CNTs/PIL composite foams with different evaporate time (3, 15, 30, 60, 90 and 120 min)
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solvent, decreases the surface tension of casting solution, 
and then the agglomeration of DI-rich droplets at the liq-
uid/air interface is hindered [30]. Finally with increasing 
the evaporate time, the viscosity of casting solution is 
increased and the formed physical barrier leads to the 
cell agglomeration.

3.5  Effect of Evaporate Time on Electrical and EMI 
Shielding Properties

Figure 5a compares the electrical conductivity of TPU/
CNTs and TPU/CNTs/PIL composite foams with different 
evaporate time. It can be seen that the electrical conduc-
tivity of TPU/20CNTs/PIL-3 (18.9 S  m−1) is 2 times that 
of TPU/20CNTs-3 (9.4 S  m−1). The electrical conductiv-
ity of TPU/20CNTs/PIL-15 (31.2 S  m−1) is 1.5 times that 
of TPU/20CNTs-15 (20.1 S  m−1). When the evaporation 
time exceeds 30 min, the electrical conductivity of the 
TPU/20CNTs and TPU/20CNTs/PIL is increased slowly 

and is of the same order of magnitude. It can be found that 
the electrical conductivity of TPU/20CNTs/PIL is higher 
than that of TPU/20CNTs. It is indicated that the conductive 
network in the composites is gradually improved due to the 
improved dispersion and distribution of the conductive fill-
ers with increasing the evaporation time. These proved that 
PIL is helpful to improve the dispersion of CNTs through the 
noncovalent modification. With the extension of evaporation 
time, the solid–liquid phase separation induced the conduc-
tive filler to be distributed in the rich polymer phase, which 
further improved the conductive network of composite 
foams and finally reached saturation. In summary, the non-
covalent modification of CNTs by PIL and the distribution 
of conductive fillers regulated by solid–liquid phase separa-
tion have significantly improved the electrical conductivity 
of the foams [70].

The densities of the TPU/20CNTs and TPU/20CNTs/PIL 
composite foams with different evaporate time are shown 
in Fig. 5b. It can be seen that the density of both compos-
ite foams increases with the extension of evaporate time. It 
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should be noted that the modification of CNTs by PIL signif-
icantly decreases the density of composite foams. The pres-
ence of PIL optimizes the dispersion of CNTs and increases 
the viscosity of the casting solution. This in turn results in 
uniform cells and reduces mass transfer and density of the 
composite foam [58].

Figure 5c, d shows the EMI SE of the TPU/20CNTs 
and TPU/20CNTs/PIL foams. It is seen that the EMI SE 
of TPU/CNTs and TPU/CNTs/PIL is gradually increased 
as the evaporation time is increased from 3 to 120 min. 
The conductive network is improved with the increase in 
micro-phase separation, which provides more pathways for 
the transition and transmission of free electrons. The results 
indicate that the solid–liquid phase separation improves the 
conductive network of composite foams and reduces the 
microcellular size, which strengthens the multiple reflec-
tion of electromagnetic wave [71]. In addition, compared 
with the TPU/CNTs composite foams, the addition of PIL in 
TPU/CNTs/PIL had given a higher EMI SE value under the 
same condition. The maximum EMI SE of TPU/20CNTs/
PIL reaches 53.3 dB because the PIL improves the disper-
sion of CNTs and provides more transmission of free elec-
trons and stronger interfacial polarization. Uniform micro-
cellular structure and perfect conductive network had a large 
number of electrons or holes acting as carriers of mobile 
charges [28]. Under the action of external electromagnetic 
waves, these carriers are transmitted along the conductive 
network and then convert the EM energy into the thermal 
energy.

In order to further illuminate the influences of filler 
content and evaporate time on the EMI SE of composite 

foams, various filler concentrations were investigated when 
the evaporate time was fixed at 120 min. The results are 
shown in Fig. 6. The EMI SE values of TPU/CNTs and TPU/
CNTs/PIL composite foams are still positively correlated 
with the filler concentration. The EMI SE of TPU/25CNTs 
and TPU/25CNTs/PIL composite foams is 40.6 and 54.6 dB, 
respectively, when the filler content is 25 wt%. The EMI 
SE of composite foams is increased significantly with the 
increase in filler concentration. However, the EMI SE of 
TPU/CNTs/PIL composite foam is stabilized at 60 dB with-
out any significant increase when the filler concentration is 
beyond 20 wt%. This is because the conductive network has 
been substantially improved when the filler concentrations 
are 20 wt%. The further increase in filler concentration has 
a weak strengthening effect on the conductive network and 
may even destroy the microcellular structure of the com-
posite foams [72]. These results are consistent with that 
from SEM images (Fig. 2). Therefore, the EMI shielding 
performance of composite foams mainly originates from 
the formed interconnected CNTs networks and the porous 
structure that attenuate the incident electromagnetic waves 
via multiple reflections [73].

The EMI SE of TPU/CNTs/Ni@CNTs/PIL foams with 
2.0 mm thickness are shown in Fig. 7a. The EMI SE of 
TPU/CNTs/Ni@CNTs/PIL foams is firstly increased and 
then reduced with increasing the Ni@CNTs content. The 
electrical conductivity of TPU/15CNTs/5Ni@CNTs/PIL, 
TPU/10CNTs/10Ni@CNT/PIL and TPU/5CNTs/15Ni@
CNTs/PIL foams with 3 min are 15.3, 12.2 and 8.7 S  m−1, 
respectively. The electrical conductivity of TPU/20CNTs/
PIL with 3 min is 18.9 S  m−1. The electrical conductivity of 
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TPU/15CNTs/5Ni@CNTs/PIL, TPU/10CNTs/10Ni@CNT/
PIL and TPU/5CNTs/15Ni@CNTs/PIL foams with 120 min 
is 65.3, 56.8 and 43.7 S  m−1, respectively. The electrical 
conductivity of TPU/20CNTs/PIL with 120 min is 74.2 S 
 m−1. The electrical conductivity of PU/CNTs/Ni@CNTs/
PIL foams with the same filler content is slightly lower than 
that of PU/20CNTs/PIL because the electrical conductivity 
of CNTs is slightly lower than that of Ni@CNTs. The EMI 
SE of TPU/10CNTs/10Ni@CNTs/PIL foam is 69.9 dB at 10 
wt% Ni@CNTs and 10 wt% CNTs content (Fig. S6 shows 
the Raman spectra and XPS spectra of CNTs/Ni@CNTs/
PIL, Tables S1 and S2 show the date of XPS spectra). The 
EMI SE of TPU/20CNTs/PIL foam is slightly lower than 
that of TPU/10CNTs/10Ni@CNTs/PIL foam.

Figure 7b shows the  SET,  SER and  SEA at 9 GHz of all 
foams. It is indicated that the absorption mainly contributes 
to the EMI SE for all foams. The multi-pore microstructure 
of the foams effectively relieves the impedance mismatching 
between air and absorber when the electromagnetic wave 
propagates to the foams. Thus, the electromagnetic wave 
easily radiates into the interior of foams, resulting in a low 
reflection on the surface. Then, the entered electromagnetic 
microwaves are reflected among these micropores and their 
walls in the composite foams, which is converted into heat 
energy to be dissipated [74]. The conductive linkages of 
CNT/Ni@CNT/PIL act as an inter-transporting charge car-
riers for tunneling more electrons and also enhancing the 
hopping mechanism within the shielded foam material 
[75]. The abundant terminal groups and the large number 

of charge carriers of CNT/Ni@CNT/PIL could interact with 
the incident waves and dissipate them by converting to heat 
[76]. In addition, the polarization loss, which was caused by 
interfacial polarization between TPU substrates and conduc-
tive fillers, conduction loss caused by conductive network 
of fillers and magnetic loss caused by Ni@CNTs, syner-
gistically attenuate the microwave energy. Therefore, these 
results confirm that  SEA plays a primary role in the  SET of 
composite foams.

Figure 8 shows the specific EMI SE (i.e., EMI SE divided 
by the sample density and thickness, SSE) of TPU/CNTs/
Ni@CNTs/PIL with various filler concentrations and 
an evaporate time of 120 min at 9 GHz. The densities of 
TPU/15CNTs/5Ni@CNTs/PIL, TPU/10CNTs/10Ni@
CNTs/PIL and TPU/5CNTs/15Ni@CNTs/PIL composites 
are 0.30, 0.33 and 0.35 g  cm−3, respectively. The density 
of TPU/10CNTs/10Ni@CNTs/PIL increases with increas-
ing the Ni@CNTs loading. The morphology of composite 
gradually becomes dense with the increase in the Ni@CNTs 
content (Fig. S7) because Ni@CNTs are easier to agglomer-
ate than CNTs and the density of Ni@CNTs is greater than 
that of CNTs. The compressive strength of TPU/CNTs/Ni@
CNTs/PIL is slightly decreased with increasing the Ni@
CNTs content (Figs. S8 and S9). The highest specific EMI 
SE of TPU/20CNTs/PIL and TPU/10CNTs/10Ni@CNTs/
PIL reaches up to 187.2 and 211.5 dB/(g  cm−3), respectively.

Figure 9 summarizes the EMI SE and SSE of the foams-
based EMI shielding materials reported in the literatures. 
Table S4 shows the detailed results of the EMI performance. 
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It is indicated that the TPU/10CNTs/10Ni@CNTs/PIL foams 
show a very high SSE (211.5 dB  cm3  g−1). The high SE and 
SSE for the foams derive from its particular microcellular 
structure, which is schematically illustrated in Fig. 10. The 
TPU/10CNTs/10Ni@CNTs/PIL foam has high electrical 
conductivity and magnetic permeability [63]. These CNTs 
possess large specific surface areas and high electrical con-
ductivity. PIL-modified CNTs can wet and interact with PU 
matrix, which are essential for interfacial polarization and 
re-reflections. The magnetic loss is due to the effect of mag-
netic filler Ni@CNT, which introduce more and more mag-
netic dipoles into the PU matrix. In addition, the uniform 
dispersion of CNTs and Ni@CNTs increases the interface 
area between fillers and TPU matrix, which increases the 
interface polarization and causes the interface polarization 
dielectric loss [77]. The small-sized microcellular structure 
adds extensive interfaces and enhances the attenuation of 
incident electromagnetic waves via multiple reflections 
[78]. Thus, the composite foams suggest a great potential in 
applications for aircraft and spacecraft field, which has the 
characteristics of lightweight and efficient specific EMI SE.

4  Conclusion

Lightweight microcellular TPU/CNTs/Ni@CNTs/PIL 
composite foams with high EMI SE are fabricated with an 
environmentally benign and efficient NIPS technique. TPU/
CNTs/PIL composite foams have a higher EMI SE value. 
This is attributed to the PIL coating on the surface of CNTs, 
which reduces the surface energy and increases the interface 
areas between the TPU substrates and the fillers. Moreover, 
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the evaporate time regulates the microcellular structure and 
obviously improves electrical conductivity and EMI shield-
ing properties. The EMI SE of TPU/10CNTs/10Ni@CNT/
PIL foam is 69.9 dB compared with TPU/20CNTs/PIL 
(53.3 dB) at the same CNTs content. The highest specific 
EMI SE of TPU/20CNTs/PIL and TPU/10CNTs/10Ni@
CNTs/PIL reaches up to 187.2 and 211.5 dB/(g  cm−3), 
respectively. The corresponding conduction and magnetic 
loss, polarization loss in the TPU/10CNTs/10Ni@CNTs/PIL 
nanocomposites attenuate the electromagnetic waves. The 
composite foams, which have the characteristics of light-
weight and efficient specific EMI SE, show great potential 
applications in aviation and electronic industrial field.
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