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HIGHLIGHTS

• The characteristics of metal- and metal oxide-based nanozymes with diverse construction are dissertated.

• The intrinsic properties and catalytic mechanism of metal- and metal oxide-based nanozymes are discussed.

• The recent applications of metal- and metal oxide-based nanozymes in biological analysis, relieving inflammation, antibacterial, and 
cancer therapy are reviewed.

ABSTRACT Since the ferromagnetic  (Fe3O4) nanoparticles were firstly 
reported to exert enzyme-like activity in 2007, extensive research progress 
in nanozymes has been made with deep investigation of diverse nanozymes 
and rapid development of related nanotechnologies. As promising alterna-
tives for natural enzymes, nanozymes have broadened the way toward clinical 
medicine, food safety, environmental monitoring, and chemical production. 
The past decade has witnessed the rapid development of metal- and metal 
oxide-based nanozymes owing to their remarkable physicochemical proper-
ties in parallel with low cost, high stability, and easy storage. It is widely 
known that the deep study of catalytic activities and mechanism sheds sig-
nificant influence on the applications of nanozymes. This review digs into 
the characteristics and intrinsic properties of metal- and metal oxide-based 
nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, 
antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes 
constituted of metal and metal oxide nanomaterials.
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Abbreviations
AA  Ascorbic acid
ABTS  2,2’-Azino-bis(3-ethylbenzothiazoline-6-sul-

fonic acid)
3-AT  3-Amino-1,2,4-Triazole
ATP  Adenosine triphosphate
BSA  Bovine serum albumin
CAT   Catalase
CDT  Chemodynamic therapy
Ce6  Chlorine e6
CEA  Carcinoembryonic antigen
CO  Carbon monoxide
CT  Computed tomography
CTP  Cytidine triphosphate
l-Cys  l-Cysteine
EPR  Enhanced permeation and retention
ESR  Electron spin resonance
ELISA  Enzyme‐linked immunosorbent assay
GA  Gallic acid
GOx  Glucose oxidase
GPx  Glutathione peroxidase
GSH  Glutathione
GTP  Guanosine triphosphate
H2O2  Hydrogen peroxide
His  Histidine
HO2

·  Hydroperoxyl radicals
HRP  Horseradish peroxidase
IBD  Inflammatory bowel disease
LFIA  Lateral flow immunoassay
MEDT  Microwave enhancing dynamic-therapy
MNPs  Magnetic nanoparticles
MRI  Magnetic resonance imaging
NCs  Nanoclusters
Neu  Neutrophils
NPs  Nanoparticles
NRs  Nanorods
NSs  Nanosheets
NTP  Nucleoside triphosphate
NWs  Nanowires
O2

·−  Oxygen superoxide anion
O2

1  Singlet oxygen
·OH  Hydroxyl radical
OOH−  Perhydroxyl anion
OPD  o-Phenylenediamine
OXD  Oxidase
PA  Photoacoustic
PDT  Photodynamic therapy
PEGylated  Polyethylene glycol
POD  Peroxidase
pNPP  p-Nitrophenyl phosphate
PSs  Photosensitizers

PTA  Photothermal agent
PTT  Photothermal therapy
PVP  Polyvinylpyrrolidone
RNS  Reactive nitrogen species
ROS  Reactive oxygen species
RONS  Reactive oxygen or/and nitrogen species
SDT  Sonodynamic therapy
SERS  Raman scattering
SOD  Superoxide dismutase
SPR  Surface plasmon resonance
SuOx  Sulfite oxidase
TA  Tannic acid
TAM  Tumor-associated macrophage
TBI  Traumatic brain injury
TMB  3,3′,5,5′-Tetramethylbenzidine
TME  Tumor microenvironment
TNF-α  Tumor necrosis factor-α
US  Ultrasound
UTP  Uridine triphosphate
XPS  X-ray photoelectron spectroscopy

1 Introduction

Enzymes are environmentally friendly biomaterials with 
remarkable catalytic efficiency and substrate specificity 
produced by living cells [1, 2]. Most of the natural enzymes 
are proteins, while a small part are RNA. The past decades 
have witnessed the extensive progress of biological enzymes 
in biology, medicine, chemistry, and industrial science [3]. 
Nevertheless, the complicated preparation procedure, unsta-
ble catalytical activity and intrinsic environmental sensitiv-
ity have restricted the scalable utilization of natural enzymes 
[4, 5]. Therefore, the exploration of alternative artificial 
enzymes to overcome shortcomings of natural catalysts has 
become an issue of increasing concern.

The evolution of nanotechnology and biology provides a 
bridge toward novel artificial enzymes. After the pioneer-
ing work of Gao et al. [6] reporting ferromagnetic  (Fe3O4) 
nanoparticles (NPs) with enzyme-mimicking property in 
2007, a bunch of nanozymes have been demonstrated as 
natural catalysts mimics. For instance, Au@Co–Fe hybrid 
NPs [7],  CuCo2S4 NPs [8],  MnO2 nanowires (NWs) [9], Pt 
nanoclusters (NCs) [10], Au@Pt nanorods (NRs) [11], and 
carboxyl-modified graphene oxide (GO–COOH) [12] have 
been reported as peroxidase (POD) mimics. Nanozymes 
with multi-enzyme-type activities (e.g., Co(OH)2/FeOOH/
WO3 ternary nanoflowers [13], AuNPs [14, 15],  Co3O4 NPs 
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[16], AgPt NPs [17], N-doped sponge-like carbon spheres 
[18],  Mn3O4 NPs [19]) have been exploited in diverse inves-
tigation. Up to date, more than 540 types of nanozymes have 
been synthesized by over 350 research laboratories from 30 
countries [20]. Generally, existing nanozymes are affiliated 
with two categories, namely oxidoreductase family and 
hydrolase family. Carbon-based materials, metal, and tran-
sition metal compounds are the most common nanozyme 
composition materials [21]. Wu et al. reviewed the history 
of nanozyme and draw a brief timeline for the evolution 
of artificial enzymes and natural enzymes (Fig. 1) [22]. 
With extensive efforts devoted to the investigation of arti-
ficial enzymes and nanotechnology, creative breakthroughs 
have been made steadily on the catalytic mechanisms and 
intrinsic properties of nanozymes, as well as the applica-
tion field. In the past two years, the investigation on single-
atom nanozyme (SAN) has aroused numerous attention due 
to their outstanding activity and selectivity [23, 24]. In the 
research of Kim et al. [25], the Fe–N–rGO SAN showed the 
best catalytic efficiency for different substrates among vari-
ous classical POD mimics and natural HRP. Niu et al. [26] 
reported that the Fe–N–C SAN not only possessed excellent 
enzymatic activities, but also exerted splendid stability and 
robustness within a broad temperature and pH range.

Since nanozymes are recognized as a class of func-
tional nanomaterials, they possess both the unique nature 
of nanomaterials and enzyme-like activity [27]. The sur-
faces of metal and metal oxide nanomaterials are covered 
with a large amount of charge, which was responsible for 
their superb electron properties [28]. Consequently, metal- 
and metal oxide-based nanozymes stand out in the area of 

electrocatalysis, sensing and fuel cells [29, 30]. Further-
more, as promising alternatives for natural biocatalysts, 
they commonly retained better stability and robustness under 
extreme conditions than natural enzymes [5]. The promi-
nent physicochemical properties (e.g., high surface energy, 
superior optical, and photothermal conversion properties), 
as well as simplicity in preparation and storage also broaden 
their applications [31]. Interestingly, the catalytic perfor-
mance and physicochemical properties of metal and metal 
oxide nanomaterials could be easily regulated according to 
the practical demand [32, 33]. For instance, surface modifi-
cation has been revealed as a promising strategy to increase 
the biocompatibility of these nanozymes [34–36]. The struc-
ture design associated with the catalytic efficiency is flex-
ible through suitable control of synthetic conditions [37]. 
Given the above ascendency, the research fields of metal- 
and metal oxide-related nanozymes have gradually extended 
from environment to chemical industry, food, agriculture, 
biomedicine, medicine, and so forth [38–40]. Even though 
tremendous efforts were devoted, further promotion of this 
kind of nanozymes is still facing difficulties. For example, 
the enhancement of catalytic activity and selectivity, closely 
associated with the sensitivity and specificity of nanozyme-
based biosensors, remains a challenge [25, 41]. In addition, 
the strengthened physiological stability and biological safety 
is vital for the spread application of nanozymes in clinical 
medicine [42]. Therefore, novel nanozymes and biotechnol-
ogy are urgently needed to make up these defects.

Dozens of excellent reviews concerned with nanozymes 
have been published in recent years. Some of the reviews 
involved the research progress of nanozymes in a particular 
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Fig. 1  A brief timeline for the evolution of artificial enzymes and natural enzymes. Reproduced from Ref. [22] with permission
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field [5, 21, 27, 43, 44]. Some researchers organized and 
revealed the natural activities and working mechanisms 
of specific nanozymes [45–49]. In 2019, Huang et  al. 
[50] systematically discussed the classification, intrinsic 
nature, enzymatic mechanisms and potential applications 
of nanozymes for the first time. However, a thorough over-
view for metal- and metal oxide-based nanozymes is still 
lacking. In this review, we firstly elucidate the characteris-
tics and synthetic methods of metal- and metal oxide-based 
nanozymes. Then, we will dig into the catalytic mechanisms 
and property regulation of these nanozymes. After introduc-
ing their appliance in biological analysis, relieving inflam-
mation, antibacterial and cancer therapy, we finally discuss 
the present challenges and give a future perspective for the 
research of nanozymes constituted of metal and metal oxide.

2  Preparing Diverse Nanozymes 
with Constructive Feature

Generally speaking, the existing metal- and metal oxide-
based nanozymes can be roughly assorted into monometal 
[51], metal alloy [52–54], metal oxide [6, 55, 56], metallic 
core/shell nanostructure [57–59], and hybrid [60] nanomate-
rials in terms of constructive feature. Monometal nanozymes 
are usually noble metal nanomaterials possessing prominent 
chemical stability under natural conditions. They commonly 
possess facile conjugation sites to diverse biomolecule 
ligands and antibodies, remarkable surface plasmon reso-
nance (SPR) properties, superior optical, and photothermal 
conversion properties [61–63]. However, bare monometal 
nanoparticles (e.g., Ag, Pt) tend to aggregate into nanoclus-
ters, resulting in decreasing of catalytic activity [64]. What 
is worse, most bare noble metal nanozymes (except Au) 
have biological toxicity, thus limiting their application in 
clinical medicine. The structure, size, and morphology have 
been proved to influence the catalytic properties of these 
nanozymes [65–67]. Monometal nanozymes could be pre-
pared through preformed-seed-mediated growth [68], high-
temperature reduction method [2, 69–71], electrochemical 
synthesis, photochemical method, biosynthesis [72, 73], and 
spatially confined medium/template approach [74]. With dif-
ferent methods, various forms of noble metal nanomaterials 
(e.g., nanoparticles [14, 15], nanoclusters [10], nanorods 
[75], nanosheets [76], nanocubes) could be obtained. The 
preformed‐seed‐mediated growth is feasible for size control 

by changing the concentration and nature of seeds in the 
growth solution [77]. A variety of small molecules (e.g., 
tannic acid [71], citrate [78]) and macromolecular templates 
including DNA [79], dendrimers [80], and proteins (e.g., 
bovine serum albumin, human serum albumin, lactoferrin, 
pepsin, insulin) [2, 70] have been employed for monometal 
nanozymes synthesis via the high‐temperature reduction 
procedure. The electrochemical strategy could modulate the 
size and morphology of noble metal nanomaterials through 
controlling electrodeposition parameters during the deposi-
tion process.

Metal alloy nanozymes, containing bimetal alloys and 
multimetallic alloys, could be obtained via common chemi-
cal synthesis such as the one-pot strategy [81], galvanic 
replacement reaction [82, 83], co-reduction method [84, 85], 
hydrothermal growth [86], and electrodeposition method 
[87, 88]. Besides, biological strategy [89] and bimetallic 
nanomaterials printing [90] have been present as favorable 
synthesis method as well. The biological strategy is widely 
known as a green synthesis method with biological elements 
as the reducing agents or growth template (e.g., leaf extract, 
plant extract, DNA) [91, 92]. Along with the preparation of 
diverse nanoalloys, researchers found that the composition 
as well as structure affected the enzymatic characteristic of 
metal alloy nanozymes [93, 94]. Therefore, adjusting the 
proportion of various metals, enlarging porosity and spe-
cific surface area of alloy nanomaterials have been recog-
nized as effective approaches to regulate activity. Generally, 
the cost of metal alloy nanozymes is much lower than that 
of monometal nanomaterials as the incorporation of non-
precious metals. Owing to the synergistic effect of the two 
components, bimetal nanoalloys tend to exhibit superiorly 
optical and chemical properties, as well as better catalytic 
performance compared with noble metal nanomaterials [95]. 
Furthermore, the introduction of magnetic metal (e.g., Co, 
Fe, and Ni) could endow alloys with magnetism besides 
optimizing their enzymatic properties [83, 84].

Possessing high surface energy and surface-to-volume 
ratio, metal oxide nanozymes have been considered as prom-
ising artificial enzymes for decades [96]. The most common 
metal oxide nanozymes like  CeO2,  Fe2O3,  Fe3O4,  Co3O4, 
 Mn2O3, and  Mn3O4 nanomaterials have all been reported to 
possess multi-enzyme-like activities [97]. In addition, they 
exhibit plenty of unique properties such as magnetic, fluo-
rescence quenching and dielectric properties [98]. Compared 
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with precious metal nanomaterials, metal oxide nanozymes 
commonly exert lower price and concise synthesis process 
[99]. Furthermore, the low biological toxicity and favora-
ble accumulation in biological tissues have broadened their 
application toward biopharmaceutical [100]. Nevertheless, 
there are some disadvantages of unmodified metal oxide 
nanozymes in terms of biology. For instance, they might 
show awful stability and accelerate the generation of harm-
ful free radicals under physiological conditions [101]. Addi-
tionally, the improper surface ligands coating would lead to 
the failure control of drug release [102]. In recent, diverse 
methods have been employed for metal oxide nanozymes 
preparation, including the hydrothermal [103, 104], solvo-
thermal [105, 106], pulsed laser ablation [107], co-precipi-
tation [108, 109], sol–gel [110], and thermal decomposition 
method [111].

The metallic core/shell (inorganic/inorganic) nano-
structure-based nanozymes could be prepared through the 
hydrothermal reaction [112], solvothermal method [113], 
sol–gel approach [114], and atomic layer deposition [115]. 
By combining different materials and modifying structure, 
researchers could regulate the stability and functionality of 
core/shell structure-based nanozymes conveniently [116]. 
For example, the introduction of  SiO2 as coating signifi-
cantly realized good stability and reduced bulk conductivity 
of the core particles [117]. The dispersion and biological 
safety of magnetite NPs encapsulated by silica could also be 
improved when existed in physiological environment [118]. 
In addition, the Au-coated nanostructure-based nanozymes 
have demonstrated to show enhanced chemical stability, bio-
compatibility, and optical properties [119, 120]. However, 
the accessibility between substrate and the active phase of 
nanozymes could be affected by coating materials [121]. 
Therefore, regulating coatings’ thickness, porosity, and syn-
thesis procedure was demanded to modulate enzyme-like 
capacity and other chemical properties of nanozymes.

The metal- and metal oxide-based hybrid nanozymes 
could be prepared with organic molecules or polymers 
modified on the surface of metal or metal oxide nanoma-
terials [122, 123]. The modifications on the surface of 
hybrid nanozymes are used to optimize the catalytic perfor-
mance, instead of acting as stabilizer during the synthesis 
process [124]. Generally, the intrinsic properties of hybrid 
nanozymes might be ascribed to size, content, and com-
ponents structure [125, 126]. For instance, polymer/metal 
nanozymes have been revealed to show stable catalytic 

capacity in which metal nanoparticles are evenly dispersed 
in polymer [127, 128]. In parallel with enhancing catalytic 
activity and selectivity, the incorporation of polymer or 
organic molecule endows hybrid nanozymes with amazing 
physical, chemical, and mechanical properties (e.g., adsorp-
tion [129], water solubility [130], biodegradability [131]), 
thereby expanding their application in miscellaneous fields 
[124].

The catalytic activities and efficiency of metal- and metal 
oxide-based nanozymes involved in the recent reports are 
listed in Table 1. These nanozymes mainly imitate four kinds 
of natural enzymes, namely POD, oxidase (OXD), catalase 
(CAT), and superoxide dismutase (SOD). The Michae-
lis–Menten constant (Km) and maximal velocity (Vmax) 
reflects the enzyme affinity with its substrate and maximal 
reaction velocity respectively [132]. And the Kcat is the max-
imum number of substrate molecules converted to product 
per enzyme molecule per second. The lower value of Km 
and the higher value of Vmax indicate the stronger catalytic 
activity of nanozymes.

3  Properties of Metal‑ and Metal 
Oxide‑Based Nanozymes

3.1  Catalytic Mechanism

3.1.1  Catalase‑Like Activity

CAT is a kind of binding enzyme with iron porphyrin as its 
prosthetic group [161]. CAT presents in the living tissues 
could catalyze hydrogen peroxide  (H2O2) into oxygen and 
water, hence protecting tissues from excessive  H2O2 [162]. 
Up to now, a series of metal-associated nanozymes, such 
as platinum (Pt) [51], gold (Au) [163],  CeO2 [164],  Mn3O4 
[19], have been demonstrated to show CAT-like activity. 
Although promising in anti-inflammatory, tumor treatment, 
biological detection and many other fields, considerable 
CAT mimics still constrained by the obscure mechanism 
[165, 166]. Li et al. [167] verified that the pre-adsorbed OH 
group on the surface of noble metal served as the active 
site for CAT-like catalytic reaction. Although most reported 
nanomaterial-based CAT mimics showed favorable catalysis 
ability in neutral and alkaline environment, Liu et al. [80] 
firstly reported that amine-terminated PAMAM dendrimer 
encapsulated gold nanoclusters (AuNCs-NH2) displayed 
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Table 1  Intrinsic activity and catalytic efficiency of typical metal- and metal oxide-based nanozymes

Nanomaterial Surface modification Activity Catalyst efficiency: kcat  (s−1), sub-
strate, Km (mM), Vmax (μM  s−1)

References

Monometal
 Au NPs GOx 18.52, glucose, 6.97, 0.63 [133]
 Au NCs Amine-terminated PAMAM den-

drimer
POD,CAT,SOD –,  H2O2,16.0,0.452 (CAT) [80]

 Pt NPs BSA POD –, TMB, 0.119, 0.21 [134]
–,  H2O2, 41.8, 0.167

 Pt NCs POD –, TMB, 0.096, 0.1414 [135]
–,  H2O2, 3.07, 0.1817

 Pd NPs Carboxylated chitosan POD –, TMB,0.09, 0.177 [136]
–,  H2O2, 537.71, 0.112

 Ru NPs HRP, OXD –, TMB,0.234, 0.0825 (HRP) [137]
–,  H2O2, 2.206, 0.583 (HRP)

 Cu NCs POD –, TMB, 0.648, 0.0596 [138]
–,  H2O2, 29.16, 0.0422

 Os NPs Citrate POD 1.72 ×  103,TMB, 0.096, 0.412 [139]
2.35 ×  103,  H2O2, 3.88, 0.565

 Ir NPs Citrate POD,CAT,OXD 5 ×  102, TMB, 0.0906, 1.7 (POD) [140]
4.4 ×  102,  H2O2, 0.27, 1.5 (POD)
–,  H2O2, 21.09, – (CAT)

 Rh NPs Citrate POD 3.87 ×  102, TMB, 0.198, 0.0678 [141]
1.38 ×  103,  H2O2, 0.38, 0.241

Metal alloy
  Au2Pt CAT –,  H2O2, 7.7066, 0.9018 [142]
 AgPt NPs BSA CAT,POD 0.751 ×  103,OPD,0.129,89.71 (POD) [17]

1.075 ×  103,  H2O2,76.05, 128.49 
(POD)

183.735 ×  103,  H2O2,54.30, 16.2 
(CAT)

 Au–Pt NCs Guanosine monophosphate (GMP) OXD –, TMB, 6.805, 2.538 [143]
–, ABTS, 0.1321,0.1798

 Fe–Pt NPs OXD –, TMB, 0.030, 0.0142 [144]
 Pd/Pt NWs OXD –, TMB, 0.058, 0.114 [33]
 NiPd NPs CAT,POD,OXD –, TMB,0.11, 0.0152 (POD) [83]

–,  H2O2, 0.66, 0.2618 (POD)
Metal oxide
  MnO2 NSs HSA OXD –, TMB, 0.042,0.212 [145]
  Mn3O4 NPs OXD –, TMB, 0.08, 0.4817 [146]
  Fe3O4 histidine POD 1.8256 ×  105, TMB, 6.22, 0.157 [105]

1.6965 ×  105,  H2O2, 10.58, 0.1459
  CeO2 NPs Phosphatase –, pNPP, 0.74, 7.33 ×  10–6 [147]
  CeO2 NRs SO4

2− OXD 16.55, TMB, 0.22, 0.48 [148]
  Co3O4 NPs CAT 1.63 ×  104,  H2O2, 34.3, 11.2 [103]
  Co3O4 NPs OXD –, TMB, 0.051, 0.033 [104]

–, ABTS, 0.037,0.032
  Co3O4 nanoflowers POD,CAT, OXD,SOD –, TMB, 0.2830, 0.1052 (POD) [149]

–,  H2O2, 5.9322, 0.0985 (POD)
–,  H2O2,839.85, 1466.66 (CAT)
–, TMB, 0.0469, 0.0459 (OXD)
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CAT-mimicking property not only in acidic environment but 
also over physiological pH range (i.e., pH 4.8–7.4). They 
speculated that the protonation of tertiary amines from den-
drimers in acidic solution could stimulate pre-adsorbing OH, 
thus providing active sites for  H2O2 decomposition to gener-
ate oxygen and water.

In terms of metal oxide nanozymes, Celardo et al. put 
forward a possible catalytic model of  CeO2 NPs with CAT-
mimicking properties in 2011 [168]. In the system,  H2O2 
was firstly bind to the  2Ce4+ binding site presented by the 
oxygen vacancy site of  CeO2 NPs (Fig. 2a➀, ➁). Then, the 
fully reduced oxygen vacancy site was formed as the pro-
tons released and two electrons transferred to the two  Ce4+ 
(Fig. 2a➂). The oxygen was generated from the reduced 
oxygen vacancy site (Fig. 2a➃). Afterwards, another  H2O2 
molecule was bind to the  2Ce3+ site (Fig. 2a➄). The homol-
ysis of O–O bond happened with the transfer of two elec-
trons and a uptake of two protons (Fig. 2a➅). After  H2O 

molecules released, the initial  Ce4+ sites were regenerated 
on nanoceria surface. Interestingly, Mu et al. reported that a 
larger concentration of the perhydroxyl anion  (OOH−) con-
tained in  H2O2 molecule were existed in the neutral and 
alkaline solution [103]. The  OOH− then might interact with 
metal centres of  Co3O4 and form the ·O2H due to its promi-
nent nucleophilic ability compared with  H2O2. With tereph-
thalic acid as the fluorescent probe, it could be found that the 
production efficiency of the hydroxyl radical (·OH) depended 
on the  Co3O4 concentration, indicating that the CAT-type 
property of  Co3O4 NPs would influence the decomposi-
tion of  H2O2 to ·OH. Moreover, thermodynamic and kinetic 
analysis revealed that there might be more “active sites” on 
the surface of  Co3O4 NPs than natural CAT owing to the 
stronger affinity between  H2O2 and  Co3O4 compared with 
natural CAT.

The existing hypothetical mechanisms for the CAT-like 
property of  CeO2 NPs and  Co3O4 NPs mentioned above still 

BSA bovine serum albumin, PVP polyvinylpyrrolidone, PNPP p-nitrophenyl phosphate, LDH layered double hydroxides, HS heparin sodium, 
RGO reduced graphene oxide, His histidine, GOx glucose oxidase, HRP horseradish peroxidase, OPD o-phenylenediamine, NSs nanosheets, 
HSA human serum albumin

Table 1  (continued)

Nanomaterial Surface modification Activity Catalyst efficiency: kcat  (s−1), sub-
strate, Km (mM), Vmax (μM  s−1)

References

 NiO nanoflowers SOD 2.6 ×  1010,  O2˙−, 0.043,35 [106]
Core/shell nanostructure
 Au@Pt POD 1.475 ×  103,TMB, 0.00243, 0.04425 [150]

2.004 ×  103,  H2O2, 0.00407, 0.06013
  Fe3O4@MoS2 POD –, TMB,0.25, 0.111 [151]

–,  H2O2, 1.39, 1.63
  Fe3O4@C NWs POD –, TMB,0.20, 0.0134 [152]

–,  H2O2, 0.23,0.0241
 Co@Fe3O4 POD –, TMB,1.17, 0.379 [153]

–,  H2O2, 0.19,0.715
 Au/CeO2 NPs POD,CAT,SOD –, TMB, 0.29, 0.039 (POD) [154]

–,  H2O2, 44.69, 0.0223 (POD)
  Cu2O@TiO2 NWs OXD 15.25, glucose, –, 0.915 [155]
 Pd cube@CeO2 NPs OXD –, TMB, 0.21, – [156]

Hybrid nanozymes
 PVP/IrPt NPs CAT,POD,OXD –, TMB, 0.16, 2.25 (POD) [157]

–,  H2O2, 0.75, 2.66 (POD)
  Fe3O4/CoFe-LDH POD –, TMB, 0.395, – [158]

–,  H2O2, 10.24, –
  Co3O4@β-cyclodextrin NPs POD –, TMB, 0.17, 0.0281 [36]

–,  H2O2, 1.42, 0.0285
 HS-Pt NPs OXD –, TMB, 0.01012, – [159]
 His@AuNCs/RGO OXD –, TMB, 0.031, 0.0655 [160]
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show certain limitations due to the neglect of the real struc-
tural features discussion [169]. Therefore, Guo et al. [170] 
investigated the possible catalytic mechanism of CAT-type 
activity at atomic or molecular level, involving the base-
like dissociative, acid-like dissociative, and bi-hydrogen 
peroxide associative mechanisms. Based on the calculation 
of thermochemical energies and associated activation barri-
ers, they reported that the bi-hydrogen peroxide associative 
mechanism was most viable for the CAT-mimicking cata-
lytic recycle for  Co3O4. Wang et al. deeply investigated the 
structural and electronic properties of nanoceria to propose 
the atomistic-level mechanisms (Fig. 2b, c) [171]. In their 
model, the  CeO2 (111) surface oxidized  H2O2 molecule to 
form  O2 and a reduced  H2-CeO2(111) surface. Then, anotehr 
 H2O2 molecule would react with the  H2-CeO2(111) surface 
to produce  H2O. As shown in Fig. 2d, the reaction between 
 H2O2 and  CeO2 (111) surface was exoenergetic (energy dif-
ference ΔE =  − 1.40 eV) with a small energy barrier (Ea) 
of 0.35 eV. Since ΔE =  − 2.09 eV and Ea = 0.82 eV, the 

interaction between  H2-CeO2(111) surface and  H2O2 was 
also exoenergetic and kinetically favorable as well (Fig. 2e).

3.1.2  Peroxidase‑Like Activity

Peroxidase, produced by microorganisms or plants, is closely 
related to the growth of animals and plants [172, 173]. The 
peroxidase family is very huge, and most peroxidases are 
heme enzymes with ferric protoporphyrin IX (protoheme) 
as the prosthetic group (e.g., horseradish peroxidase, lignin 
peroxidases, myeloperoxidase) [174–177]. Following the 
blooming exploration on enzymes, peroxidases with sele-
nium (glutathione peroxidase, GPx), manganese (man-
ganese peroxidase), and vanadium (bromoperoxidase) as 
active centers have been widely reported [178–180]. Per-
oxidase catalytically oxidizes organic substrates in which 
 H2O2 acted as an electron acceptor, thereby decomposing 
 H2O2 and effectively eliminating the toxicity of phenols 
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and amines. In 2007, GAO et al. discovered that magnetite 
 (Fe3O4) nanoparticles had a special property that similar to 
HRP [6]. Since then, a series of nanomaterials have been 
unraveled to serve as POD mimics, including metal materi-
als [181], metal oxides [182], conducting polymers [183], 
metal organic frameworks [184], carbon nanomaterials 
[185], single-atom catalysts [186] and so on.

The catalytic mechanisms of various nanomaterial-based 
POD mimics could generally be concluded as Fenton or 
Fenton-like reaction or the electron transfer process [117]. 
Wang et al. [187] prepared  Fe3O4 magnetic nanoparticles 
 (Fe3O4 MNPs) via a reverse co-precipitation method under 
ultrasonic irradiation. The possible catalytic mechanism 
of  Fe3O4 MNPs with POD-type activity was displayed in 
Fig. 3a. The bound  Fe2+ and  Fe3+ activated  H2O2 mol-
ecules that adsorbed on the surface of  Fe3O4 MNPs to pro-
duce ·OH and oxygen superoxide anion  (O2

·−)/hydroper-
oxyl radicals  (HO2

·). Then, the ·OH and  O2
·−/HO2

· radicals 
would induce the subsequent degradation and mineraliza-
tion of Rhodamine B (RhB). However, Maxim et al. [188] 
put forward different opinions about the generation of ·OH 
under conditions of the biologically relevant superoxide-
driven Fenton reaction. Based on the spin-trapping electron 
paramagnetic resonance (EPR) experiments, they discovered 
that the reactions (Eqs. 1–3) at the nanoparticles’ surface 
rather than the metal ions released by the nanoparticles were 
responsible for the POD-mimicking property of γ-Fe2O3 and 
 Fe3O4 NPs (Fig. 3b). What is more, the production effect 
of the catalytic centers on the surface of γ-Fe2O3 was dem-
onstrated to be at least 50-fold higher than that of the dis-
solved metal ions.

The nanocrystalline structure of nanozymes was also con-
sidered to make contribution to the  H2O2-activating ability. 
André et al. reported that the intrinsic POD-like activity of 
 V2O5 nanowires was attributed to surficial properties of the 
nanozymes instead of free orthovanadate anions [189]. They 
proposed a likely reaction mechanism based on analyzing 
the layered  V2O5 orthorhombic structure (Fig. 3c). The (001) 
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surface and the (110) surface were predominantly connected 
to the selective oxidation of hydrocarbons and total oxida-
tion, respectively. The surface sites on the exposed (010) lat-
tice planes of  V2O5 NWs was assumed to be related to their 
enzyme-like property. The V atoms in the (010) plane and 
the electron lone pairs of the bridging oxygen atoms, respec-
tively, acted as Lewis acid and base sites. Consequently, an 
intermediate peroxo species was produced after the reac-
tion between  V2O5 NWs and  H2O2 (Fig. 3d). Afterward, 
the ABTS was bind to the vanadium peroxo species via a 
nucleophilic attack and then oxidized into ABTS*+ species. 
The regeneration of the  V2O5 NWs required another ABTS 
molecule since  H2O2 is a two‐electron oxidant.

In recent years, the electron transfer-related mecha-
nism was applied to a bunch of POD mimics such as  IrO2/
rGO nanocomposites [123], FePt-Au hybrid NPs [190], 
 Co3O4 NPs [191], and AuNPs@CDs nanocomposites [122]. 
Han et al. [9] obtained recyclable biotemplate-based  MnO2 
nanowires with genetically engineered filamentous phages 
M13 as template. As illustrated in Fig. 3e, an electron trans-
fer model was proposed for the reaction mechanism. With 
an electron transferred to  MnO2 NWs, the first substrate 
ABTS was oxidized. Then, another electron would transfer 
from  MnO2 to  H2O2 and hence produced  H2O molecules. 
According to the chromogenic reaction and a series of con-
trol experiments, the enhanced POD-mimetic capacity of 
1D M13-E4@MnO2 nanozymes could be attributed to the 
surface effect, the small size effect and the homogeneous 
distribution of nanocrystals. When it comes to noble metal 
nanozymes, Cui et al. [71] speculated that Ir NPs could 
serve as the electron transfer mediators between  H2O2 
and 3,3′,5,5′-tetramethylbenzidine (TMB) (Fig. 3f). TMB 
adsorbed on the Ir surface provided lone-pair electrons from 
amino group to the Ir NPs, whose electron density was con-
sequently increased. The electrons that transferred from the 
Ir NPs to peroxides would accelerate the oxidation of TMB 
and the reduction of  H2O2.

3.1.3  Oxidase‑Like Activity

Oxidases catalytically oxidize substrate (electron donor) 
and produce  H2O or  H2O2 in the presence of oxygen, which 
is served as the electron acceptor. The oxidase family is 
classified according to the acting group of donors, includ-
ing amino groups, CH-OH group (GOx), Ph-OH group 
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(polyphenol oxidase), sulfur group (sulfite oxidase, SuOx), 
and ferrous ions (ferroxidase and cytochrome c oxidase) 
[192]. Among them, the OXD-mimetic nanozymes that act-
ing on amino groups were widely investigated. Up to date, a 
large amount of metal-based and metal oxide-based oxidase 
mimics have been uncovered, such as CuO [193],  MnFe2O4 

[194], and Pt@MnO2 [58]. The formation of intermediates 
(e.g., singlet oxygen, oxygen superoxide anion) and electron 
transfer process have been demonstrated to have important 
impacts on the OXD-type properties of these nanozymes 
[195]. The possible reaction mechanism of  Mn3O4 NPs 
proposed by Zhang et al., which was illustrated in Fig. 4a 
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[196]. The electrons that transferring from manganese to  O2 
caused the formation of  O2

·−, part of which was responsi-
ble for the generation of  H2O2 and  O2 via non-enzymatic 
or SOD-catalyzed dismutation. Then, some of produced 
 H2O2 would react with the dissolved  Mn2+ and decomposed 
into ·OH. Afterward, the intermediate ·OH/O2

·− and  Mn3+ 
would oxidize the TMB, thus forming the TMB–Mn3O4 NP 
system. As a concerned nanomaterial, the  CeO2 has been 
demonstrated to exhibit multi-enzyme-mimicking activities. 
Cheng et al. probed into the  O2-dependent catalytic behav-
ior of nanoceria and confirmed its OXD-type activity under 
the studied conditions [197]. In the reaction mechanism, the 
 O2 molecules were adsorbed onto defect sites of nanoceria 
and converted into  O2

·− under acidic conditions (Eq. 4). As 

the surface  Ce4+ reduced to  Ce3+, the TMB was oxidized 
into  TMBox (Eq. 6). As the main intermediate, the in situ 
produced  O2

·− finally regenerated  Ce4+ via the oxidation of 
 Ce3+, accompanied by the generation of water (Eq. 7). Alter-
natively, the oxidation of TMB could be directly initiated by 
 O2

·− as well (Eq. 5).
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Mechanism study on the nanozymes mimicking the other 
members of the oxidase family has made great progress as 
well. Following the exploration on the  MoO3 NPs as SuOx 
mimics [198], Chen et al. synthesized PEGylated (polyeth-
ylene glycol)‐MoO3−x nanoparticles (P‐MoO3−x NPs) that 
could catalytically oxidize sulfite. As shown in Fig. 4b, the 
sulfite was oxidized into sulfate with the two electron oxida-
tive hydroxylation. Following the reduction of [Fe(CN)6]3−, 
one electron then transferred in succession to the  MoV inter-
mediate for the stabilization of the inactive  MoIV state. In 
terms of nanozymes with GOx-like acticity, Comotti et al. 
put forward a two-electron mechanism to explain the intrin-
sic catalytic activity of the Au NPs (Fig. 4c) [199]. In their 
model, the hydrated glucose anions that formed in the pres-
ence of alkali were adsorbed on the surface of AuNPs. The 
gold surface atoms on the hydrated glucose then activated 
molecular oxygen and formed the dioxogold intermediate, 
which provided a bridge  (Au+–O2

− or  Au2+–O2
2− couples) 

for the electron transfer. After two electrons transferring 
from glucose to dioxygen, the gluconic acid and  H2O2 were 
finally generated. Zhang et al. [200] prepared crown-jewel-
structured Au/Pd nanoclusters with high reactivity. The ani-
onic charge on the top Au atoms may directly contribute 
to the high GOx-like activity since a hydroperoxo-like spe-
cies was formed during the electron transfer progress form 
the anionic top Au atoms to  O2. In addition, the PtCu NPs 
were reported to possess ferroxidase-like activity isolated 
from the impact of other ions based on the Fenton-like reac-
tion [201]. Despite the obscure mechanism, the Pt NPs (as 
catechol oxidase mimics) [202], Au nanorod/ Pt nanodot 
structures (as ferroxidase mimics) [203],  Cu2O NPs (as 
cytochrome c oxidase mimics) [204] and many other metal- 
and metal oxide-based nanozymes have broaden the way 
toward the prosperity of OXD mimics.

3.1.4  Superoxide Dismutase‑Like Activity

Superoxide dismutase is a kind of metalloenzyme that 
mainly distributed in microorganisms, plants and animals. 
Oxidative stress, involving the increasing concentration of 
reactive oxygen species (ROS), is considered to be an impor-
tant factor in aging and disease [205]. ROS refers to the 
reduction products of oxygen in the body, including oxygen 
radicals (e.g.,  O2

·−, ·OH,  HO2
·) and certain nonradical oxi-

dizing agents (e.g., ozone,  H2O2, hypochlorous acid) [206]. 
SOD is selected as a favorable tool to anti-oxidation and 

anti-aging since it could transform superoxide anion radicals 
into  H2O2 and  O2 [207]. Numerous nanomaterials have been 
proven as SOD mimics, such as  Mn3O4 [208], Au[63],  MnO2 
[209], and  CeO2 [210]. The coupled electron-transfers model 
was once accepted as a rational mechanism to explain the 
SOD mimetic property of  CeO2 NPs as shown in Fig. 5a 
[168]. Following the oxidative half-reaction (Fig. 5a➀–➃, 
same as that in Fig. 2a), a  O2

·− molecule would bind to the 
reduced oxygen vacancy site (Fig. 5a➄). Then,  H2O2 was 
released with the absorption of two protons and the transfer 
of electron from one  Ce3+ (Fig. 5a➅). The original nanoce-
ria state would be regenerated by repeating this reaction with 
a second  O2

·− molecule (Fig. 5a➆). However, this model was 
questioned since Cafun et al. demonstrated the absence of 
spin-unpaired  Ce3+ sites in colloidal nanoceria via means 
of high-energy resolution hard X-ray spectroscopy [211]. 
Given profound consideration about the true structure and 
electronic characteristics of cerium oxide, Wang et al. pro-
posed a polished catalytic cycle mechanism for nanoceria as 
SOD mimics [171]. The surface defect states were critical to 
the enzyme-like activity in this model. After the coadsorp-
tion of  HO2

· onto the surface of  CeO2, the intermediate was 
formed as shown in Fig. 5b. Then, the reaction between the 
intermediate and another  HO2

· radicals could release  H2O2 
and  O2, with the nanoceria restored to the initial state.

With the assistance of rigorous density functional the-
ory and microkinetic modeling, Guo et al. investigated the 
Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mech-
anisms to describe the SOD-like activity of  Co3O4 [170] 
and  Fe3O4 [212] respectively. As illustrated in Fig.  5c, 
the ER mechanism is more viable for  Co3O4 as the barri-
ers involved through ER mechanism was lower than those 
along LH mechanism [170]. The  O2

·− molecule would cap-
ture a proton from water to form  OH− and  HO2

·. The ER 
mechanism began with the chemisorption of  HO2

· on the 
surface of  Co3O4 to generate the intermediate (INT1) and 
the adsorption energy was − 35.52 kcal  mol−1. Hereafter, 
INT1 would react with a second  HO2

· to release  H2O2 and 
 O2, accompanied by the regeneration of  Co3O4. The activa-
tion barrier of the elementary reaction passing through the 
transition state (TS1) was 19.02 kcal  mol−1. When it comes 
to  Fe3O4, the LH mechanism is viable since the barrier along 
the LH mechanism is lower (Fig. 5d) [212]. Two  HO2

· mol-
ecules were absorbed on the surface of  Fe3O4 to from the 
intermediate (INT2) with OOH* and HOO* species. Then, 
the O–H bond of OOH* species was split and the H atom 
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was combined with the nearby O atom of HOO* (TS2). The 
 H2O2 and  O2 molecule were produced with the  O2 molecule 

binding to the Fe site. Finally, the  H2O2 and  O2 molecule 
were released.
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3.1.5  Others

Compared with oxidoreductive family, the reports about 
metal- and metal oxide-based nanomaterials with hydrolase 
mimetic activities are relatively rare. The peptide-functional-
ized monolayer protected gold clusters (Au MPCs) have been 
demonstrated as mimics of nuclease, esterase and silicatein 
[213–216]. The functional groups present on the protect-
ing shells of Au MPCs were fundamental to their catalytic 
activities [217]. In addition, the CeNPs have been uncovered 
to show phosphatase-like property since they could cleave 
the phosphate ester bond of ATP, pNPP, and o-phospho-
l-tyrosine [218–220]. The key to their catalytic phosphate 
ester bond cleavage lied on the availability of cerium(III) 
sites. Dhall et al. prepared CeNPs with phosphatase and 
CAT-mimetic activities via the wet chemical method [147]. 
The kinetic studies using pNPP as the substrate indicated 
that their phosphatase-type catalytic mechanism followed 
the saturation-based kinetics with Vmax and Km values of 
0.44 nmol  min−1 and 0.74 mM, respectively. In their study, 
the tungstate and molybdate tend to inhibit the phosphatase 
mimetic activity of CeNPs owing to the interaction of anions 
with the CeNPs surface.

3.2  Regulation of Catalytic Activity

3.2.1  Morphology

Previous studies have demonstrated that the morphology 
control would affect the catalytic activity of nanozymes to 
a large extent [146]. Exploration on the relevance between 
morphology and catalytic activity mainly involved surface 
area, pore size and volume. Tian et al. prepared  VO2 NPs in 
three kinds of morphologies (fibers, sheets and rods) as POD 
mimics [221]. The  VO2 nanofibers performed best in the 
 H2O2 and glucose colorimetric assay due to their largest spe-
cific surface area. Singh et al. [222] compared  Mn3O4 NPs in 
cube-, polyhedron-, hexagonal plates-, lakes- and flower-like 
morphology (Mnf). The larger size and higher surface area 
seemed to create higher catalytic activity of Mnf. Moreover, 
the multi‐enzyme property of Mnf could be ascribed to the 
larger pore size, which would hold the substrates and cofac-
tor for the catalytic reactions.

The effect of surface facets has gradually become a focus 
in morphology control as it determines surface energy 

or surface reactivity [223]. Huang et al. [55] found the 
OXD-type activity of  CeO2 nanorods with unique {110} 
planes was more ingenious than that of nanopolyhedra and 
nanocubes. In the research of Mu et al. [224], the catalytic 
activities of  Co3O4 materials were in the order of nano-
plates > nanorods > nanocubes. The difference in lowering 
energy barrier and electron transfer ability might be related 
to distinct POD-like properties of three kinds of  Co3O4 
nanozymes. Ge et al. [67] reported that the Pd octahedrons 
enclosed by {111} facet structure showed lower surface 
energy, which were more sensitive to CAT-type property and 
ROS-eliminating capacity than the Pd nanocubes enclosed 
by {100} facet structure. As shown in Fig. 6a, the reaction 
energy on Pd {111} and Pd {100} was 2.81 and 2.64 eV 
respectively, indicating the more possible homolytic disso-
ciation of  H2O2 molecule on the surface of Pd {111} facet. 
In contrast, Fang et al. found that OXD- and POD-type 
activities of Pd nanocubes {100} were higher than that of 
Pd octahedrons {111} [225]. The binding between  O2 and 
Pd {100} facet (an adsorption energy of − 1.40 eV) was 
much stronger than that between  O2 and Pd {111} facet due 
to the higher adsorption energy at Pd {100} facet (Fig. 6b). 
Also, the activation energy of surficial  O2 dissociation for 
{100} facets (0.31 eV) was lower than that for the {111} 
facets (0.67 eV). Thus, the energetically more favorable dis-
sociative adsorption of the  O2 molecule on the Pd {100} 
facet explained its higher OXD-like activity. In terms of 
POD capacity, the homolytic dissociation reaction on the 
Pd {100} facet was more feasible than on the Pd {111} facet 
considering the reaction energy (Fig. 6c).

3.2.2  Size

Generally speaking, size sheds significant influence on the 
properties of diverse nanomaterials [226]. In most cases, 
the nanozymes with smaller size tend to be more active in 
catalytic reactions ascribed to the larger specific surface 
area. For example, Xi et al. [32] reported the size‐depend-
ent POD-type properties of Pd–Ir NPs within the size range 
from 3.3 to 13.0 nm. With an enzyme‐linked immunosorb-
ent assay (ELISA) as a model platform, they attributed the 
higher catalytic properties of the smaller nanoparticles to 
their diffusivities and reduced steric effect. Luo et al. consid-
ered that the amount of surficial Au atoms was the key point 
to control the catalytic reaction rate, thus explaining the 
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size-related GOx mimics activities of AuNPs [133]. They 
prepared  CeO2 NPs with SOD- and CAT-mimetic capaci-
ties in four kinds of sizes (4.5, 7.8, 23, and 28 nm) [227]. 
The decreased particle sizes could increase the  Ce3+ frac-
tion along with enhancing catalytic efficiency. Interest-
ingly, Liu et al. [228] discovered that the catalytic activity 
of β-Casein–AuNPs (β-casein functionalized AuNPs) was 
increased in the order of 4.2, 2.8, and 8.7 nm. Obviously, the 
smallest β-Casein–AuNPs did not possess the best POD-like 
activity. They deduced that the coated protein might affect 
the proximity between substrates and the nanozyme core, 
which also determined the enzyme-like property.

3.2.3  Surface Valence State

The controls of the surface valence state and oxygen vacan-
cies are considered as essential factors to modulate catalytic 
properties. Researches have demonstrated that the surface 
oxidation state of nanoceria played a considerable role in 
tuning the enzyme-like properties of  CeO2 due to the asso-
ciation between  Ce3+ and oxygen vacancies. Pirmohamed 

et al. verified that the  H2O2 decomposition rate of nanoceria 
increased with the decreasing of  Ce3+/Ce4+ redox state ratios 
[229]. In contrast, the reduced  Ce3+/Ce4+ ratio was respon-
sible for the decay of SOD mimetic capacity [230]. Besides 
 CeO2 nanozymes, Wang et al. reported that the POD mim-
icking activity in Ni-based nanozymes was associated with 
the oxidation state of Ni [231]. In their study, the catalytic 
performance of porous  LaNiO3 perovskite was about 58- 
and 22-fold higher than that of NiO and Ni NPs, indicating 
the Ni oxidation state-dependent POD-like properties of Ni-
based nanomaterials. Moreover, they proved the significance 
of  Ni3+ in regulating catalytic activities via the comparison 
between  LaNiO3-H2 and  LaNiO3 nanocubes, in which the 
ratios of  Ni3+ were different. With tuning copper states from 
 Cu0 to  Cu2+, Xi et al. found that the multi-enzyme-like activ-
ities (POD, CAT and SOD) of copper/carbon nanozymes 
were closely related to the Cu state [232]. Fan et al. realized 
surface valence state control on Au-based nanozymes for 
the first time [233]. In their system, the catalytic efficiency 
for substrate oxidation (TMB and  H2O2) decreased with the 
reduced ratio of Au(I) complex in Au Aerogels.
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Er = −2.64
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Fig. 6  a Lowest-energy adsorption structures and reaction energies (in eV) for the reactions on the Pd {111} and {100} facets. b, c Relative 
energies (eV) of  O2 dissociative adsorption and O–O atomic distances (Å) on the Pd {111} and {100} facets. Adapted from a Ref. [67], b, c Ref. 
[225] with permission
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3.2.4  Composition

The composition control of nanozymes provides possibility 
to tune their catalytic activity [33]. Some studies demon-
strated that the catalytic performance and Raman scatter-
ing (SERS) activities of AgAu, AgPd, and AgPt NPs are 
more obvious than that of Ag NPs [234–236]. Similarly, 
alloying with other metals (e.g., Pd, Au, Cu, and Co) has 
also been regarded as feasible solutions to catalytic ability 
regulation of Pt NPs [237]. In fact, adjusting the proportion 
of components and designing metallic core/shell structure-
based nanomaterials are both feasible solutions modulate the 
enzyme-like properties [154, 238]. Liu et al. speculated that 
the Pt/Ru molar ratio would affect electronic variation and 
electronic charge transfer effects of PtRu nanoalloy, thereby 
tuning their POD- and OXD-like activity [239]. In their 
work, the enzyme-type property was enhanced in the order 
of  Pt40Ru60, Pt,  Pt75Ru25, and  Pt90Ru10. He et al. reported 
that the change of Au/Pt molar ratio not only influenced 
structure of AuPt alloy NPs, but also improved the catalytic 
reaction rates when increasing Pt/Au ratio [85]. To inves-
tigate the metallic core/shell structure-based nanomateri-
als, Xia et al. adjusted the amount of Ir precursor to obtain 
Pd–Ir cubes with different Ir shells [240]. In this work, the 
Ir shells at certain thicknesses would effectively increase 
the surface reactivity of Pd and reduce the dissociation diffi-
culty of  H2O2 molecules. Moreover, the thickness of Ir shells 
could enhance or weaken the ligand effect stemming from 
the interaction of Ir monolayer with Pd substrate, in which 
the Pd(100) surface with single Ir layer was more active 
than that with three Ir layers during the oxidation process 
of TMB.

Owing to the synergetic effects between ceria and het-
eroatoms, doping  CeO2 with suitable foreign atoms is 
favorable to boost the catalytic activity [241]. By replac-
ing  Ce4+ ion in the  CeO2 lattice, the incorporation of het-
eroatoms tends to strengthen surface defects in the  CeO2 
lattice via generating more oxygen vacancies for oxygen 
migration and diffusion [242, 243]. Among diverse het-
eroatoms, the introduction of one-dimensional nanow-
ires achieved the best catalytic activity enhancement effect 
[244]. Zhang et al. synthetized  CeO2 nanozymes doped with 
different metal elements (such as Ag, Cr, Co, Rh, Pd, Mn, 
and Ni) and possessed multi-enzyme-like activities, herein 
the Cr/CeO2 nanozymes owned best catalytic performance.
The  Cr3+ incorporation could improve surficial  Ce3+/Ce4+ 

ratio, thus reinforcing the catalytic capacity of  CeO2 NPs 
[245]. In addition to the types of doped atoms, the amounts 
are critical to regulate activity of nanozymes as well. Jam-
paiah et al. revealed that the catalytic efficiency toward TMB 
oxidation of 6%  Fe3+-doped  CeO2 NRs was the best among 
the  CeO2 NRs incorporated with 3, 6, 9, and 12% Fe respec-
tively [246]. The Raman and X-ray photoelectron spectros-
copy (XPS) results indicated the higher amount of surface 
defects including  Ce3+ ions and oxygen vacancies in the 6% 
 Fe3+-doped  CeO2 nanozymes.

3.2.5  Surface Modification

Surface modification ranging from functional group, 
inorganic ions and small molecules to macromolecules 
has been revealed as a promising strategy to regulate the 
mimetic enzyme properties of metal- and metal oxide-based 
nanozymes by affecting their surface chemistry [247–249]. 
For instance, ligands such as glutathione (GSH), dendrimer, 
DNA, and protein tend to protect metal nanoclusters from 
aggregation, thence reinforcing the stability, biocompat-
ibility and catalytic activity of nanozymes [250, 251]. Liu 
et al. reported that the catalytic efficiency of the DNA-
capped iron oxide NPs as POD mimics was about tenfold 
higher than that of naked NPs [252]. The DNA coatings 
not only strengthened combining capacity with the amino 
groups of TMB via hydrogen bonding, but also provided 
the π–π stacking for nucleobase interacting with the ben-
zene rings of TMB, which effectively enhanced the affin-
ity of  Fe3O4 NPs toward TMB. Huo et al. modified  Co3O4 
nanoplates with the amino group  (NH2-Co3O4), carboxyl 
group (COOH-Co3O4), hydroxyl group (OH-Co3O4), and 
sulfhydryl group (SH-Co3O4) in respective, and then sys-
tematically studied their catalytic activities [253]. Except 
hydroxyl group, the other functional groups all possessed 
positive effect to enhance POD-like activities, and among 
which the  NH2-Co3O4 nanoplates ranked the first. Huo 
et al. considered the functional groups’ influence on the 
electron transfer ability of nanozymes was critical to modu-
lating their catalytic properties. Yue et al. [254] prepared 
functionalized ceria nanorods catalysts M/CeO2 (M =  Fe3+, 
 Co2+,  Mn2+,  Ni2+,  Cu2+,  Zn2+) via chelating metal ions onto 
ceria nanorods  CeO2 surface. These metal-chelated nanoce-
rias have all possessed enhanced POD-mimicking property 
and Mn(II)/CeO2 showed best catalytic performance. The 
researchers found that the synergistic effect of metal ions 
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and  CeO2, along with the carboxyl groups served as sub-
strate binding sites, was critical to the promotional effect 
on the enzymatic activity. The addition of  F− into nanoceria 
obviously caused the generation of more oxygen vacancies, 
facilitating electron transfer between the  Ce4+/Ce3+ redox 
couple as well as the stimulating product desorption, thereby 
enhancing OXD-mimetic capacity of nanoceria by fluoride 
capping [255].

3.2.6  External Triggers

(1) pH and temperature

Up to date, the enzyme-like activities of numerous metal- 
and metal oxide-based nanozymes have been verified to 
be sensitive to pH and temperature [17, 256–258]. The 
POD-type property of Fe@PCN-224 NPs was optimal in 
pH 3.5 with the temperature of 45 °C [259]. And the activ-
ity could remain 80% and 90% of the highest activity at 25 
and 37 °C, respectively. Although an increasing number of 
novel nanomaterials have shown high enzyme-like property 
within a wide temperature range, the catalytic activity of 
nanozymes would slightly decrease when the temperature 
was not at optimal [260]. Liu et al. [261] found that the ROS 
eliminating activity of Pt NPs was strengthened with the 
increment of environment pH by the assistance of electron 
spin resonance (ESR) spectroscopy and spin traps. It has 
been reported that Pt NPs [261], Ag NPs [262] functioned 
as POD mimics in acidic conditions while exhibited CAT-
like activities in neutral and alkaline environment. What 
is more, Pt and Au NPs were demonstrated to show SOD 
mimetic capacity under neutral conditions [63, 261]. Li et al. 
[167] dug into the pH-switchable enzyme-like properties of 
Au, Ag, Pt, and Pd nanozymes. The adsorption of  H+ and 
 OH− ions on the metal surface was feasible under acidic and 
basic conditions, respectively. The base-like decompositions 
of  H2O2 in low-pH conditions was fundamental to the POD-
like activities of Au, Ag, Pt and Pd nanozymes while their 
CAT-type activity was related to the acid-like decomposi-
tions of  H2O2 in high-pH conditions.

(2) Hydronium

The catalytic activity of nanozymes could also be affected 
by metal ions (e.g.,  Fe3+,  Hg2+,  Ni2+,  Cd2+, and  Al3+) and 
anions (e.g.,  S2–,  F–,  Cl–,  Br–, and  I–) [136, 263, 264]. For 

example, heavy metal ions might inhibit catalytic activities 
of metal- and metal oxide-based nanozymes, which could be 
ascribed to the metallophilic interaction between nanozymes 
and heavy metal ions, including the deposition of metal ions 
[265], the formation of alloy on the surface of nanomaterials 
[266], and the leaching of surface atoms [267]. The inte-
gration between heavy metal ions and the surface ligands 
also affected the catalytic performance of nanocomposites 
by deposing of ligands or decreasing affinity toward sub-
strate [268, 269]. Han et al. conjectured that the promotional 
or block effects of  Ca2+,  Fe3+,  Hg2+, and  Mn2+ toward the 
CAT-type property of  Co3O4 NPs were related to their influ-
ence on the electron transfer rate in  Co3O4 [270]. In the 
report of Liu et al., the  S2– at low ion concentration tended 
to inhibit the POD-mimetic catalytic reactions of β-casein 
stabilized Pt NPs (CM–PtNPs) toward TMB while switch on 
their enzyme-like activity toward ABTS [264]. Besides, the 
sulfide-mediated activity switching efficiency decreased with 
the increment of  S2– concentration. Fluorescence spectra and 
X-ray photoelectron spectroscopy (XPS) data revealed that 
the key of  S2–-mediated activity switching mechanism lied 
in the structure change of protein molecule and ratio change 
of  Pt2+/Pt0 with the introduction of sulfide ions.

(2) Light

The photothermal effect and light-induced electron trans-
fer have been demonstrated to be involved with the photo-
enhanced enzyme-like activity of nanozymes [271–273]. 
With AuNPs and α-FeOOH microcrystals grown on porous 
carbons, Zhang et al. obtained Au/α-FeOOH–FPC catalysts 
with visible-light-driven enzymatic property [274]. Herein, 
the system temperature was raised to accelerate the pro-
cess of glucose oxidation when the Au NPs converted the 
absorbed light energy into heat. And the generated gluconic 
acid could lower surrounding pH to stimulate the enzymatic 
reaction. Furthermore, hot electrons from plasmon-excited 
AuNPs promoted charge separation at the interface of Au/α-
FeOOH, resulting in efficient cycling of  Fe3+/Fe2+ to pro-
duce Fenton reaction. The introduction of visible light has 
increased the POD-type activity of  Fe2O3 NPs by at least 1.2 
times in the research of Zhu et al. [275]. They found that the 
light-related catalytic property of  Fe2O3 nanozymes was con-
cerned with the bandgap and light absorption range, which 
were responsible for the barrier density generation and the 
light energy absorption. In addition, the influence on the 
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enzyme mimetic properties changed according to the type 
of light excitation. Wang et al. discovered that the catalytic 
activity of Au/Si/Azo (AuNPs encapsulated and dispersed 
by the azobenzene- modified expanded mesoporous silica) 
was activated under UV illumination while inhibited under 
visible light [276]. The control of the host–guest interaction 
between Azo and cyclodextrin (CD) via the isomerization 
between trans and cis conformations of Azo was significant 
to the activity regulation by UV or visible light.

(4) Others

Nucleoside triphosphates (NTPs) including adenosine 
triphosphate (ATP), guanosine triphosphate (GTP), cyti-
dine triphosphate (CTP) and uridine triphosphate (UTP) 
have been considered as promoters for nanozymes owing 
to the coupling of their hydrolysis with oxidative reaction 
[220]. Vallabani et al. discovered that the employment of 
ATP could reinforce the affinity between  Fe3O4 NPs and 
their substrate, thus maintaining the POD mimetic capacity 
of  Fe3O4 nanozymes within a wide range of pH and tempera-
ture [277]. Interestingly, Cheng et al. [197] found that the 
introduction of ATP might restrain the enzymetic reaction of 
nanoceria in prolonged reactions despite its initial enhancing 
effect. They attributed the inhibition to Ce–PO4 complexes 
formation in the presence of ATP, which could interact with 
nanoceria and shield active centers. Furthermore, Jia et al. 
[278] reported that the antioxidants possessed inhibitory 
effect on the POD-type property of  Co3O4 NPs. The addition 
of gallic acid (GA), tannic acid (TA) and ascorbic acid (AA) 
would slow the catalytic reaction toward the TMB or OPD, 
among which the influence of TA was the highest because 
of its numerous phenolic groups.

4  Applications of Metal‑ and Metal 
Oxide‑Based Nanozymes

4.1  Applications in Analytical Field

As mentioned above, metal- and metal oxide-based nanozymes 
normally come along with unique physicochemical properties 
including high surface-to-volume ratio, enzymatic activity and 
good biocompatibility. These capabilities endow them with 
promising applications in target substances detection follow-
ing the extensive exploration of biosensing schemes [279]. 

The integration of nanozymes and conventional determina-
tion technologies containing colorimetric, electrochemical, 
and fluorescence has gradually become optimal candidate for 
biological analysis. The past decade has witnessed the inclu-
sive utilization of novel nanozyme-based sensors in detecting 
proteins, glucose, heavy metal ions, pathogen microorganisms 
and many other substances.

4.1.1  Heavy Metal Ions

Previous studies have illustrated that excessive heavy metal 
ions are one of the culprits of environmental pollution [280]. 
Furthermore, heavy metal ions could invade human body 
through water and food, resulting in permanent chronic 
poisoning [281]. Therefore, detecting heavy metal ions is 
of great significance to protect ecology and human health. 
Nevertheless, most analytical platforms (e.g., atomic absorp-
tion spectrometry, energy-dispersive X-ray, and inductively 
coupled plasma mass spectrometry) for heavy metal ion 
analysis relied on expensive instruments and professional 
technicians [282]. Nanozymes provided a potential to simul-
taneously improve the performance of metal ion detection 
with low cost. For instance, Han et al. designed a portable 
paper chip based on AuNPs (AuNZ-PAD) to investigate 
 Hg2+ in distilled and tap water samples, in which Au–Hg2+ 
integration could influence enzyme-like catalytic activity of 
AuNPs and caused paper discoloration (Fig. 7a) [226]. This 
ultrasensitive AuNZ-PAD further cooperated with mobile 
phone camera, effectively reducing the cost of assay and 
simplifying the operation.

Among the classical analytical assays basing nanozymes, 
colorimetric stood out for the operation convenience. Some 
references concluded that heavy metal ions might enhance 
or inhibit the POD-like property of nanozymes [283–285]. 
Hence, histidine(His)-Pd [268],  MMoO4 (M = Co, Ni) [286], 
DNA-Ag/Pt [287],  MnO2 [288] have been synthesized for 
 Ag+ [268],  Cu2+ [286],  Hg2+ [287, 288] monitoring by 
colorimetric assay. In addition,  Pb2+ ions would accelerate 
the AuNPs leaching in presence of  S2O3

2− and lead to less 
oxidation of TMB, expanding the  Pb2+ determination with 
the assistance of nanozymes [289, 290]. Xie et al. [291] 
fabricated a colorimetric probe by using metallic nanozyme 
to determine  Pb2+. The Au@Pt NPs served as POD mimics 
were introduced, which could detect  Pb2+ ions in the lake 
water samples within a linear range from 20 to 800 nM.
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As high electrolyte has an adverse effect on the cata-
lytic performance and stability of nanozymes, analyzing 
heavy metal ions in seawater is much more difficult than 

other liquid samples such as lake water and drinking water 
[292]. Logan et al. quantitatively determined mercury ions 
in complicated water matrices using OEG-Au complex by 
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functionalizing AuNPs with oligo-ethylene glycol (OEG) 
[293]. In this proposal, OEG-AuNPs exhibited enhanced 
stability and weakened catalytic properties in a wide pH 
range under high NaCl concentration, which effectively 
ameliorated the poor stability of bare-AuNPs (Fig. 7b). The 
 Hg2+ detection limit of coastal seawater by this platform was 
13 ppb in only 45 min.

4.1.2  Biomarkers

Biomarkers refer to biochemical indicators that mark the 
structure or functional changes of biosystems including 
organ, tissue and cell. The exploration of biomarkers is 
beneficial to clinical diagnosis, drug analysis and eco-
system protection. Enormous effort has been made in 
nanozyme-based biomarker detecting, including biological 
macromolecules (e.g., acid phosphatase (ACP) for prostate 
cancer [149]; human epidermal growth factor receptor-2 
(HER2) for breast cancer [294, 295]; carcinoembryonic 
antigen (CEA) for rectal cancer [296, 297] and benzo[a]
pyrene-7,8-diol 9,10-epoxide–DNA (BPDE–DNA) for 
woodsmoke exposure [298]) and small molecule bio-
markers (e.g., sarcosine for prostate cancer [299] and uric 
acid [300]). Pedone et al. [301] developed a colorimetric 
approach to determine the total antioxidant capacity (TAC) 
in saliva on basis of the reaction between antioxidants and 
 H2O2 in the presence of Pt nanozymes, which was acted as 
POD mimics. TAC acted as an important biological indica-
tor closely associated with oxidative stress. It reflected the 
total effects of enzymes and non-enzymatic analytes in the 
body. The combination of Pt nanozymes and ·OH radical 
substrates allowed the detection scheme sensitive to both 
single electron transfer (SET) and hydrogen atom transfer 
(HAT) reactions (Fig. 7c).

The improvement in signal transduction rate is a break-
through to raise the sensitivity of biomarker detection 
[298]. Thence, metal- and metal oxide-based nanozymes 
functioned as signal amplification has boosted biomarkers 
analysis in sundry assays involving electrochemical, fluo-
rescent and so on [300]. Ling et al. obtained Pt@ P-MOF 
(Fe) nanozymes by growing ultra-small Pt nanoparticles 
on metalloporphyrin metal organic frameworks [302]. The 
novel artificial nanozymes were employed as signal probe, 
allosteric switch of DNA and Exo III recycling amplification 

in their electrochemical template for telomerase detection 
(Fig. 7d). The catalytic property of Pt NPs on P-MOF (Fe) 
could decompose  H2O2, and hence strengthened the elec-
trochemical signal. Kuo et al. [303] synthesized Ag-Au/
AgCl nanohybrid with OXD- and POD-type capacities for 
spermine (Spm) analysis in urine, which could act as the 
diagnostic indicators for liver cancer and stroke. As is shown 
in Fig. 7e, Spm inhibited fluorescent molecules generation 
of  H2O2-Amplex Red (AR) system when in the presence of 
Ag-Au/AgCl, thereby realizing highly selective and ingen-
ious determination of Spm.

4.1.3  Pathogen Microorganisms

The analysis of pathogenic microorganisms, ranging from 
viruses, bacteria, parasites to prions, is crucial to preven-
tion and control of infectious diseases [304]. The nanozymes 
have become powerful competitors for natural enzymes in 
field of pathogen detection due to their low-cost (especially 
for foodborne bacteria), timesaving operation and sensitiv-
ity [305–307]. For instance, Cheng et al. employed Pd@Pt 
NPs as a signal amplifier in the lateral flow immunoassay 
(LFIA) assays for Salmonella Enteritidis (S. enteritidis) and 
Escherichia coli (E. coli) O157:H7 [57]. The integration of 
Pd@Pt NPs and smartphone-based device offered a port-
able platform for fast detection of foodborne pathogens. The 
studies involving nanozyme-based pathogen analysis in the 
past 5 years are listed in Table 2. All the metal- and metal 
oxide nanozymes mentioned in this table were functioned 
as POD mimics.

In contrast to POD mimics, other enzyme-like activities of 
nanozymes are waiting for further development in biologi-
cal sensing. Yao et al. [308] designed a colorimetric immu-
noassay scheme to investigate Staphylococcus aureus (S. 
aureus) with the assistance of magnetic carbon dots (Mag-
CDs) and AgNCs. AgNCs with OXD-mimicking properties 
could accelerate oxidatiing o-phenylenediamine (OPD) to 
produce yellow products. And the Mag-CDs were introduced 
to capture bacteria in their system. Bu et al. [309] built a 
point-of-care (POC) platform to analyze Salmonella sp. and 
E. coli O157:H7 by using  MnO2 nanoflowers with CAT-
type activity. Besides,  MnO2 possessed bacteria recognition 
ability via the binding between Con A and O-antigen on the 
bacterial surface.



Nano-Micro Lett. (2021) 13:154 Page 21 of 53 154

1 3

4.1.4  Antibiotic

The dose control of antibiotics, which sheds significant 
influence on antibacterial and anti-cancer treatment, has 
been a hot topic in the medical field. It has been dem-
onstrated that overdose causes serious side effects, while 
insufficient antibiotics are unconducive for clinical therapy 
[61, 325]. While, the pioneering works of antibiotic deter-
mination, including liquid chromatography-mass spectrom-
etry (LC–MS) [326], electrochemical [327], high perfor-
mance liquid chromatography (HPLC) [328], etc. suffer 
from time consuming, high cost, complicated operations 
and poor sensitivity. The prosper of Au nanozymes with 
intrinsic POD-like activity provided possibility to tune the 
functionalization of existing methods in analyzing multiple 
antibiotics (e.g., doxycycline [325], kanamycin [61], tetra-
cycline [329]). Kong et al. [330] designed a novel photo-
electrochemistry (PEC) biosensor for bleomycin (BLM) 
detection, which was natural antibiotics for Hodgkin’s 
disease, cervical cancer therapy. The biosensor reached a 

detection limit to 0.18 nM in which Ag/ZnMOF nanozymes 
acted as a signal amplifier and Au NPs/tungsten sulfide 
nanorod array (Au/WS2) photoelectrode used as a PEC 
matrix (Fig. 8a). When the Au/WS2 photoelectrode gener-
ated PEC signals under light, the Ag/ZnMOF nanozymes 
with mimetic POD properties reduced the background sig-
nal via the catalyzing reaction between  H2O2 and 3,3-diam-
inobenzidine (DAB), thus greatly improving the sensitivity 
and specificity of BLM analysis.

4.1.5  Antioxidant

Antioxidants, substance to scavenge ROS or free radi-
cals, could prevent human body from cell apoptosis and 
nerve damage induced by oxidative stress [331]. Never-
theless, inappropriate supplementation of antioxidants 
may result in diseases and increase risk of death. There-
fore, quantitatively  analyzing  antioxidants is of great 
significance. The nanozyme-related antioxidant detec-
tion is based on the inhibition of antioxidants on the 

Table 2  Nanozyme and analysis method for pathogen microorganism detection reported in recent years

Pathogenic microorganisms Nanozyme Method References

RNA virus Avian influenza A (H5N1) Au Colorimetric immunoassay [310]
Influenza virus A (H1N1) Au Magnetic nanozyme-linked immuno-

sorbent assay (MagLISA)
[311]

Murine Norovirus (MNV) Au Colorimetric immunoassay [62]
Mumps virus Au@Pt@mesoporous  SiO2 Enzyme-linked immunosorbent assay 

(ELISA)
[64]

Measles virus Au@Pt ELSA [312]
DNA virus Rubella virus Au@ Pt ELISA [313]
Gram-positive bacteria Enterobacter sakazakii (ES) Fe3O4 Nanozyme strip [314]

Listeria monocytogenes (L. monocy-
togenes)

Fe3O4 Colorimetric [315]

Bacillus subtilis (DH ∞) Dop-  Fe3O4 Colorimetric [316]
Streptococcus mutans Fe3O4/Smn(n = 1,2,3) Colorimetric [317]
S. aureus Fe3O4@SiO2-Pt ELISA [318]

Co3O4 Magnetophoretic chromatography [319]
Cu-MOF Colorimetric immunoassay [320]

Gram-negative bacteria Pseudomonas aeruginosa (P. aer-
uginosa)

Au Colorimetric and electrochemical 
detection

[69]

E. coli O157:H7 Au Immunochromatographic Assay(ICA) [321]
Pd–Pt Lateral flow assay (LFA) [322]
Pt-Au ICA [323]
Pd@Pt LFIA [57]

S. enteritidis Pd@Pt LFIA [57]
Fe-MOF Colorimetric immunoassay [324]

Escherichia coli (XL1) Dop-  Fe3O4 Colorimetric [316]
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nanozymes’ catalytic activities [260, 278]. Following the 
evolvement of nanozymes and biosensing technology, the 
sensitive colorimetric determination for antioxidants has 
been extensively discussed, including ascorbic acid (AA, 
based on CoMn/NF@C [332], Pt/CeO2 [333],  Fe3O4/
CoFe-LDH [158], Mn-CDs [334], etc.,), GSH (based on 
SPB-MnO2 [335],  Mn3O4 [336], Ir [337],  V2O5 [338], 
etc.,) and l-Cysteine (l-Cys, based on  Fe3O4 [339], etc.,). 
Most existing biosensors were designed for specific anti-
oxidant analysis, while approaches for multiple antioxi-
dants detection are scarce. Huang et al. [340] designed a 
 MnO2 nanosheets triggered colorimetric sensor array for 
simultaneous discrimination of UA, GSH, AA, l-Cys, and 
melatonin (Mel) in serum (Fig. 8b) [340]. The inhibitory 
effects on the catalytic performance of  MnO2 nanosheets 
vary according to the kind of antioxidants, resulting in 
different degrees of TMB oxidation and generating mul-
ticolors. Since  the absorbance values at 370, 650, and 
450 nm would change, the corresponding absorbance val-
ues  A370,  A450, and  A650 were employed as three cross-
reactive sensing elements in the visual colorimetric sensor 

array. The detection results revealed that the sensor could 
precisely and rapidly identify the five antioxidants and 
their mixture at a low concentration.

4.1.6  Other Substances
 
(1) H2O2

As a byproduct of respiratory metabolism,  H2O2 is one of 
most common molecule in biological tissues [341]. When 
the concentration is at an abnormal status,  H2O2 would cause 
damage to health and might induce oxidative stress related 
diseases [342]. Besides, hydrogen peroxide was widely used 
in biopharmaceuticals, environmental management, food 
manufacturing and some other fields due to its strong oxidant 
properties [343]. A bunch of methods have been designed 
to monitor  H2O2 in various matrices considering its signifi-
cant roles in biological metabolisms and broad utilization in 
industrial production [341, 344]. Among these assays, col-
orimetry and electrochemistry have gradually became main 
technologies for  H2O2 determination owing to low cost, high 

3 min

3 min

TMB/HCI
 GOD-

GO/MnO2

PBS

(d)

A650

A450

A370

E/V. vs. SCE
-0.6 -0.3 0.0 0.3 0.6

-160

-80

0

80

//μ
A

DAP

Sensing H2O2

Transfer

AuPt/ZlF-8-rGO

Peroxidase-like activity

H2O

H2O2

(c) OPD

AuPt/ZIF-8-rGO/GCE

WS2/TM Au P1 BSA MOF Ag P2 DAB Precipitation BLM

(a) (b)

H2O H2O2 Blue, λmax= 370 nm, 650 nm

Mn2+

MnO2 nanosheets
Antioxidants & TMB

TMB H2N NH2

Colorless
GSH

GSH

UA

UA

Cys

Cys
Mel

Mel
AA AA

+·
NH2 1/2H2N

+
H2N

+
H2N

H2N NH2

+
NH2

+
NH2

MnO2

nanosheets

Yellow, λmax=450 nm

Fig. 8  a Fabrication of Ag/ZnMOF-based PEC biosensor with Au/WS2 photoelectrode as a PEC matrix for detection of BLM. b Colorimetric 
sensor assay based on  MnO2 nanosheets with TMB as substrates for simultaneous detection of multiple antioxidants. c Detection of  H2O2 based 
on AuPt/ZIF-8–rGO as POD mimics. d Application of the sensor platform based on GOD-GO/MnO2 in blood glucose quantitative analysis. 
Adapted from a Ref. [330], b Ref. [340], c Ref. [349], d Ref. [362] with permission



Nano-Micro Lett. (2021) 13:154 Page 23 of 53 154

1 3

sensitivity and selectivity [345]. Up to now, a variety of metal- 
and metal oxide-based nanozymes (e.g., CuO-g-C3N4 [346], 
 MnO2 [347],  V2O5-CeO2 [348]) have been exploited for elec-
trochemical analysis. Zhang et al. fixed ZIF-8 on graphene 
oxide (ZIF-8–rGO) and further synthesized AuPt/ZIF-8–rGO 
with POD-like activity to practically track  H2O2 in human 
serum samples (Fig. 8c) [349]. The AuPt/ZIF-8–rGO-based 
electrochemical scheme showed remarkable electroanalysis 
performance along with excellent sensitivity and selectivity. 
This work reached the detection limit of 19 nM (S/N = 3), 
which obtained the lowest detection limit compared with pre-
viously reported electrochemical sensors.

The color change of peroxidase substrate (e.g., TMB) trig-
gered by hydrogen peroxide is the foundation in colorimetric 
detection of  H2O2. Diverse POD mimics (e.g.,  Cu2O–Au 
[350], Fe–N–C [351], Cu(II)-coated  Fe3O4 [352], PtCu 
[353],  V2O5 [341], C-dots/Fe3O4 [130], and Rh [354, 355]) 
have been developed to manufacture colorimetric sensors. 
To our knowledge, the currently lowest detection limit of 
 H2O2 based on colorimetry is 0.0625 µM reported by Tri-
pathi et al. [356], and the palladium nanoclusters (Pd NCs) 
were designed by biological methods firstly in their study, 
in which Pd NCs were served as POD mimics.

(2) Glucose

Glucose is an indispensable nutrient for metabolism in 
organisms. The heat released during its oxidation reaction 
is a considerable energy source required by life events [357]. 
However, a surfeit of glucose might cause various diseases, 
including hyperlipidemia, arteriosclerosis, hypertension, 
diabetes and so on [358]. The concentration of glucose in 
blood or urine is a crucial indicator of physical condition 
[357, 359]. By combining the catalytic performance of glu-
cose oxidase (GOD) and nanozymes with POD-type activ-
ity (e.g., Zn–CuO [331], Au@Ag [360],  MoO3/C [331], Ag 
[361], and Pt [135]), numerous optical technologies have 
described for glucose analysis in serum[135], beverage[279], 
and urine [331, 361] samples. Blood pretreatment and serum 
extraction were often demanded in conventional blood glu-
cose detecting programs. To simplify determination steps, 
Lee et al. [362] designed a protocol that could directly moni-
tor glucose in whole blood and avert pretreatment. They pre-
pared a GOD-conjugated graphene oxide/MnO2 (GOD-GO/
MnO2) sensor platform for quantitatively analyzing blood 
glucose with a detection limit of 3.1 mg  dL−1 (Fig. 8d). The 

results indicated that this colorimetric sensor possessed 
clinical potential for blood glucose monitoring of diabetic 
patients.

4.2  Application in Antibacterial

The lack of non-antibiotic therapies and multiple drug resist-
ance caused by bacteria diseases become one of the most 
serious problem, which threatens human health [363–365]. 
In the process of developing optimal antibacterial strate-
gies, nanometallic materials have been discovered to exert 
antimicrobial nature [366, 367]. In addition, POD and OXD 
mimics were verified to catalyze producing harmful ROS, 
ranging from  H2O2, superoxide, hydroxyl radicals to other 
small reactive molecules [27]. Hence, metal- and metal 
oxide-based nanozymes (e.g.,  V2O5 [368], CuO [369],  CeO2 
[370], Au/MOF[371], and  Tb4O7 [372]) have been gradu-
ally regarded as promising bactericides. For example,  Fe3O4 
NPs with POD-like properties could decompose  H2O2 to 
generate toxic ·OH for bacterial infections treatment [373]. 
Evidence has emerged that enzyme mimic abilities of nano-
materials are closely associated with their composition and 
structure, which would affect antibacterial capacity [374]. Xi 
et al. [232] designed two types of copper/carbon nanozymes 
including two Cu states  (Cu0 and  Cu2+). The copper/carbon 
nanozymes displayed multi-enzyme activities and antibacte-
rial mechanism dependent on Cu states. In the study, Xi et al. 
concluded that hollow carbon spheres (HCSs) modified with 
CuO (CuO-HCSs) nanozymes could induce Gram-negative 
bacteria death (E. coli and P. aeruginosa) when releas-
ing  Cu2+. While the key of Cu-HCSs nanozymes to resist 
Gram-positive (Salmonella typhimurium, S. typhimurium) 
and Gram-negative bacteria (E. coli and P. aeruginosa) was 
based on POD-type activity, which was responsible for ROS 
generation (Fig. 9a).

The pH-dependent catalytic activity of nanozymes has 
been demonstrated that would limit their antimicrobial 
application under neutral pH, and was beneficial to grow 
bacteria like Escherichia coli, Staphylococcus aureus and 
so on [375, 376]. Fortunately, ATP served as modulators 
has been reported to improve the POD-like property of 
nanozymes, and it could interact with iron ions to produce 
·OH under neutral pH [128, 377]. Therefore, Vallabani 
et al. [378] employed ATP as a synergist to enhance the 
catalysis ability of citrate modified  Fe3O4 NPs. The results 
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showed that  Fe3O4 NPs exhibited superior antibacterial 
performance against E. coli and Bacillus subtilis (B. subti-
lis, gram positive) in presence of  H2O2 under a neutral pH 
environment with the assistance of ATP (Fig. 9b). Chishti 
et al. discovered that fluorite-structured  CeO2 nanocrystals 
with ~ 23.04%  Ce3+ had recyclable POD-like activity [379]. 
Mechanism investigation indicated that the reduction of sub-
strate affinity caused by ATP is the key to improve the low 
enzyme-like activity of nanoyzymes in a neutral environ-
ment (pH 7.4), further strengthening the sterilization sequel 
against both gram-positive (S. aureus) and gram-negative 
(E. coli) bacteria (Fig. 9c).

Besides optimizing the catalytic capacity, applying exter-
nal triggers to control their antibacterial activity is essential 
to develop nanozyme-based antibacterial agents. Otherwise, 
the sustained action of nanozymes might induce bacteria 
to yield drug resistance. Karim et al. firstly reported that 
light could act as an external spark to control nanomate-
rials’ catalysis [369]. A highly basic tertiary amine could 
produce visible light to excite CuO NRs. The increment of 
light intensity enhanced the affinity of CuO NRs and  H2O2, 
thereby improving the POD-like activity and antimicrobial 
properties (Fig. 9e). Results showed that CuO NRs catalyzed 
 H2O2 under visible light irradiation to output ·OH with 20 
times higher than that under no light.

The exaltation of  H2O2 sterilization efficiency has become 
an issue of increasing concern as  H2O2 is a crucial and easily 
available ROS. Although numerous studies were devoted to 
this issue, applications of these systems were still restricted 
by the health hazard from high concentration of  H2O2 
(greatly higher than biologically relevant concentration) [380, 
381]. Wang et al. integrated Au NPS with graphitized carbon 
nitride (g-C3N4) to synthesize non-toxic ultra-thin g-C3N4@
AuNPs (CNA) nanozymes with high POD catalytic activ-
ity [382]. CNA nanozymes were firstly reported to possess 
excellent bactericidal properties under biosafety level of 
 H2O2, and could efficiently decompose DR-biofilms to inhibit 
bacteria growth (Fig. 9d). In vitro experiments proved that 
CNA system provided significant advantages in preventing 
bacterial infections and accelerating wound healing.

4.3  Application in Relieving Inflammation

Inflammation, including acute and chronic inflammation, 
is regarded as a precursor to certain diseases [383]. An 
obvious feature of inflammatory tissue is the increasing of 

reactive oxygen or nitrogen species (RONS) content [384, 
385]. Owing to the ROS scavenging ability, favorable stabil-
ity in extreme environments and excellent biocompatibility, 
nanozymes have been indicated to be potential substitutes 
for broad-spectrum antioxidants in terms of inflammation 
treatment [386–388]. So far, a variety of metal-based and 
metal oxide-based nanozymes (such as  Mn3O4 [56],  CeO2 
[389], Pt/CeO2 [390], and Cu-TCPP MOF [391]) have been 
reported for anti-inflammatory therapy. The main challenge 
to realize clinical transformation of nanozymes is to enhance 
the ROS eliminating performance and simplify nanomateri-
als’ structure. Liu et al. synthesized ultra-small  Cu5.4O nano-
particles  (Cu5.4O USNPs) with mimic enzyme properties 
of CAT, SOD and GPx (Fig. 10a1) [392]. The ultra-micro 
size of  Cu5.4O USNPs ensured their biocompatibility via the 
rapid removal of nanomaterials in the kidney (Fig. 10a2). 
 Cu5.4O USNPs were confirmed to protect healthy cells from 
ROS at extremely low dosage. They also showed the promot-
ing effect on the treatment of acute kidney injury, acute liver 
injury and wound healing in animal experiments. Wu et al. 
introduced  RuO2-PVP NPs to set up a therapeutic nano-
platform for inflammation alleviation and neuroprotection 
[393]. In this work,  RuO2-PVP NPs with multi-enzymatic 
properties effectively protected lipid, DNA and protein from 
oxidative stress in parallel with the broad-spectrum ROS 
elimination performance against inflammation and Parkin-
son’s disease in vivo. Yao et al. [56] expanded the use of 
Mn SOD in anti-inflammatory. Their team demonstrated the 
multiple enzyme mimics activities of  Mn3O4 NPs, which 
could scavenge superoxide free radicals,  H2O2 and hydroxyl 
free radicals. In in-vitro experiments, the ROS-eliminating 
level of  Mn3O4 NPs was much higher than traditional  CeO2 
nanozymes. The experimental results indicated the obvious 
prospects of Mn-based nanozymes in treating and preventing 
ROS-mediated neuroinflammation.

The combination of nanozymes and other kinds of anti-
inflammatory agents could bring a turning point for refrac-
tory inflammatory diseases. For example, the lack of target-
ing strategies and the risk of side effects with increasing 
dosage increased the difficulty in treating inflammatory 
bowel disease (IBD) [397]. By growing  CeO2 NPs in situ on 
montmorillonite (MMT) sheets, Zhao et al. designed  CeO2@
MMT nanozymes with SOD-type, CAT-type and ·OH scav-
enging properties to directly target the inflammatory colon 
for IBD therapy [394]. In this system, MMT alleviated 
the potential nanotoxicity of  CeO2 NPs via reducing their 



 Nano-Micro Lett. (2021) 13:154154 Page 26 of 53

https://doi.org/10.1007/s40820-021-00674-8© The authors

(a) (a1)

80°C Mimicking ·OH

H2O2

H2O

H2O+O2
O2·-

H2O

GSH GSSG

SOD L-Ascorbic acid

Cu2+

Cu5.4O USNPs

H2O2, ·OH ,O2·-

H2O

O2

(b3)

5 nm
(b2)(b1)

(b)

Gastric
juice

Colonic
fluid

pH

pH

(c) Neu-MnO2/Fla

100 nm

Ze
ta

 p
ot

en
tia

l (
m

V)

0

-10

-20

-30

-40
1.2 7.0 8.2

pH of simulation fluids

R
et

ai
ne

d 
ac

tiv
ity

 (%
) 100

80

60

40

20

0

SOD
CAT

OHS

75.91 79.31

30.34

100 nm

Pe
rc

en
ta

ge
 (%

) 40

30

20

10

0

2.5
-3.

0

3.0
-3.

5

3.5
-4.

0

4.0
-4.

5

4.5
-5.

0

5.0
-5.

5

Size (nm)

(a2)

(b4)

(e)

(d)

Rh-PEG NDs

Cancer Cell

Inflammatory Cell

Colitis-Associated
Colon Cancer Antitumor Theranostics

Anti-Inflammation

DownregulationHarmful

(·NO, ONOO-)

RNS

ROS

(O2·-,·OH, H2O2)

Fla
O

O

OH

CO

light
O2

H2O2
MnO

2

ROS

TNF-α

IL-1β

CO Release

H2O,O2,…

Harmless

PTT IRT PAI

Blood

Blood-
brain
barrier

Brain LPS

N
euroinflam

m
ation

+ TriM Nanozyme

Brain Injury Repair

Neutral Environment Preference

TriM Nanozyme

Catalytic Clearance
Selectivity

N
europrotection

O
pe

ni
ng

 o
f B

B
B

 ti
gh

t j
uc

tio
ns

 b
y

LP
S-

in
du

ce
d 

in
fla

m
m

at
or

y 
fa

ct
or

s

En
do

th
el

la
l c

el
l

RONS
1O2

·NO ·OH
H2O2

HRP
-like

CAT-
like

TNF-α

IL-6

CAT

GPx

Fig. 10  a1 Schematic illustration of the ROS scavenging and anti-inflammation function of  Cu5.4O USNPs with the mimic enzyme proper-
ties of CAT, SOD, GPx ability. a2 TEM image and particle size distribution of  Cu5.4O USNPs; b Stability and enzymatic activity of  CeO2@
MMT(1:9). b1 Delivery process of  CeO2@MMT through the simulated stomach (pH 1.2–1.5) and colon (pH 7.8–8.2) fluids via oral absorption. 
b2 TEM image of  CeO2@MMT(1:9) after treating with HCl solution (pH≈1.2) for 4 h at 37 °C. b3 Zeta potentials of  CeO2@MMT in simulated 
stomach and colon fluids. b4 CAT- and SOD-mimicking property and ·OH scavenging activities (OHS) of  CeO2@MMT treated with simulated 
gastric fluid. c The facilitated in situ CO release for synergistic anti-inflammatory effects induced by  MnO2 nanozymes modified with neutrophil 
membrane. d Rh-PEG NDs with excellent RONS scavenging ability, multi-enzyme-like activity and high photothermal conversion efficiency for 
relieving colon inflammation and anti-tumor treatment. e Application of PtPdMo nanozymes with multi-enzyme-like activity and high catalytic 
selectivity in improving neuroinflammation. PTT Photothermal therapy, PAI Photoacoustic imaging, IRT interventional radiotherapy. Adapted 
from a Ref. [392], b Ref. [394], c [395] d Ref. [396], e Ref [52] with permission
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systemic absorption, which in turn endowed MMT sheets 
with ROS eliminating activity. Animal experiments have 
also proved that the nanozyme-based drugs were suitable 
for oral delivery and stable in gastrointestinal environment 
(Fig. 10b).  CeO2@MMT exhibited good targeting for colon 
disease sites, effectively treating IBD induced by dextran 
sulfate sodium in mice model. Although carbon monoxide 
(CO) gas therapy was recently revealed as a novel anti-
inflammatory strategy, it still suffered from the low tissue 
specificity and troublesome amount control [398–400]. By 
integrating 3-hydroxybenzo [g]flavone (Fla),  MnO2, and 
neutrophil membrane (Neu), Liu et al. [395] fabricated Neu-
MnO2/Fla platform for the CO controllable releasing and 
specific anti-inflammation. As illustrated in Fig. 10c, the 
 MnO2 NPs modified with neutrophil membrane endowed 
Neu-MnO2/Fla platform favorable targeted ability. Herein, 
hollow mesoporous  MnO2 NPs not only acted as ideal car-
rier for their superior drug-loading capacity and brilliant 
biodegradability, but also could decompose endogenous 
 H2O2 and facilitated in situ CO release under light owing 
to the CAT-like ability, thereby achieving synergistic anti-
inflammatory. The decrease of local ROS level and pro-
inflammatory cytokines (tumor necrosis factor-α, TNF-α 
and Interleukin-1β, IL-1β) in a lipopolysaccharide (LPS)-
induced inflammation model has indicated the effectiveness 
and controllability of Neu-MnO2/Fla platform.

Despite the tremendous attention that paid to nanozyme-
related anti-inflammatory therapies, there are still few 
reports about metal- and metal oxide-based nanozymes with 
reactive nitrogen species (RNS) scavenging ability. RNS 
including nitric oxide (·NO), nitrogen dioxide (·NO2) and 
peroxynitrite (·ONOO−) etc. are a major culprit in aggravat-
ing neuroinflammation induced by traumatic brain injury 
(TBI) [401]. Miao et al. prepared polyethylene glycol (PEG) 
coated (PEGylated) ultra-small rhodium nanodots (Rh-PEG 
NDs) showing excellent multi-enzyme-like activity and high 
photothermal conversion efficiency [396]. On the one hand, 
Rh-PEG NDs possessed similar RONS removal capacity as 
natural CAT, thereby alleviating the inflammation of colon 
disease. On the other hand, they could be used for photoa-
coustic imaging and photothermal therapy (Fig. 10d). Mu 
et al. [52] prepared PtPdMo trimetallic (triM) nanozymes 
for neuroinflammation treatment through multi-enzyme 
mimetics reaction-based RONS elimination. In addition, 
triM nanozymes displayed highly catalytic selectivity in 
neutral environments, which provided possible application 

of nanozymes in brain science (Fig. 10e). Zhang et al. doped 
 Cr3+  ions into   CeO2 to prepare Cr/CeO2 nanozymes by 
increasing  Ce3+ states [402]. The higher  Ce3+/Ce4+  ratio 
contributed to strengthening   enzyme-like activity of 
nanozymes with 3–5 times higher than undoped  CeO2. 
The  Cr/CeO2-based catalytic patch has been demonstrated 
as a promising choice for non-invasive TBI treatment and 
neuroinflammation relief owing to the satisfactory RONS 
(including ·OH,  ONOO− and  H2O2) scavenging ability.

4.4  Application in Cancer Treatment

According to the latest global cancer statistics from the 
World Health Organization/International Cancer Center 
team, cancer is expected to become the main cause of death 
in countries around the world in twenty-first century [403]. 
Compared with traditional tumor treatment methods (sur-
gery, chemotherapy, radiotherapy, etc.), external minimally 
invasive or non-invasive strategies containing photodynamic 
therapy (PDT), chemodynamic therapy (CDT), sonody-
namic therapy (SDT), immunotherapy etc. show a favora-
ble development prospect due to their accurate tumor speci-
ficity, space/time controllability and biosafety [404, 405]. 
However, the complex tumor microenvironment (TME) 
limited the therapeutic effects of many methods. TME not 
only refers to structure, function and metabolism of tumor 
tissue, but is also related to the internal environment of 
tumor cell (nuclear and cytoplasm) possessing the charac-
teristics of hypoxia, acidity, glutathione and overexpression 
of  H2O2 [406, 407]. The intrinsic catalytic activity enables 
nanozymes to regulate TME via changing RONS content or 
eliminating hypoxia [43, 408–410]. The biological safety, 
photothermal performance and some other physicochemi-
cal properties of nanozymes also indicated their potential 
in cancer therapy [411]. Given these reasons, nanozymes 
have been regarded as the prospective standalone agents or 
synergist for the progress of tumor treatment [43].

4.4.1  Photodynamic Therapy

PDT relied on ROS generated by photosensitizers (PSs) 
under light irradiation to induce cancer cell apoptosis 
[412]. Nevertheless, most PSs still face disadvantages 
of low selectivity, poor water solubility and high self-
destruction [413]. In order to reinforce the stability of 
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loading PSs, various nanozymes such as  MnO2 [414], 
Pt[51] and so on were utilized. In the research of Xu et al. 
[415], Pt/C nanozymes not only served as chlorin e6 (Ce6) 
nanocarriers, but also promoted the conversion of  H2O2 
and  O2 into ROS with anti-tumor property (Fig. 11a). 
They compared the nanozymes with various structures and 
found that HCS@Pt NPs (Pt NPs decorated with hollow 
carbon spheres) showed favorable POD- and OXD-like 

activity, thereby further firming the therapeutic efficacy 
of PDT for cancer.

In addition to PSs transportation, studies have also con-
firmed that tumor hypoxia would weaken PDT efficiency 
[417]. Hence, nanozymes (e.g., Pt [418],  Mn3O4[419]) 
as CAT mimics were employed to consume intratumoral 
 H2O2 and generate oxygen in parallel with photosensi-
tizer carriage. However, tumor hypoxia was difficult to be 
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continuously suppressed due to the respiration of intratu-
moral mitochondria [420]. Yang et al. integrated IR780 PSs 
into mesoporous silica NPs (MSNs) and then covered with 
 Mn3O4 NPs to produce  Mn3O4@MSNs@IR780 nanocom-
posites [419].  Mn3O4 nanozymes that accumulated in the 
tumor sites could decompose  H2O2 and trigger switch to 
release IR780, which specifically targeted to mitochondria 
and produced ROS to inhibit cancer cells respiration after 
destroying mitochondria. In vitro experiments proved that 
oxygen supplementation and mitochondrial destruction were 
vital to PDT enhancement. Hu et al. [416] employed exog-
enous oxygen-generating materials  (CaO2 NPs) to alleviate 
tumor hypoxia. In this report,  MnO2 nanozymes with CAT-
mimicking activity not only catalyzed  CaO2 NPs to generate 
 O2, but also allowed image-guided PDT as a promising MR 
T1 nanoprobe (Fig. 11b).

4.4.2  Chemodynamic Therapy

Chemodynamic therapy generates ·OH by catalyzing intra-
tumoral  H2O2 via Fenton or Fenton-like reactions, thereby 
killing tumor cells [421]. Nanozymes with POD-like activity 
(e.g.,  Fe3O4 NPs [422], AFeNPs [423]) have been recog-
nized as Fenton reaction catalysts for CDT in acidic environ-
ments. Since existing reports revealed the pH-dependence 
of CDT, the pH-independent nanozymes (e.g., Fe/Al-GNE 
[424],  Au2Pt [142]) were designed to provide efficient Fen-
ton reactions in neutral TME. What’s worse, high concentra-
tion of GSH and low  H2O2 in TME have also been demon-
strated to restricted CDT effect [425]. Therefore, conquering 
the above-mentioned TME is a challenge to optimize CDT 
reaction efficiency.

Fu et al. synthesized CoO@AuPt nanocatalyst with high 
biocompatibility and stability under physiological environ-
ment, which regulated responsive CDT by lowering pH, 
increasing  H2O2 level and consuming GSH content [426]. 
In the work, CoO template could degrade and generate  Co2+ 
in acidic and high-level  H2O2 environment, which was fur-
ther acted as a useful Fenton-like reagent. The released Au/
Pt nanozymes as multi-enzyme (GPx, CAT, POD, and GOx) 
mimics were responsible for decreasing GSH concentration 
and catalyzing  H2O2 into  O2 and ·OH (Fig. 12a). Moreover, 
the nanosatellites consumed intratumoral glucose to gener-
ate numerous  H2O2 and induced starvation therapy, thereby 
enhancing the effect of CDT.

Another challenge to achieve augmented CDT is to 
increase the generation rate of ·OH. Ma et al. [131] intro-
duced microwave (MW) as an external stimulus to regu-
late CDT and realize controllable tumor therapy, named 
as microwave enhancing dynamic-therapy (MEDT). By 
coupling gold nanoclusters (BSA-Au NCs) with Fe-metal 
organic frameworks (MIL-101(Fe)), IL@MIL-101@
BSA-AuNCs NPs were prepared after loading methylimi-
dazolium hexafluorophosphate (IL) on MIL-101(Fe) NPs. 
Under microwave irradiation, MIL-101(Fe) enzymes owned 
MEDT by catalyzing  H2O2 to produce toxic ·OH in tumor. 
The dynamic distribution of MIL-101 (Fe) NPs in vivo 
and tumor site could be real-time monitored by magnetic 
resonance imaging (MRI) and fluorescence imaging (FI) 
(Fig. 12b).

4.4.3  Sonodynamic Therapy

PDT is commonly suitable for relatively small superficial 
tumors due to the limited depth of light penetration through 
tissues [427]. In contrast, ultrasound (US) owns a higher 
tissue penetration depth than light waves. Thus, US-trig-
gered sonodynamic therapy is promising to treat deep or 
large tumors by activating sonosensitizers to generate ROS 
[428, 429]. Resemble to PSs in PDT, the performance of 
sonosensitizers plays a fundamental role in SDT [430]. The 
past 5 years witnessed the development of novel marvelous 
sonosensitizers [429, 431]. The stability and catalytic activ-
ity allowed some metal- and metal oxide-based nanozymes 
to function as sonosensitizers and Fenton reagents simul-
taneously to achieve CDT-enhanced SDT. For instance, 
Wang et al. designed polyethylene glycol (PEG)-modified 
nanozymes with ultrafine rod-like structure, named PEG-
TiO1+x NRs for tumor ablation [432]. Compared with tra-
ditional inorganic sonosensitizers, the sensitivity of PEG-
TiO1+x NRs was more prominent due to hypoxic structure. 
Furthermore, PEG-TiO1+x NRs with HRP-type activity 
showed Fenton-like catalytic property. As SDT reagent 
possessing CDT function, the intravenously injected PEG-
TiO1+x NRs were significantly more effective in inhibit-
ing tumors than traditional  TiO2 NPs under US irradiation 
(Fig. 13a). Zhong et al. prepared uniform  PtCu3 nanocages 
as sensitizers, HRP mimics and GPx mimics by one-step 
solvothermal method after pegylation [433]. Their research 
confirmed that  PtCu3 for cancer therapy improved sound 
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toxicity and inhibited tumor growth by generating ROS by 
decomposing  H2O2 into ·OH and depleting GSH under US, 
in which  PtCu3 could obviously optimize the reaction envi-
ronment of CDT. Meanwhile, owing to high light absorption 
and strong X-ray attenuation in near-infrared region,  PtCu3 
could be employed for photoacoustic (PA)/computed tomog-
raphy (CT) imaging-guided CDT-enhanced SDT (Fig. 13b).

4.4.4  Photothermal Therapy

Materials with high photothermal conversion efficiency 
are exploited in photothermal therapy (PTT), which could 
convert light energy into heat energy for the death of can-
cer cells under external light irradiating [434]. Numerous 
metal-based and metal oxide-based nanozymes (e.g.,  MnO2 
[435], Ru-Te [436], Ru@CeO2 [437]) have been reported as 
photothermal agents (PTAs). In these studies, nanozymes 
ameliorated PTT efficacy due to their enzyme-like abilities 
and other superior properties at the same time. Wang et al. 
[435] synthesized 2D  MnO2 nanosheets (M-NSs) with con-
trollable protein orientation through a wet chemical method, 
and then functionalized M-NSs via a sonochemical proposal. 
As is shown in Fig. 14a, the M-NS served as GOx mimics 
with highly dispersion and stability, which finally realized 
starvation therapy by consuming glucose of tumor cells. The 
nanozymes also presented remarkable photothermal conver-
sion efficiency and PA imaging performance under near-
infrared (NIR) irradiation, thereby achieving PA imaging-
guided synergistic cancer treatment of starvation therapy 
and PTT.

However, the effect of PTT is stinted by light penetra-
tion depth and thermal damage to healthy tissue induced 
by overexposure [438]. Therefore, a series of studies tried 
to combine PTT with other treatment methods to achieve 
synergistic therapy [439]. For example,  Au2Pt nanozymes 
as POD and CAT mimics with potent photothermal perfor-
mance were reported for PDT/CDT/PTT synergistic cancer 
therapeutics [142]. AgPd NPs with POD-like activity could 
improve photothermal conversion efficiency, and have been 
proved to be acted as carriers for chemotherapeutic drugs 
transmission during a weakly acidic environment (pH 5.5), 
thus achieving ROS/PTT/chemotherapy guided by NIR laser 
[440]. Pt-CuS Janus nanozymes were adopted in synergisti-
cally enhanced SDT and PTT [441]. In this system, Pt-CuS 
Janus hollow structure was used as sonosensitizers carrier, 

showing photothermal conversion capacity under laser 
irradiation, and could decompose endogenous  H2O2 expe-
ditiously. The Pt NPs [442] with CAT-mimicking capac-
ity and Ru–Te hollow nanorods [436] with OXD, POD-, 
CAT- and SOD-type activity both acted as carriers and 
relieved TME hypoxia to enhance cancer PDT/PTT effect. 
Different from most nanozyme-based synergistic therapy, 
Yang et al. [443] covered Pt-carbon integrated nanozymes 
as PSs via one-step reduction. Under NIR light lasering, the 
nanozymes provided brilliant photosensitivity and photo-
thermal effect. And the PDT reinforcement was relied on the 
CAT-like catalysis activity. In vivo experiments revealed that 
Pt-carbon nanozymes inhibited mice colon cancer reaching 
an 90% efficiency (Fig. 14b). Li et al. [411] prepared the 
 H2O2-responsive PtFe@Fe3O4, which possessed POD-like 
activity, CAT-type property and exceptional photothermal 
performance under acidic TME environment. Experimen-
tal results indicated that tumor catalytic therapy based on 
PtFe@Fe3O4 nanozymes obtained a 99.8% anti-tumor rate 
for deep pancreatic cancer when cooperating with photo-
thermal therapy What is more, the electron transfer process 
between PtFe nanorods,  Fe3O4 NPs and  H2O2 molecules was 
also firstly described in their study (Fig. 14c).

4.4.5  Immunotherapy

Cancer immunotherapies, regarded as promising strategies 
for tumor therapy, utilize the immune system of patients 
to treat cancer [444], and might include cytokine therapy, 
tumor vaccines, immune checkpoint blockade (ICB) therapy, 
adoptive cell therapy and so on [445]. Studies have demon-
strated that the modulation of TME is conducive to tumor 
immunotherapy [43]. Yang et al. [446] designed a polyeth-
ylene glycol (PEG)-modified hollow manganese dioxide 
(H-MnO2) nanoshells to load photodynamic agent Ce6 and 
chemotherapy drug doxorubicin (DOX), forming H-MnO2-
PEG/C&D complex for cancer combination immunotherapy. 
The H-MnO2 could alleviate tumor hypoxia via catalytically 
decomposing hydrogen peroxide to generate  O2. A series of 
immunological responses were discovered with synergistic 
treatment of H-MnO2-PEG/C&D and Chemo-PDT, result-
ing remarkable decreasing in the secretion of IL-10 (pre-
dominant cytokine secreted by M2 macrophages) and the 
increment in the secretion of IL-12 (predominant cytokine 
secreted by M1 macrophages). Moreover, the introduction of 
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anti-PD-L1 checkpoint blockade showed further enhanced 
therapeutic efficacy for tumor with by improving TNF-α.

Moreover, it has been reported that tumor-associated mac-
rophages (TAMs) are critical to tumor growth and metasta-
sis, thereby playing an important role in the cancer immuno-
therapy [447]. Regulating TME could facilitate macrophage 
polarization from M2 to M1 since the tumor hypoxia is 
associated with macrophage recruitment and polarization 
[448]. Xu et al. [449] loaded TGF‐β inhibitor (TI) to the 
PEGylated iron manganese silicate nanoparticles to prepare 

IMSN-PEG-TI nanoplatform for tumor immunotherapy 
(Fig. 14d). In this system, IMSN nanozymes with POD- and 
CAT-like property could decompose  H2O2 into ·OH and  O2 
to kill tumor cells and overcome tumor hypoxia in respec-
tive. The interaction of IMSN and TI effectively regulated the 
tumor immune microenvironment, leading to elevated ratio 
of M1 to M2 macrophages,  CD4+ T to  Treg cells, and  CD8+ T 
to  Treg cells. Furthermore, the enhanced macrophages polari-
zation would in turn induce the reproduction of  H2O2, thus 
promoting enzymatic properties of IMSN nanozymes.
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5  Conclusion

The prosperity of nanotechnology and biology created a 
series of novel artificial enzymes. As promising natural 
enzymes mimics, nanozymes have demonstrated remark-
able performance in clinical medicine, biopharmaceuticals, 
environmental monitoring and many other fields. In this 
review, we meticulously elaborated the intrinsic activity 
and catalytic mechanism of the classical metal- and metal 
oxide-based nanozymes, including monometal-, metal 
alloy-, metal oxide-, metallic core/shell nanostructure-based 
and hybrid nanomaterials. The recent research progress of 
metal- and metal oxide-based nanozymes in analysis, anti-
bacterial, relieving inflammation, and cancer therapy was 
also involved. Although nanozymes have been revealed to 
overcome many limitations of natural enzymes such as low 
stability, complicated preparation and expensive storage, 
there are still severe challenges for future researches. (1) 
Compared with most natural enzymes, metal- and metal 
oxide-based nanozymes seem to lack the substrate specific-
ity. Even though researchers have discovered amounts of 
inner and external factors that influencing enzymatic proper-
ties, the precise control of catalytic performance, especially 
for the nanozymes with multi-enzyme-like activities, still 
has a long way to go. (2) The exploration of the internal 
catalytic mechanism is fundamental for understanding and 
mastering the catalytic reaction of nanozymes. In contrast 
to the synthesis and employment of novel nanomaterials, 
studies that involved the deep comprehension of working 
mechanism are relatively rare. What’s worse, the advanced 
strategies dedicated to mechanism clarification are also lim-
ited. (3) The POD mimics have become an issue of extensive 
concern in most nanozyme-related applications, especially 
in the field of analysis and detection. While other component 
of oxidoreductase family have also been proved to possess 
unsubstituted function in many circumstances. Therefore, 
the spread utilization of SOD, CAT, OXD mimics are yet 
to be developed. (4) Most previous biosensors based on 
nanozymes could only detect one or two substances. The 
schemes for simultaneous discrimination and quantifica-
tion of multiple (≥ 3) substances with high sensitivity are 
required to be further investigated and simplified. (5) Con-
sidering the cost control in large-scale preparation, seek-
ing alternatives for noble metal nanozymes has gradually 
received increasing attention. Besides, the reduction of their 

content in nanoalloys and nanocomposites while guarantee-
ing the performance is also worth more efforts. (6) The long-
term in vivo toxicity of nanozymes still remains a challenge 
for their clinical employment. Although a large amount of 
studies have involved the discussion about the biocompat-
ibility, the systematic mechanisms of toxicity and corre-
sponding solutions are in urgent need.
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