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Nanoparticle–Cartilage Interaction: 
Pathology‑Based Intra‑articular Drug Delivery 
for Osteoarthritis Therapy
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HIGHLIGHTS

• Nanoparticles hold considerable promise for controlling the local pharmacokinetics of therapeutic agents during osteoarthritis therapy.

• The advantages of nanoparticles, the bioactive design, the transports and interactions within cartilage, and therapeutic mechanisms 
are discussed.

• This review proposes future strategies to design more intelligent and multi-functional nanomaterials as delivery systems for cartilage 
therapy.

ABSTRACT Osteoarthritis is 
the most prevalent chronic and 
debilitating joint disease, result-
ing in huge medical and socioec-
onomic burdens. Intra-articular 
administration of agents is clini-
cally used for pain management. 
However, the effectiveness is 
inapparent caused by the rapid 
clearance of agents. To overcome 
this issue, nanoparticles as deliv-
ery systems hold considerable 
promise for local control of the 
pharmacokinetics of therapeutic 
agents. Given the therapeutic programs are inseparable from pathological progress of osteoarthritis, an ideal delivery system should 
allow the release of therapeutic agents upon specific features of disorders. In this review, we firstly introduce the pathological features of 
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osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release. Then, we review the interactions 
of nanoparticles with cartilage microenvironment and the rational design. Furthermore, we highlight advances in the therapeutic schemes 
according to the pathology signals. Finally, armed with an updated understanding of the pathological mechanisms, we place an emphasis 
on the development of “smart” bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological 
signals. We anticipate that the exploration of nanoparticles by balancing the efficacy, safety, and complexity will lay down a solid founda-
tion tangible for clinical translation.

KEYWORDS Nanoparticle; Drug delivery; Osteoarthritis; Articular cartilage; Nanomedicine

1 Introduction

Osteoarthritis (OA) is the most prevalent chronic and 
debilitating joint disease and a leading cause of disability 
of elderly individual due to daily wear and tear of cartilage. 
Chronic pain, joint instability, stiffness, and radiographic 
joint space narrowing are major clinical symptoms, affecting 
about 10% of men and 18% of women over 60 years of age 
[1, 2]. Consequently, the resultant individual and socioeco-
nomic burdens are huge [1, 2].

As aneural and avascular tissue, articular cartilage is of 
weak regeneration ability. Once damaged, it is hardly to be 
repaired and inescapable to degenerate. Because of the rapid 
clearance of synovial fluid and the barrier of dense natural 
cartilage extracellular matrix (ECM), the effectiveness of 
traditional intra-articular therapies, analgesics, glucocorti-
coids, and hyaluronic acid is still far from satisfactory [3]. 
To overcome these issues, nanoparticle is a desirable deliv-
ery system with the most suitable size to penetrate past the 
superficial zone of the cartilage and locally control the phar-
macokinetics of therapeutic agents. As soon as nanoparticles 
are delivered into articular cavity, nano–cartilage interactions 
occur throughout their transport and penetration within the 
matrix. Apart from pain relief, nanoparticles-based therapy 
is also promising to attenuate cartilage degeneration and even 
promote regeneration. Armed with an updated understanding 
of the pathological features and OA pain, we may develop 
innovative nanoparticles for targeting multiple tissues, such 
as cartilage, nerves and/or blood vessels in synovium and 
subchondral bone, to enhance the therapeutic efficacy.

Herein, we review the pathological features of OA, limita-
tions of current intra-articular therapies, and the advantages 
of nanoparticles for sustained drug delivery. Then, we sum-
marize how to take advantages of these unique nanoscale 
properties, components, size, and surface chemistry, to 
facilitate their transports and interactions within cartilage. 
Furthermore, we highlight advances in the therapeutic 

mechanisms of nanoparticles. Finally, we place an emphasis 
on the design of the anticipated “smart” bioresponsive and 
multi-functional nanoparticles as the next-generation deliv-
ery system to interact with the pathological abnormalities 
and at the same time achieve controlled release. We antici-
pate that the exploration of nanoparticles by balancing the 
efficacy, safety, and complexity will lay down a foundation 
for clinical translations.

2  Limitations of Current OA Therapy 
Demands Research and Development 
(R&D) of Effective Drug Delivery Systems

2.1  Pathological Mechanisms of OA

The primary function of articular cartilage is to bear load-
ing during motion. Articular cartilage is hyaline cartilage in 
nature with very limited support of blood vessels, nerves, 
or lymphatics. Articular cartilage mainly consists of highly 
specialized chondrocytes encapsulated in ECM. The slow 
turnover of ECM in cartilage makes the regeneration dif-
ficult in skeletally mature individuals. For example, it takes 
up to 25 years for the turnover of proteoglycans and the half-
life of type II collagen is between 100 and 400 years [4–7].

Chondrocytes, which are sensitive to the changes of chem-
ical and mechanical environment in OA, increase synthetic 
activity to generate collagen type X (matrix degradation asso-
ciated products) at early stage of the disease [8]. Chondropto-
sis (apoptosis of chondrocytes) is increased in OA caused by 
oxidative and nitrosative stress, inflammatory cytokines, and 
mechanical stress [8]. At the same time, several inflammatory 
cytokines are produced, including interleukin (IL) 1β, IL 6, 
and tumor necrosis factor (TNF) α, and matrix-degrading 
enzymes (the matrix metalloproteinases (MMP) and a dis-
integrin and metalloproteinase with thrombospondin-like 
motifs (ADAMTS)) [8]. Ultimately, these enzymes mediate 



Nano-Micro Lett. (2021) 13:149 Page 3 of 48 149

1 3

the degradation of cartilage ECM [8]. These catabolic fac-
tors also activate a series of pathways such as nuclear factor 
kappa B (NF-κB) and Wnt signaling, which play important 
roles during the pathological progress of OA [9–11]. At a 
later stage, inflammatory fluids filling the joint capsule cause 
swelling, more pain, and stiffness [8]. Cartilage becomes 
hypocellular with impaired metabolic flexibility [6].

There is an imbalance between catabolic and anabolic 
metabolism of articular cartilage in OA (Fig.  1) [12]. 

Although the synthesis of ECM increases, it is no longer 
able to fully compensate cartilage degradation [12]. MMP-
13 is mainly in charge of degrading collagen and ADAMTS4 
and 5 is for the destruction of aggrecan [13]. Decrease in 
the concentration of glycosaminoglycans (GAGs) and the 
disruption of the collagen orientation are therefore presented 
during OA. Consequently, the permeability of cartilage and 
interstitial fluid velocities within the matrix are increased 
[14]. Initially, changes of integrity at the surface disrupt 
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cartilage composition and increase the susceptibility to phys-
ical forces [8, 15]. Without proper therapy, fissures will form 
in deep cartilage along with calcified cartilage zone expan-
sion [16]. Additionally, the degradation of cartilage leads to 
the remodeling of subchondral bone and subchondral thick-
ening [8, 15]. This process resembles chondrocyte differen-
tiation during embryogenesis accompanied by the formation 
of osteophytes and subchondral cysts [8, 15]. Synovitis is 
another key feature of OA. Notable tissue hypertrophy, syn-
oviocytes proliferation and increased vascularity contribute 
to the release of inflammatory factors [15]. Additionally, 
persistent joint inflammation leads to lymph node collapse 
and reduced lymphatic drainage, which contribute to severe 
synovitis and joint erosion [17].

2.2  Inadequate Clinical Therapy Efficacy

Pain medication is the mainstay of pharmacotherapy for OA 
[18, 19]. Oral administration of nonsteroidal anti-inflam-
matory drugs (NSAIDs), cyclooxygenase-2 (COX-2) inhibi-
tors, and acetaminophen has shown to soothe the pain and 
improve function [18–21]. However, significant adverse 
events and low local concentration of drugs are the main 
obstacles limiting their clinical applications. For example, 
oral administration of NSAIDs increases the risk of heart 
attack and induces kidney or gastrointestinal disorders [22].

Intra-articular drug delivery has various advantages over 
the systemic administration, such as increased local bioavail-
ability throughout the joint capsule and fewer adverse events 
[3]. Intra-articular delivery of corticosteroids, hyaluronic 
acid, platelet-rich plasma and glucosamine or chondroitin 
can increase local bioavailability and serve as another strat-
egy to reduce pain and relieve symptoms [3, 18–21, 23]. 
However, synovial fluid with complex biological composi-
tion and high viscosity affects drug’s properties and diffu-
sion. The low residence time of drugs during articular cavity 
administration is mainly caused by the rapidly cleared from 
the synovial fluid [3]. The dense networks of collagen fibers 
and proteoglycans of cartilage ECM are also obstacles for 
drug absorption. Furthermore, cartilage ECM is avascular 
and densely packed with negative charged molecules, which 
particularly makes the diffusion of the negative charged drug 
even more difficult. Consequently, the half time of NSAIDs 
and soluble corticosteroids injected into the joint capsule is 
about 1–4 h, whereas hyaluronic acid can be cleared within 

26 h [24, 25]. Repeated injections as the simplest way to 
increase therapeutic efficacy bring other problems such as 
increased risk of infection, joint disability, and the resultant 
high cost. Limitations of current pharmacological therapy 
for OA are concluded in Table 1. With the degeneration of 
cartilage, these therapies become less efficient, and the ulti-
mate choice is joint replacement. Thus, drug delivery system 
of higher efficacy is required to overcome these obstacles.

2.3  Advantages of Nanoparticles for the Treatment 
of Cartilage Disease

Nanoparticles refer to submicron particles with the dimen-
sion from 1 to 100 nm, which is about one thousand times 
smaller than chondrocytes (Fig. 2a). The controllable size 
endows nanoparticles the feasibility of direct intra-articular 
injections. Nanoparticles as carriers can incorporate drugs in 
the surface or matrix to protect drugs from enzymatic degra-
dation, improve their penetrations across cartilage matrix, and 
modulate drug pharmacokinetics, which is beneficial for bal-
ancing the efficacy and the toxicity of therapeutic compounds 
(Fig. 2b). In order to optimize the degradation, toxicity, and 
mechanical properties, hybrid nanoparticles combining two or 
more components may have superior properties than single-
component materials. By adjusting physicochemical properties 
or decorating with moieties, nanoparticles can be functional-
ized to target components and/or cells, e.g., chondrocytes, in 
the cartilage. Biocompatible and biodegradable materials such 
as polymers or solid lipids make up nanoparticles to enable 
controlled and sustained drug release. The increased specific 
surface area and surface to volume ratio are also beneficial for 
the dissolution and release of drugs [26]. Moreover, modifi-
cations can be performed by grafting other functional units 
for imaging. Other technological advantages includes high 
stability (e.g., long shelf life), feasibility of incorporation of 
both hydrophilic and hydrophobic substances and feasibility 
of variable routes of administration (including intra-articular 
injection or in combination with scaffold or hydrogel) [27].

Nanoparticle-based local gene transfer can alter the 
expression of the endogenous genes to prevent or slow 
the pathological progress of OA by introducing genes, 
such as DNA, mRNA, siRNA, and miRNA, into the tar-
get cells. Compared with the naked genetic molecules, 
nanoparticles hold potential to provide safe, efficient, 
and controllable gene delivery by manipulating properties 
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such as encapsulation efficiency, stability, degradation, 
endocytosis, endosomal escape, and toxicity.

3  Transports of Nanoparticles Within 
the Joint Cavity

3.1  Pharmacokinetics and Biodistribution 
of Nanoparticles

The proper space–time retention in the joint cavity is 
the prerequisite for ensuring nanoparticles’ effective 

interaction with different components in the joint. There-
fore, real-time monitoring of pharmacokinetics and biodis-
tribution (PK/BD) of nanoparticles is important to define 
their therapeutic effect. Nanoparticle-based intra-articular 
delivery systems reduce the distribution to the reticuloen-
dothelial organs and increase drugs’ half-lives by at least 
tenfold than free drugs [28, 29]. Pharmacokinetics of 
nanoparticles within cartilage depends on their chemical 
and physical properties, including size, charge, and surface 
chemistry, as well as the pathological state of joint cavity. 
Nanoparticles or their encapsulated drugs exit joints via 
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Fig. 2  Properties and application schemas of nanoparticles for the treatment of cartilage disease. a Size of nanoparticles compared with differ-
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the small blood vessels and lymphatic system (Fig. 3a) 
[30, 31]. The small blood vessels are the main channels 
for the clearance of small particles [30, 31]. In contrast, 
lymphatic pathway eliminates particles or their degrada-
tion products independently of their size [30, 31]. A study 
using mouse model proves that particles are preferentially 
drained through the iliac lymphatic nodes near the aortic 
bifurcation, and the remaining goes through hind leg lym-
phatic drainage to enter the inguinal lymphatic node [31].

Theoretically, the retention of drug carriers in cartilage 
depends on the net flux penetrating cartilage from synovial 
fluid and their efflux rate from the lymphatics and subsyno-
vial capillaries. Therefore, the net influx penetrating carti-
lage from synovial fluid must reach therapeutic levels before 
the clearance to ensure effective drug delivery. If the con-
centration of nanoparticles within articular cavity reaches a 
high level immediately after the delivery. If the concentra-
tion of nanoparticles in synovial fluid is higher than that 
in the cartilage, the nanoparticles will penetrate into the 
cartilage matrix. When the concentration in synovial fluid 
decreases with the clearance of lymphatic and blood vessels, 
nanoparticles diffuse outward from cartilage into synovial 
fluid. Detailed pharmacokinetics of drug delivery systems 
has been well described in previous literature [32].

Synovial inflammation in OA increases capillary perme-
ability and alters the lymphatic permeability (displayed ini-
tial compensatory expanding phase followed by a collapsed 
phase) [17]. Synovial fluid and serum tend to equilibrate 
through synovium intercellular gaps in a normal status; in 
OA, synovial inflammation-associated increased capillary 
permeability facilitates the elimination of nanoparticles from 
joint [31]. However, the clearance of nanoparticles in OA 
joint is impaired compared with the healthy joint, which 
may be associated with synovial thickening [33, 34]. Ageing 
associated metabolic changes, including less range of joint 
motion and decreased lubricating fluid, may also impede 
the clearance of nanoparticles. In a rat OA model, increased 
particle retention (in 14 days) has been found in 15-month 
rat knees, compared to 5- and 10-month rat knees (Fig. 3c) 
[33]. Although no animal study precisely recapitulates how 
the pathophysiology of OA affects the clearance of nano-
particles from lymphatic pathway, we can speculate that the 
initial ’expansion’ phase of lymphatic vessels during moder-
ate experimental arthritis may facilitate efficient lymphatic 
clearance; in contrast, the collapsed phase of lymphatic 
vessel characterized by lymphatic vessel structural damage 

and loss of contraction may reduce lymphatic clearance of 
nanoparticle or their encapsulated drugs [17].

3.2  Size‑Dependent Penetration Within Cartilage 
Matrix

The dense ECM and avascularity structure determine the 
transports and interactions of nanoparticles within cartilage. 
Human knee articular cartilage is about 2 to 4 mm thick, 
which mainly consists of three zones—the superficial (tan-
gential) zone (~ 10% to 20%), the middle (transitional) zone 
(~ 40% to 60%), and the deep zone (~ 30 to 40%) (Fig. 3b) 
[32, 35]. Superficial zone contains a high number of flat-
tened chondrocytes and collagen fibers aligned tightly paral-
lel to the articular surface. The mesh size of collagen type II 
fibrillar network in the superficial zone is about 50–60 nm 
[36, 37]. The space between the side chains of the proteo-
glycan network is about 20 nm [37, 38]. This zone with the 
good tensile properties is responsible for resisting the sheer, 
tensile, and compressive forces. The middle (transitional) 
zone is responsible for the resistance to compressive forces 
that contains proteoglycans and thicker obliquely organized 
collagen fibrils [32, 35]. The spherical chondrocytes are dis-
tributed at low density [32, 35]. In deep zone, chondrocytes 
are parallel to the collagen fibers and columnar to the joint 
line [32, 35]. Proteoglycan content is the highest, and the 
resistance to compressive forces is the greatest [32, 35]. The 
calcified zone containing scarce and hypertrophic chondro-
cytes distinguishes the deep zone from the subchondral bone 
[32, 35].

The depth at which the nanoparticles can diffuse 
depends on both the pores in the cartilage nano/micro-
structure and the size of the particles. The increased net-
work density of proteoglycan with the thickness of carti-
lage makes the penetration of nanoparticles more difficult. 
Whereas larger sized nanoparticles do not penetrate into 
cartilage, smaller ones are capable of penetrating deeper 
(Fig. 3f). As the pore size of collagen type II fibrillar net-
work is about 50–60 nm in the superficial zone [36, 37], 
nanoparticles beyond this size may not be able to enter the 
cartilage matrix efficiently. Human-thickness bovine carti-
lage is commonly employed to investigate the penetration 
of nanoparticles. The accumulation of 38-nm nanoparticles 
of poly(propylene sulfide) (PPS) in bovine cartilage carti-
lage matrix is 14.9-fold higher than 96 nm nanoparticles 
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after intra-articular delivery for 24 h, although most of 
the nanoparticles are still withheld in the cartilage sur-
face [37]. Poly[L-lysine-block-poly(ε-caprolactone)] 
(PLL)–polycaprolactone (PCL) nanoparticles (25.93 nm) 
can efficiently bound to the surface of bovine cartilage 
explants with articular cartilage thickness similar to that of 
human at day 2 and gradually penetrated inside by at least 
1 mm by day 6 (Fig. 3d) [34]. Given the space between the 
side chains of the proteoglycan network is about 20 nm, 
small (≤ 15 nm) nanoparticles can easily enter the carti-
lage matrix by binding and penetrating anionic cartilage 
tissue [37, 38]. For example, a study proves that 15-nm 
micelles are better than 138-nm-diameter liposomes in 
penetrating bovine articular cartilage [39]. At 4-h post-
nanoparticles treatment, micelles have already penetrated 
across the superficial and middle zones of bovine articular 
cartilage [39]. Similarly, amine terminal polyamidoamine 
(PAMAM) dendrimers functionalized with variable molar 
ratios of poly(ethylene glycol) (PEG) (diameter < 10 nm) 
exhibit full penetration of human-thickness bovine car-
tilage with a 70% absorption rate (Fig. 3e) [40]. Such 

nanoparticles as a drug delivery system increase the resi-
dence time of insulin-like growth factor 1 (IGF-1) by ten-
fold for up to 30 days [40]. Another study also proves that 
nanoparticles diameters ~ 5 nm are capable of penetrat-
ing throughout the full thickness (1 mm) of the normal 
bovine cartilage within 24 h, while an obvious penetra-
tion gradient is also found with the treatment of particles 
diameters ~ 10 nm [41]. Even so, this does not mean that 
the smaller the diameter of the nanoparticles, the better 
therapy efficacy. Small-size nanoparticles may be easily 
cleared from the joint via sub-synovial capillaries and 
lymphatics more rapidly. In contrast, larger-sized nano-
particles with the advantage to deliver a more sustained 
payload are not necessarily unsuitable for drug delivery. 
Therefore, there are plenty of rooms for sorting out the 
optimal size of nanoparticles to maximize the efficacy. 
Alternatively, large-sized nanoparticles floating in the 
articular cavity need to release sufficient drug to enable 
the drug’s penetration within cartilage. If nanoparticles 
can be functionalized binding to the cartilage surface by 
modifying surface-functional properties, their released 
drugs may be able to diffuse to deeper layer of cartilage 
by minimizing the clearance effects (Fig. 3f).

Although rodent models are widely used to investigate 
the OA treatment and its underlying mechanism, large ani-
mal with thicker cartilage is more suitable for exploring the 
transport kinetics of nanoparticles. Therefore, bovine carti-
lage is the most widely used for studying the penetration of 
nanoparticles in the past [39–41]. The thickness of cartilage 
negatively affects the effective diffusion of nanoparticles 
[32]. Giving that the thickness of cartilage increases with 
animal size, nanoparticles are more likely to be cleared in 
large animal’s cartilage [14, 32, 42, 43]. Similarly, the out-
ward diffusion of nanoparticles is also proportional to the 
square of the cartilage thickness [32]. Once the concentra-
tion of nanoparticles reaches therapeutic levels, the theo-
retical retention time also increases with cartilage thickness 
[14, 32, 42, 43]. Of note, the decrease in proteoglycan and 
collagen in OA usually increases the pore size and affects the 
diffusion of drugs (Fig. 3f) [14]. Nanoparticles can penetrate 
deeper into the proteoglycan-depleted cartilage than normal 
cartilage [41]. Large molecules exhibit higher diffusivities 
benefiting the most from the increased pore size [14].

Fig. 3  Interaction of nanoparticles with cartilage. a Clearance and 
biodistribution of nanoparticles within joint cavity. b Cartilage layers 
as barriers of drug penetration. c Retention of nanoparticles in OA 
and the contralateral joints in rats with different ages. Reproduced 
with permission [33]. Copyright © 2020 Elsevier B.V. d Penetra-
tion of 25.93 nm nanoparticles within bovine articular cartilage with 
similar joint cartilage thickness to human. Reproduced with permis-
sion [34]. Copyright © 2021 American Association for the Advance-
ment of Science. e Penetration of 25.93  nm nanoparticles within 
bovine articular cartilage [40]. Reproduced with permission Copy-
right © 2018 American Association for the Advancement of Science. 
f Penetration of different sizes of nanoparticles into the cartilage 
matrix. Penetration depths of nanoparticles within cartilage matrix 
is in a size-dependent manner. Surface-modified nanoparticles with 
large size can be functionalized binding to the cartilage surface for 
drug release. Penetration of nanoparticles increases in OA cartilage 
compared with healthy cartilage Copyright © 2020 Elsevier B.V. d 
Penetration of 25.93  nm nanoparticles within bovine articular car-
tilage with similar joint cartilage thickness to human. Reproduced 
with permission [34]. Copyright © 2021 American Association for 
the Advancement of Science. e Penetration of 25.93  nm nanoparti-
cles within bovine articular cartilage [40]. Reproduced with permis-
sion Copyright © 2018 American Association for the Advancement 
of Science. f Penetration of different sizes of nanoparticles into the 
cartilage matrix. Penetration depths of nanoparticles within cartilage 
matrix is in a size-dependent manner. Surface-modified nanoparticles 
with large size can be functionalized binding to the cartilage surface 
for drug release. Penetration of nanoparticles increases in OA carti-
lage compared with healthy cartilage

◂
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3.3  Targeting Therapy to Facilitate Nanoparticle–
Cartilage Interaction

Desirable nanoparticles should be able to functionally tar-
get to specific components and/or cells of the cartilage. The 
strategies can be divided into passive targeting and active 
targeting (Fig. 4a, b and Table 2). Passive targeting is estab-
lished by improving the physicochemical properties such 
as size, charge, surface chemistry for preventing unspecific 
interactions, which needs to fully consider the unique char-
acteristics of cartilage ECM. Negative charged cartilage 
offers the unique opportunity to utilize electrostatic inter-
actions with the positive charged nanoparticles to achieve 
passive targeting. Accelerated augment transport, uptake 
and intra-tissue binding of the positive charged nanoparticles 
shorten the time of intra-cartilage drug to reach therapeu-
tic concentration and extend the half-life in vivo (Fig. 4a). 
For example, cationic globular proteins and dendrimers 
can target to the anionic cartilage matrix via electrostatic 
attraction [34, 40, 44]. With both approaches, electrostatic 
interactions between positively charged nanoparticles and 
the negative fixed charge of cartilage ECM can be optimized 
to augment the transport, uptake and intra-tissue binding 
of such nanoparticles. For example, cationic surfactants 
such as didodecyldimethylammonium bromide (DMAB) 
can help nanoparticles achieve passive targeting to improve 
their retentions in cartilage [45]. The retention of DMAB 
PLGA nanoparticles is fourfold higher than the correspond-
ing negatively charged nanoparticles with the presence of 
synovial fluid [45]. Another approach is to use the cationic 
domain of a therapeutic drug, such as cytokines, to enable 
the binding to cartilage. For example, FGF family with a 
cationic heparin-binding domain binds heparan sulfate GAG 
chain in cartilage [46, 47]. The positively charged amino 
acids in the heparin-binding (HB) domain can bind to the 
negatively charged sulfate and carboxyl groups in heparin. 
In addition, heparin-binding domains can also be used to 
attach to other cytokines such as IGF-1 to accelerate the 
transport inside cartilage. For example, HB-IGF-1 fabricated 
by binding the heparin-binding domain of HB-EGF to the 
amino-terminus of IGF-1 maintains the transduction of IGF 
signaling through the IGF receptor and displays prolonged 
therapeutic effect in OA model [48–50]. Besides the phys-
icochemical properties of nanoparticles, synovial fluid and 
the disease state of the cartilage also affect their retention 
in cartilage. For example, the retention of cationic DMAB 

PLGA nanoparticles decreases by 50% in the presence of 
synovial fluid compared with saline [45]. The possible rea-
son is that hyaluronic acid as an anionic, non-sulfated gly-
cosaminoglycan in synovial fluid may influence the passive 
targeting of positively charged nanoparticles. More impor-
tantly, the disease state of OA negatively affects passive tar-
geting therefore compromises the ability of the positively 
charged nanoparticles to penetrate the matrix. For example, 
the retention of cationic DMAB PLGA nanoparticles dis-
plays a threefold reduction in OA cartilage compared with 
healthy cartilage [45].

Active targeting is established by using conjugation 
chemistries to attach affinity ligands to the surface of the 
nanoparticles (Fig. 4a, b). Targeted cell can recognize deco-
rated nanoparticles through ligand–receptor interactions. For 
example, nanoparticles decorated with collagen type II anti-
bodies can specifically bind to cartilage and facilitate drug 
release inside the cells [40, 51]. In addition, several types of 
peptides termed the collagen hybridizing peptide/ collagen-
targeting peptide have been developed as moiety of nano-
particles to specifically bind to denatured collagen strands 
by re-forming a triple-helical structure in a fashion [52–54]. 
ECM (including collagen and proteoglycan) surrounding the 
chondrocytes has higher turnover rate [55, 56]. Chondrocytes 
targeting therapy can be a suitable strategy to assemble col-
lagen and proteoglycan distribution. CD44 is expressed by 
chondrocytes which can be used for active targeting [57–59]. 
Nanoparticles covered with hyaluronic acid can specifically 
binds to CD44, provoking the internalization [57–59].

The extent of cartilage accumulation and joint biodistri-
bution for the two types of targeting-system is differently 
affected by disease states [54]. Accumulation of active 
nanoparticles is increased in OA cartilage compared with 
healthy cartilage, indicating that active targeting strategies 
may be advantageous for drug delivery to diseased cartilage 
(Fig. 4c) [54]. However, from a translational aspect, passive 
targeting strategies requires fewer modifications, making 
production easier and more controllable, therefore reducing 
the cost and facilitating the translational.

3.4  Interactions with Targeted Cells

Penetrations of nanoparticles within cartilage result in either 
direct contact through cell uptake, or indirect interaction 
through release of nanoparticle-containing materials with 
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targeted cells (Fig. 5). For the indirect interaction, therapeu-
tic agents can be released to the cartilage matrix and affect 
cellular communications via receptor ligand interactions. For 
the direct interaction, nanoparticles may enter the targeted 
cells by endocytosis-based uptake pathways. Nanoparticles 
are typically confined within intracellular vesicles, such as 
endosomes, phagosomes, or macropinosomes [60]. Endo-
cytosis-based uptake pathways can be further categorized 
into phagocytosis, macropinocytosis, clathrin‐ and caveolae‐
mediated endocytosis, and clathrin‐ and caveolae‐independ-
ent routes, which are regulated and mediated by specific type 
of lipids and transport proteins [60, 61]. Most nanoparti-
cles accomplish intracellular delivery by endocytosis and 
endosomal escape; in particular, intracellular gene delivery 
for in situ cellular reprogramming can be closely associ-
ated with endocytosis. Since nucleic-acid biomolecules are 
negatively charged, the penetration into cartilage ECM and 

diffuse across negatively charged phospholipid cell mem-
branes become extremely difficult; as such, nanoparticles 
are developed to overcome the obstacles. The major existing 
approaches based on the platform of nanoparticles include 
intercellular delivery of transcription factors, RNA-based 
therapeutics and gene editing [62]. After being delivered in 
the cytoplasm, genes will directly regulate mRNA levels or 
translocated to the nuclei. Elucidate fundamental mecha-
nisms of how nanoparticles gain access into chondrocytes 
are still critical for the mediation of physicochemical param-
eters, including size, charge, shape, and surface modifica-
tions) to increase therapeutic efficacy. Interactions of nano-
particles with targeted cells are also possibly affected by the 
severity of disease. Increased activities of catabolic enzymes 
in OA may negatively influence the indirect interaction with 
targeted cells by changing both properties of nanoparticles 
and physiological activities of the targeted cells. In addition, 
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uptake pathways of nanoparticles in normal chondrocytes 
and diseased chondrocytes, including hypertrophic chondro-
cytes and, apoptotic chondrocytes, may be different and the 
mechanisms behind remain to be investigated.

3.5  Summary of Size Design

The optimal size of the nanoparticles should be designed 
according to the target sites for treatment. If the target sites 
are inflamed synovial fluid or synovial membrane rather than 
deep layer of cartilage, large sized, non-penetrating drug car-
riers can be used to avoid the clearance of blood vessels and 
lymphatics. If the target sites are superficial zones of carti-
lage, the size of nanoparticles should be at least smaller than 
the pore of collagen type II fibrillar network (50–60 nm) [36, 
37]. After binding to the cartilage surface, nanoparticles can 
release the encapsulated drugs at deeper sites. If the target 
sites are full thickness of cartilage, the size of nanoparticles 
should be even smaller than the pore of proteoglycan net-
work (20 nm) [37, 38]. In addition, active or passive target-
ing strategies can be used to reduce articular cavity clearance 
and increase the retention time within cartilage matrix.

4  Materials Design of Nanoparticles

Nanoparticles as delivery systems mainly contain transport 
carriers, bioactive elements and therapeutic agents (e.g., 
drugs and genes) (Fig. 6). Therapeutic agents are encap-
sulated by transport carriers, which are mainly responsible 
for controlling the pharmacokinetics of therapeutic agents 
including ensuring efficient concentration within cartilage 
while decreasing undesirable side effects. Bioactive elements 
are engineered for locally enhancing delivery efficiency and 
improving the cartilage microenvironment. Compositions of 
nanoparticles and their focused pathological pathways are 
summarized in Table 3.

4.1  Major Compositions of Transport Carriers

4.1.1  Synthetic Polymers

Biodegradable synthetic polymers such as PCL, poly (gly-
colic acid) (PGA), D, L-poly (lactic acid) (D, L-PLA), poly 

(l-lactic Acid) (PLLA), and their copolymer polylactic-co-
glycolic acid (PLGA) are frequently used biodegradable pol-
ymers. Because of the promising mechanical characteristics, 
high biocompatibility, and versatility of chemistry, some of 
them (e.g., PLA, PGA and PLGA) have been approved by 
the US Food and Drug Administration (FDA) and European 
Medicines Agency (EMA) as carriers for drug delivery in 
humans. Biodegradable synthetic polymers as nanocarriers 
for target delivery can increase bioavailability, protecting 
instable agents (e.g., proteins and genes), and minimizing 
toxicity effects. In addition, the production cost of synthetic 
polymer material is often lower than that of natural polymer 
material while the shelf time is longer.

PLA and PLGA have been widely used as drug deliv-
ery systems in animal studies of OA therapy [29, 57, 63, 
64]. The major advantage of synthetic polymers is a good 
control over their physical and chemical properties. The 
surface properties can be tailored for specific biomedi-
cal applications. Because the negative charge on synthetic 
polymers (e.g., PLGA) surface may reduce the ability to 
enter the negative charged cartilage matrix, cationic sur-
face modifications of PLGA-based nanoparticles by using 
cetyltrimethylammonium bromide, polyethyleneimine, 
poly(2-dimethylamino)ethyl methacrylate, didodecyldi-
methylammonium bromide, and chitosan is necessary 
for improving drug delivery efficacy [65–67]. Addition-
ally, it is feasible to incorporate both hydrophilic and 
hydrophobic substances in synthetic polymers [68]. For 
example, surface modification of (hydrophobic) PLA 
and PLGA with hydrophilic PEG to form an amphiphi-
lic block copolymer facilitates a high drug loading and 
efficient delivery within tissue [68]. Hydrophobic PLGA 
core can be used for encapsulation of drugs and genes, 
while the hydrophilic PEG shell prevents the surface from 
aggregation, opsonization, and phagocytosis and prolongs 
systemic circulation time [68, 69]. Moreover, the degra-
dation speed can be manipulated to control the release of 
therapeutic agents. The hydrolytic degradation of PLGA 
in vivo depends on hydrolysis of the polymers to gener-
ate the lactic and glycolic acid monomeric components 
which can be tailored through controlling polymer molec-
ular weight, copolymerization, and functionalization. By 
adjusting the size and structure, degradation kinetics 
of synthetic polymer nanoparticles can be controlled to 
achieve dosage‐ and site‐specific drug delivery [63, 64, 70, 
71]. However, the potential drawback is that their acidic 
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degradation products, including caproic acid, succinic 
acid, valeric acid, and butyric acid as degradation product 
of PCL, may aggravate cartilage inflammation and matrix 
degradation.

4.1.2  Natural Polymers and Their Derivatives

Polysaccharides including chitosan, dextran, alginate, and 
cellulose derivatives are the most versatile natural poly-
mers that broadly used in drug delivery. Among them, bio-
logically active natural GAG analogues such as chitin and 
chitosan show therapeutic potential for inter-articular drug 

delivery. Their physical and chemical resemblance of carti-
lage ECM determines their major advantages—low toxicity 
and good biocompatibility. As the most abundant polysac-
charide in the marine ecosystem and second in nature (after 
cellulose), chitin can maintain the morphology of chondro-
cytes and preserve the synthesis of ECM [72, 73]. Chitosan 
(poly-β-1,4-linked glucosamine) as derivative conversed 
from alkaline N-deacetylation of chitin has been widely 
studied for the delivery of therapeutic agents to cartilage 
[74]. The molecular structure of chitosan is similar to GAGs 
in normal cartilage, determining its good biocompatibility 
for maintaining the chondrogenic phenotype and prolifer-
ation activity [75, 76]. The cationic property of chitosan 
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makes it different from most neutral or negatively charged 
polysaccharides. The positive charge allows it easily to bind 
to the negatively charged cartilage ECM or form electro-
static complexes with other negatively charged polymers. 
Because of the mild processing conditions and chemical 
reactivity, chitosan has been widely used in the field of sur-
face modification [77]. The existence of β-(1,4) glycosidic 
bonds between d-glucosamine and N-acetyl-d-glucosamine 
provides possibilities to be modified for altering properties 
such as solubility, adhesion and stability [78]. Adjustable 
degradability is another property of chitosan determined by 
the deacetylation degree [79]. Lowly deacetylated chitosan 
degrades fast [79]. Besides, chitosan possesses non-toxicity, 
hydrophilicity, anti-inflammation, anti-bacterial and anti-
fungal properties, and wound-healing effects [78].

Chitosan nanoparticles have been widely used as stable 
delivery systems for either controlled drug release or as a 
non-viral gene vector for transferring genes [80, 81]. For 
drug delivery, intra-articular injection of drug-loaded chi-
tosan nanoparticles decreases the concentration of therapeu-
tic agents in plasma, increases the retention time in synovial 
fluid, and therefore effectively ameliorates OA [82]. For 
gene delivery, the combination of chitosan nanoparticles 
with DNA or siRNA is able to transfect the chondrocytes 
[83–87]. The small size makes it more easily to be taken up 
by endocytosis of chondrocyte [26]. However, before further 
application, a series of problems need to be resolved such as 
poor water solubility, charge deduction at physiological pH, 
and poor targeting and transfection efficiency [88].

4.1.3  Liposomes

Liposomes have been investigated as micro- or nanocarri-
ers to change pharmacokinetics and biodistribution of drugs 
in the treatment of OA. Besides the low toxicity and good 
biocompatibility, liposomes can incorporate both hydro-
philic and hydrophobic molecules and exist feasibility of 
surface modification to present targeting option and prolong 
the retention in cartilage. Phospholipids act as effective bio-
lubricants for friction reduction and maintenance of mobility 
of synovial joints. Therefore, it is possible to achieve both 
sustained drug delivery and improved lubrication by using 
liposomes at the same time [89]. Liposomes of larger size 
display good retention in joint cavity and therefore are better 

for the improvement of joint boundary lubrication [90, 91]. 
Although the size (above 100 nm) of liposomes determines 
the poor penetration within cartilage, sustained drug release 
within articular cavity can be provided through liposome 
dissolution. With a high encapsulation efficiency (as high 
as 90%), anti-inflammatory drug-loaded liposomes displays 
more promising outcome than the therapeutic entities they 
contain in pain control and cartilage protection [92, 93]. 
Nevertheless, the preparation procedure contains the mix 
with organic solvents which may damage proteinaceous 
drugs. Additionally, the aqueous environment of the synovial 
fluid may lead to a rapid burst release of drug.

4.2  Components Derived from Native ECM

The compositions of natural ECM provide templates for 
the selection of bioactive and biomimetic materials. Mainly 
produced by chondrocytes, ECM is composed of collagens 
(60–85% of dry weight), proteoglycans (15–40% of dry 
weight), and other non-collagenous proteins, and respon-
sible for retaining water and maintaining mechanical prop-
erties that are anisotropic, nonlinear, inhomogeneous and 
viscoelastic (Fig. 4) [94]. Type II collagen is the principal 
collagen (90% to 95% of collagen) in ECM, and the fibers 
are intertwined with proteoglycan aggregates [94, 95]. Pro-
teoglycan aggregates are high molecular weight molecules 
which are composed of GAGs covalently bound to a cen-
tral protein [94, 95]. Type II collagen and proteoglycans are 
mainly responsible for the tensile and compression strength, 
respectively [94, 95]. GAGs as high molecular weight linear 
polysaccharides can be divided into four classes including 
hyaluronic acid, keratan sulfate, dermatan sulfate, and chon-
droitin sulfate [94, 95]. Aggrecan is the main proteoglycan 
that its core protein contains three globular domains and two 
glycosaminoglycan-attachment domains [95]. An N-terminal 
globular domain of aggrecan interact with hyaluronic acid to 
form proteoglycan aggregates [95]. The chondroitin sulfate 
chains attach to the chondroitin sulfate domain, which is 
responsible for the high fixed charged density and the ability 
to resist compressive loads in cartilage [95]. Chondrocytes 
receive nutrients depending on the diffusion of synovial fluid 
and also indirectly interact with components of synovial 
fluid including hyaluronic acid, lubricin, glucose, aggrecan, 
chondroitin sulfate, keratan sulfate, and water [96].
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4.2.1  Hyaluronic Acid

As a non-sulfated glycosaminoglycan, hyaluronic acid main-
tains a constant concentration in cartilage and synovial fluid 
as a space filler [97]. In synovial fluid, hyaluronic acid func-
tions in lubrication, hydration balance, matrix structure, and 
steric interactions to provide viscoelastic properties [97]. 
The binding to ECM molecules and cell surface receptors 
makes hyaluronic acid as a modulator of cellular behaviors 
including differentiation, proliferation, development, and 
recognition [98]. When OA occurs, the decreased aver-
age molecular weight and concentration of hyaluronic acid 
aggravates damage to the cartilage [99].

Balazs and Denlinger proposed the concept of viscosup-
plementation for the treatment of OA [100]. The intra-artic-
ular injection of hyaluronic acid can recover the rheologi-
cal properties of synovial fluid which further promote the 
synthesis of endogenous hyaluronic acid and consequently 
improve joint biomechanics [100]. Hyaluronic acid also 
exerts pharmacologic actions including antioxidation, anti-
inflammation, analgesic effect and chondroprotection [97]. 
Hyaluronic acid has emerged as the moiety of the drug and 
gene carriers for OA treatment [86, 87, 101, 102]. Multiple 
functional units in hyaluronic acid enable it to be chemically 
modified by other moieties which is beneficial for enhancing 
therapeutic efficacy or decreasing toxicity. For gene delivery, 
the chondrocyte transfection efficiency of nanoparticles with 
hyaluronic acid is higher than that without hyaluronic acid 
[101, 103]. CD44, as a receptor of hyaluronic acid, is also 
highly expressed by synovial lymphocytes, macrophages, 
and fibroblasts in inflamed joints [104–106]. Hyaluronic 
acid-based nanoparticles can carry anti-inflammatory drugs 
targeting these cells as an active targeting strategy. Hyalu-
ronic acid-decorated nanoparticles can also target CD44-
expressed chondrocytes and therefore lead to better targeting 
in cartilage [58]. Besides improving chondrocytes targeting 
efficiency, hyaluronic acid-based nanoparticles persist longer 
retention than free drugs and those without hyaluronic acid 
[102]. More interestingly, hyaluronic acid with the conju-
gation of a thermosensitive polymer displays spontaneous 
formation of nanoparticles after intra-articular injections to 
a murine OA model. Those nanoparticles offer a prolonged 
residence time (exceed 21 days near the injection site) to 
reduce pro-inflammatory cytokines and preserve epiphysis 
thickness [107]. Nevertheless, it should be noted that larger 

hyaluronic acid molecules are depolymerized producing low 
molecular weight hyaluronic acid, leading to excess inflam-
matory response [108].

4.2.2  Chondroitin Sulfate

As highly sulfated and linear polysaccharide, chondroitin 
sulfate makes up the main constituent of GAGs, account-
ing for 20% weight/dry weight of adult articular cartilage 
[109–113]. Chondroitin sulfate is composed of a chain of 
alternating sugars (N-acetylgalactosamine and glucuronic 
acid) and has an important role in maintaining the structural 
integrity of cartilage [110, 111]. The turnover of chondroitin 
sulfate affects the mechanical property of ECM and modu-
lates the homeostasis of chondrocytes. Disaccharide unit 
heterogeneity and sulfates on disaccharide units determine 
the negative charge of chondroitin sulfate polymer and its 
biological activities in cartilage such as the maintenance of 
the water content and the great resistance to compression 
[114]. Chondroitin sulfate increases the production of hya-
luronic acid by synoviocytes to maintain viscosity [115]. 
The capacity to bind chondrocyte is 5- to 7-times higher 
than hyaluronic acid and keratin sulfate [116]. In addition, 
chondroitin sulfate inhibits the synthesis and activities of 
proteolytic enzymes, nitric oxide, and other substances and 
thus prevent cartilage matrix from damage [117]. Chondroi-
tin sulfate can reduce the nuclear translocation of NF-κB 
to inhibit inflammation, favor the synthesis of hyaluronic 
acid and collagen II, and therefore limit matrix degradation 
[117, 118]. In OA, the degradation of chondroitin sulfate in 
cartilage is increased, which further increases water content 
in cartilage ECM to induce a hypertrophy-like morphology 
of chondrocytes and MMP-13/ADAMTS5 production [119, 
120]. The European League Against Rheumatism (EULAR) 
gave chondroitin sulfate the highest recommendation for 
the treatment of OA [121]. Although the oral drug delivery 
has been commercialized, there is still challenge in secur-
ing instability of delivery system to achieve its efficacy. As 
the moiety of nanoparticles, chondroitin sulfate displays 
the potential to increase delivery efficiency in joints while 
without leading to toxicity [122, 123]. The hydrophilicity 
property of chondroitin sulfate-based nanoparticles increases 
water solubility of hydrophobic drugs, prolongs articular 
cavity retention, and promotes cartilage targeting [122, 123].
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4.2.3  Collagen and Acellular ECM

As the most abundant biopolymer in the human, collagen 
becomes an easily obtainable, renewable resource for the 
recovery of cartilage ECM structure and function. Besides 
the capacity to resemble the cartilage microenvironment, 
collagen exhibits an extremely high biocompatibility with 
low immunogenicity and is biodegradable and bioresorb-
able. Type II collagen can minimize chondrogenic hypertro-
phy, prevent joint destruction and pain for the treatment of 
OA [124, 125]. Moreover, the degree of cross-linking can be 
manipulated and the physical properties such as size, surface 
area, and absorption capacity, are easy to configure, which 
makes collagen-based nanoparticles a prime candidate for 
controlling drug release. Commercial native collagen prod-
ucts have been extracted from chicken sternum [124]. One 
potential drawback, however, is the immunoreactivity related 
to the source from non-human species.

Acellular ECM which theoretically contains all the bio-
active compositions is the nature’s template to provide ade-
quate nutrient support for tissue repair [126, 127]. Therefore, 
acellular ECM is biodegradable and do not elicit adverse 
immune responses. The properties to induce chondrogenic 
differentiation and promote cartilage regeneration have been 
proved [128, 129]. As the major component of nanoparti-
cles, it is capable of supporting viability and proliferation 
of chondrocyte [130].

4.3  Intra‑articular Delivery Choices

At present, most of the basic research focuses on the direct 
intra-articular injection of nanoparticles to solve the clini-
cal problem of rapid drug clearance. Direct intra-articular 
injection of nanoparticles can minimize systemic exposure 
and increase local bioavailability by providing controlled 
and sustained drug release. However, clinical intra-articular 
drug injection is used in most cases to treat mild to moder-
ate OA. Attempts to use nanoparticles for the treatment of 
severe OA are more desirable. If nanoparticles can be accu-
mulated more at the severely defective sites, the therapeutic 
outcome could be better than that evenly distributed in the 
articular cavity. The combination of hydrogels or scaffolds 
with nanoparticles can enhance the stability of nanoparticles 
and extend the retention of drugs following intra-articular 

injection [131–133] (Table 4). In addition, scaffolds or 
hydrogels can affect cell survival and provide matrix for cell 
homing and regeneration [131–136].

Hydrogels consisting cross-linked hydrophilic polymers 
for retaining water can mimic three-dimensional structure 
of the ECM and thus improve lubrication. With good bio-
compatibility and high permeability for nutrients, hydrogels 
can fill cartilage defects of any size in a minimally invasive 
way. Various hydrogel systems containing nanoparticles 
have been reported in the literature for articular cartilage 
repair [70, 137]. However, low mechanical strength is a 
major shortcoming of hydrogels. Since loading patterns 
affect the diffusion process of therapeutic agents [138], 
therapy based on nanoparticles alone is difficult to provide 
enough mechanical support at the region of severe wear and 
tear. The combination with scaffold is a strategy to solve the 
problem especially for the repair of large defect in weight-
bearing area. An ideal biodegradable scaffold should favor 
cell survival and alleviates the further wear and degradation 
of the cartilage to support the biomechanical environment, 
which in turn provides a proper microenvironment for the 
controlled release of nanoparticles. In addition, nanopar-
ticles can also provide support for the stability of hydro-
gels and scaffolds. For example, laponite nanoparticles can 
construct an interpenetrating network which enhances the 
hydrogel mechanical properties [137]. Further, the combina-
tion of nanoparticles with scaffolds or hydrogels is possible 
to achieve dosage- and site-specific multiple drug delivery 
[70].

4.4  Summary of Material Design According 
to the Pathology Features

Since each material has its own characteristics, the adequate 
combination of different materials can improve the efficiency 
of drug delivery while circumvent individual shortcomings. 
The material selection needs to be considered for its own char-
acteristics and the difference in target sites during the patho-
logical processes. For example, liposomes with larger size are 
more suitable for articular cavity drug delivery and viscosup-
plementation for prevention of OA. In the next section, we 
discuss the therapeutic mechanism of nanoparticles during the 
pathological progress of OA.
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5  Therapeutic Schemes According 
to the Pathology Mechanisms

5.1  Prophylactic Administration

5.1.1  Viscosupplementation

OA progress is associated with lubrication deficiency caused 
by the age-related degradation of glycoprotein (i.e., hyaluronic 
acid) [96, 139]. Nanoparticles combining lubrication protect 
against OA (Fig. 7a). As mentioned above, nanoparticles with 
components such as hyaluronic acid and phospholipids all are 
conductive to lubrication improvement and the maintenance 
synovial joint mobility. Synthetic diblock copolymer to mimic 
the functional domains of lubricin is also possible to be com-
ponents of nanoparticles for lubrication improvement [139]. 
Polyelectrolyte polymer brushes can reduce friction coefficient 
via the hydration lubrication mechanism [140]. The combi-
nation with nanoparticle represents an effective approach to 
enhanced lubrication capability [140].

5.1.2  Cartilage Maintenance by Minimizing 
Chondrogenic Hypertrophy

Hypertrophic chondrocytes with a significant increase in cell 
size and volume degrade their surroundings and therefore 
accelerate the progression of OA [141]. The high expres-
sion of osteogenic differentiation-related genes appears to 
be associated with production of mineralized ECM proteins 
and calcification of articular cartilage [141]. Prevention of 

hypertrophy is a potential therapeutic strategy to facilitate 
the retardation of osteophytes and slow down OA progres-
sion (Fig. 7b).

High expressions of collagen type X, runt-related tran-
scription factor 2 (RUNX2), and MMP13 are the major 
characterization of hypertrophic chondrocytes [141]. Mean-
while, the expressions of hyaline cartilage markers such as 
aggrecan, collagen type II, and SOX9 are decreased [141]. 
Although there is lacking attempt by using nanoparticles for 
preventing hypertrophy, these markers provide references 
for the selection of gene or drug delivery targets. Current 
evidence indicates that NK3 homeobox 2 (Nkx3.2), mothers 
against decapentaplegic homolog (Drosophila) 6 (SMAD6), 
HDAC4, Chondromodulin 1/soluble Flt-1 and ETS-related 
gene (ERG) /C-1-1are also potential gene delivery targets to 
prevent chondrogenic hypertrophy [142]. Moreover, other 
developed therapeutic agents, including PTHrP, TGF-β, 
BMP-4/7/13, Dorsomorphin, MMP13 inhibitor, Erk1/2 
inhibitor, Rac1 inhibitor and FK506, can be employed in 
combination with nanoparticles for delivery [142]. More 
importantly, by the adding above discussed bioactive ECM 
compositions (e.g., collagen), the efficacy of preventing 
hypertrophy can be further improved [125].

5.1.3  Cartilage Maintenance by Improving Chondrocytes 
Survival

Chondrocyte survival is important for the maintenance of 
cartilage matrix. Nanoparticles have been utilized to inhibit 
apoptosis (Fig. 7c). For example, berberine-loaded chitosan 
nanoparticles can effectively improve cell survival and 
ameliorate OA [82]. In fact, anti-inflammation, antioxidant 
stress, and the prevention of chondrogenic hypertrophy are 
all beneficial for cell survival. Adequate autophagy regula-
tion is another strategy to promote chondrocyte survival. 
Normal chondrocytes express high levels of autophagy pro-
moted by adenosine monophosphate-activated protein kinase 
(AMPK) and Sirtuin 1 to remove damaged and dysfunc-
tional organelles and proteins [143, 144]. In OA, reduced 
autophagy in chondrocytes leads to increased catabolic pro-
cesses and cell death [6, 143, 144]. Some nanoparticles have 
been fabricated to activate autophagy to mediate ROS scav-
enging, which is beneficial for relieving OA symptom [145]. 
Yan et al. fabricated the cationic amphipathic peptide-based 
nanoparticles for siRNA delivery in a mouse OA model 

Fig. 7  Uptake pathways and therapeutic mechanisms of nanopar-
ticles in OA. The major mechanisms include a lubrication improve-
ment, b chondrogenic hypertrophy prevention, c cell survival regu-
lation, d pain relief by inflammation inhibition, e anti-oxidative 
damage, f recruitment of endogenous stem cells, and g chondrogen-
esis promotion. Abbreviations: ACAN, aggrecan; BMP 4/7/13, bone 
morphogenetic proteins 4/7/13; CCL 2/3/20, C–C motif chemokine 
ligand 2/3/20; COL2a1, collagen type II alpha 1 chain; COX 2, 
Cyclooxygenase-2; CXCL 8/12, chemokine (C-X-C motif) ligand 
8/12; Erk1/2, extracellular signal-regulated protein kinase 1/2; FGF, 
fibroblast growth factors; FK506, tacrolimus; IGF, Insulin-like 
growth factor; IL 1β/6, Interleukin 1β/6; iNOS, inducible nitric oxide 
synthase; KGN, kartogenin; MMP 9, matrix metalloproteinases; 
NF-κB, nuclear factor kappa-B; NSAID, nonsteroidal anti-inflamma-
tory drugs; PDGF, Platelet-derived growth factor; PTHrP, parathyroid 
hormone-related protein; Rac1, Ras-related C3 botulinum toxin sub-
strate 1; ROS, reactive oxygen species; SOX 9, SRY-Box transcrip-
tion factor; TGFs, transforming growth factors; TNF, tumor necrosis 
factor

◂
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[146]. By suppressing NF-κB, chondrocyte autophagic 
activity can be promoted through inhibiting mammalian 
target of rapamycin (mTOR), demonstrating its ability to 
permeate the dense cartilage matrix and treat OA [146].

5.2  Symptomatic Treatment

5.2.1  Pain Relief by Inhibiting Inflammation

Pain is the predominantly symptoms of OA, caused by the 
activation of nociceptive pathways [147]. Inflamed tissues 
in OA express proalgesic molecules such as nerve growth 
factor (NGF), bradykinin receptors and tachykinin which is 
responsive for pain activation [147]. Therefore, pain man-
agement for allaying OA symptoms is dominated by the inhi-
bition of articular inflammation. Nanoparticles can enhance 
the therapy efficiency of anti-inflammatory drugs, such as 
steroid and nonsteroidal anti-inflammatory drug (NSAID) 
(Fig. 7d) [140, 148]. IL-1β, TNF, and IL-6 modulate dis-
turbed metabolism and enhanced catabolism in OA joint 
[149]. Nanoparticles loaded with selective inhibitors block 
these proinflammatory cytokines’ production and counteract 
the degradation of cartilage in OA [122, 150–152]. Currently 
used selective inhibitors include diacerein (against IL-1), 
interleukin-1 receptor antagonist (against IL-1), tocilizumab 
(against IL-6), and chloroquine (against TNF-α) [122, 
150–152]. Besides that, cell-penetrating anti-inflammatory 
peptide KAFAKLAARLYRKALARQLGVAA (KAFAK) 
with the ability to suppress IL-1, TNF-α, and IL-6 has also 
been used in combination with nanoparticles [153–155].

Nanoparticles-based gene delivery to interrupt unneces-
sary gene expression in specific target cells, such as mac-
rophage and chondrocyte, is also promising to inhibit joint 
inflammation. siRNA-loaded nanoparticles directly inhibit 
the expression of inflammatory factors such as IL-1β, TNF, 
and IL-6 [63]. IL-1β and TNF-α can promote the expression 
of cyclooxygenase-2 (COX-2) and inducible nitric oxide 
(iNOS) synthase, leading to the production of prostaglan-
din E2 (PGE2) and nitric oxide (NO). siRNA delivery to 
silence the expression of inflammation-related genes such 
as COX-2, iNOS, and MMP-9 is another strategy to suppress 
inflammation-associated catabolism [64, 156]. Besides, 
gene delivery targeting some signaling, such as NOTCH 

and NF-κB, is also possible to contribute to inflammation 
inhibition, resulting in retarded cartilage damage and bone 
erosion [146, 157].

5.2.2  Against Oxidative Damage

In OA, mitochondrial dysfunction leads to excessive produc-
tion of reactive oxygen species (ROS) and downregulation 
of antioxidants such as superoxide dismutase, catalase, and 
glutathione peroxidase [6]. Excessive production of ROS 
increases apoptosis in chondrocytes by increasing mito-
chondrial DNA (mtDNA) damage, which further results in 
ECM degradation and joint inflammation [158]. Antioxidant 
supplements, mediators of various ROS pathways, and free 
radical scavengers are being investigated to protect carti-
lage against oxidative stress damage [159, 160]. Therapeutic 
agents-loaded nanoparticles have been designed to directly 
or indirectly protect cartilage against oxidative stress dam-
age (Fig. 7e) [145, 161]. For example, manganese dioxide 
can catalyze the breakdown of hydrogen peroxide  (H2O2), 
a key radical that is derived from  O2− to downregulate ROS 
level [161]. In a rat model, manganese dioxide nanoparticles 
with suitable physicochemical properties (less than 20 nm 
and cationic) can address issues of rapid release and achieve 
cartilage protection [161].

5.3  In situ Cartilage Regeneration

With the progression of the OA and chondroptosis, a major 
challenge for attenuating the progression of cartilage deg-
radation is the inability of the resident chondrocytes to lay 
down a new matrix [6, 162]. Cartilage does not regener-
ate due to the hostile local microenvironment and a limited 
supply of endogenous cells; as such, the rapid recruitment, 
migration, and infiltration of more joint-resident endoge-
nous stem cells can provide better outcomes. Ideally, these 
recruited stem cells will be stimulated to differentiate into 
chondrocytes along with matrix synthesis to achieve in situ 
cartilage regeneration. In situ cartilage regeneration mainly 
contains two steps—recruitment of endogenous stem cells 
and chondrogenic differentiation (Fig. 7f, g).
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5.3.1  Recruitment of Joint‑resident Endogenous Stem 
Cells

Several types of MSCs including chondroprogenitor cells, 
synovium-derived MSCs, synovial fluid MSCs, bone mar-
row MSCs, fat pad-derived stem cells and MSCs in Ran-
vier groove are potential candidates for the recruitment 
into the defected cartilage [163]. The goal of recruitment 
is possible to be achieved by using nanoparticles deco-
rated with advantageous cytokines or other active mol-
ecules (Fig. 7f). Cytokines including chemokines (e.g., 
CXCL8, CXCL12, CCL2, CCL3, CCL20) and grow fac-
tors (e.g., TGFs, IGF, FGFs, PDGF, BMPs) have been 
reported to facilitate MSCs homing and migration within 
cartilage [163]. Nanoparticles can be targeted to defect 
areas following active or passive delivery. With the deg-
radation of nanoparticles and the release of cytokines, 
endogenous progenitor and stem cells can be recruited to 
synthesize and deposit nascent proteins and remodel the 
local microenvironments. Studies in future should fully 
consider the unfavorable effects of chemokines includ-
ing activated inflammation, aggravated ECM catabolism, 
impeded chondrogenic differentiation, induced apoptosis 
and developed pain symptoms [163]. Moreover, it is also 
important to consider both the pathological mechanisms 
of OA and heterogeneity of stem cells. Biophysical and 
biochemical characteristics of nanoparticles should be 
designed to recruit specific subset of stem cells according 
to the pathological features.

5.3.2  Promoting Chondrogenesis

TGF-β family plays a critical role in skeletogenesis and 
OA progression. TGF-β2 or TGF-β3 deficient mice dis-
played skeletogenesis defects in the forelimbs, hindlimbs, 
and craniofacial bones [164]. In a chondrocyte-specific 
Tgfbr2 knockout mice, higher expression of Runx2, 
Mmp13, Adamts5, and Col10 along with increased hyper-
trophic chondrocyte numbers, early osteophyte formation, 
and increased subchondral bone mass are found, resem-
bling the process of OA development [165, 166]. TGF 
family has been the most popular and widely investigated 
grow factor for cartilage repair. Intra-articular delivery 
TGF-β-loaded nanoparticles have been proved to stimulate 
ECM production, downregulate matrix-degradation, form 

hyaline cartilage, and therefore attenuate OA progression 
[70, 167, 168].

IGF-1 decreases in spontaneous OA, which aggravates 
articular cartilage lesions [169, 170]. IGF-1-loaded nano-
particles have also been successfully used to enhance carti-
lage repair and promisingly inhibit the progress of OA [40, 
171]. IGF-1 promotes chondrogenesis of mesenchymal stem 
cell (MSC) and mediate chondrocyte phenotype [172, 173]. 
In addition, IGF-1 not only enhances the synthesis of pro-
teoglycans and collagen type II, but also inhibits the ECM 
degradation by decreasing the production of matrix metal-
lopeptidase [174, 175].

FGF-18 is a well-known anabolic growth factor which 
is involved in chondrogenesis and beneficial for cartilage 
repair [176]. Upregulation of FGF-18 induces the forma-
tion of cartilage with increased synthesis of matrix, and the 
in vivo delivery relieves the symptom of OA and promotes 
cartilage repair [176, 177]. FGF-2 deletion induces accel-
erated spontaneous and surgically induced OA which can 
be reversed by subcutaneous administration of recombi-
nant FGF-2 [178]. However, controversial roles have been 
reported that FGF-2 exerts catabolic effects that displays by 
the upregulated matrix-degrading enzyme production and 
down regulated ECM accumulation [179–181]. Therefore, 
the pharmacological actions and mechanisms should be 
fully confirmed before the therapy application. The BMPs 
as a family of growth factors have been widely applied for 
bone regeneration, while the promotion of chondrogenesis 
is another property [182, 183]. Both Smad-dependent and 
Smad-independent BMP pathways are required for chondro-
genesis, and Indian hedgehog (IHH)/parathyroid hormone-
related protein (PTHrP) and FGF pathways are key down-
stream targets [184]. It is possible to apply BMPs to improve 
both cartilage and subchondral bones functions. Of note, to 
date, there is lacking attempt by using nanoparticles to deliv-
ery FGFs and BMPs for either preventing or treating OA. 
Further preclinical experiments are required to investigate 
the feasibility and efficacy of these novel approaches.

Kartogenin (KGN) as a small bioactive molecule to pro-
mote chondrogenic differentiation of stem cells was first 
reported by Johnson et al. in 2012 [185]. KGN-loaded nano-
particles have been shown to play a critical role in chondro-
genesis and promote cartilage repair in vivo [131, 132, 186].

Nanoparticles-based gene delivery has been explored for 
promoting chondrogenesis (Fig. 7g). Nanoparticles delivered 
plasmid encoding TGF-β1 can increase TGF-β1 expression 
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in chondrocytes and therefore promote the proliferation [84]. 
PLGA nanoparticles encoding TGF-β1 can be transfected 
to seed cells such as adipose-derived stem cells to upregu-
late expression of chondrogenesis-related genes such as 
COL2a1, SOX9, and ACAN [133]. SOX9 is an essential tran-
scription factor for the chondrogenic differentiation which 
is crucial for COL II and ACAN expression [187]. SOX9 
genes in combination with PLGA nanoparticles increase the 
transfection efficiency into human mesenchymal stem cells 
for chondrogenesis [71].

5.4  Perspective of Novel Therapeutic Schemes

5.4.1  Targeting Synovial Membrane and Subchondral 
Bone

Synovial membrane inflammation increases production of 
the proteolytic enzymes and ROS, which aggravates matrix 
degradation and contributes to OA progression [6]; there-
fore, it has been recognized as a diagnosis and/or therapy 
target [188]. Macrophage-associated inflammatory infil-
trate can be found in OA cartilage, and the ablation of mac-
rophages is beneficial for cartilage health and joint integrity 
[189]. Active targeting can be used for labeling activated 
macrophages as the diagnosis of OA cartilage (Fig. 8a). For 
example, folate receptor (FR) is expressed by activated mac-
rophages in the inflammatory environment. Nanoparticles 
conjugated with near-infrared dye and folic acid (FA) can 
be used as probes to detect activated macrophages, quan-
tify severity and deliver drugs [190, 191]. Another target-
ing strategy is using nanoparticles with the conjugation of 
certain polysaccharides of glucose such as dextran which can 
be selectively internalized by macrophage cells due to their 
expression of dextran-binding C-type lectins and scavenger 
receptors [192]. The major principles for the nanoparticles-
based therapy targeting synovial membrane include mac-
rophage depletion or re-education [193]. PEGylated Ag nan-
oparticles decorated with folic acid (FA) can target inflamed 
synovial membrane to induce M1 macrophage apoptosis 
and M2 macrophage polarization [191]. In addition, it is 
also possible to decrease macrophage recruitment by inhib-
iting of C–C Motif Chemokine Ligand 2 (CCL2)–C–C 
chemokine receptor type 2 (CCR2) signaling pathway or 
inhibit macrophage survival by inhibiting colony-stimu-
lating factor 1 receptor (CSF1R) signaling [194]. Notably, 

cell membrane-camouflaged nanoparticles, prepared by the 
fusion of cellar membrane with nanoparticles, exhibit great 
potential in elongating circulation time, evading immune 
responses, and effective targeting on specific tissues or cells 
[195]. For example, macrophage-derived microvesicle-
coated nanoparticles, which mimic macrophages, can tar-
geting Macrophage-1(Mac-1) and CD44 to contribute to the 
drug delivery [196]. In addition, coating nanoparticles with 
neutrophil membrane are an ideal decoy of neutrophil-tar-
geted biological molecules. These nanoparticles neutralize 
proinflammatory factors and inhibit synovial inflammation 
[197].

Dysregulated subchondral bone remodeling in OA leads 
to bone attrition and sclerosis, subchondral plate thickens, 
and osteopenic subchondral cancellous bone [198–201]. 
Hence, drug delivery to recover subchondral bone function 
is also needed (Fig. 8a). However, there is still a lack of 
acknowledged treatment based on the regulation of sub-
chondral bone function. Before intervention for subchondral 
bone reconstruction disorders, much work needs to be done 
to clarify the pathogenesis of subchondral bone disorders, 
the regulatory relationship with cartilage, effective targeted 
drugs and the time window for intervention.

5.4.2  Pain Relief Targeting Nervous System

Inflammatory pain in OA is controlled by both immune 
system and nociceptive neurons [147]. Inflammatory 
pain signals produced by pro-inflammatory cytokines and 
chemokines stimulations (e.g., TNF, IL-1, granulocyte–mac-
rophage colony-stimulating factor (GM-CSF), NGF and 
prostaglandin E2 (PGE2)) can be detected by somatosen-
sory neurons (nociceptors) [147]. As the cell bodies of 
somatosensory neurons are clustered in dorsal root ganglia 
(DRG), signals are firstly carried to the dorsal horn of the 
spinal cord via dorsal root ganglia then transmitted to the 
brain via central axonal terminals [147]. Multiple tissues 
surrounding cartilage (including the synovium, ligament, 
osteochondral junction, and meniscus) are densely inner-
vated [202–205], which may be the new therapy targets for 
pain relief (Fig. 8b).

Neurotrophins includes NGF, brain-derived neurotrophic 
factor (BDNF), neurotrophin 3 (NT3) and neurotrophin 4 
(NT4) are important in afferent sensitization of nociceptors 
in OA [147, 206–208]. Since NGF is highly expressed in 
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the inflamed synovium and at the osteochondral junction for 
afferent sensitization of nociceptors, underlying pain man-
agement strategy is to inhibit NGF signal transduction by 
using the related inhibitor, NGF-neutralizing monoclonal 
antibodies and/or siRNA encapsulated nanoparticles [207, 
208]. The blocking of NGF receptor including tropomyosin-
receptor-kinase A (TrkA) and p75 neurotrophin receptors 
(p75NTRs) inhibits nociceptor sensitization by NGF [209]. 
In addition, capsaicin derived from chili peppers induces 

excitation and subsequent desensitization, which is also a 
delivered candidate for pain relive [210].

Sensory innervation in OA can be mediated by oste-
oclast-initiated subchondral bone remodeling [202]. 
Netrin-1 secreted by osteoclasts induce sensory innerva-
tion and OA pain through its receptor Deleted in Colo-
rectal Cancer (DCC) [202]. Possible pain relief strat-
egy including osteoclast inhibition (e.g., gene delivery 
by nanoparticles for inhibition RANKL production) or 

 
 

 
 

 

•

•

•
g

•
•

•
•
•

-•
cell 

(a)

(b)

Activated
macrophages

Folic acid

Folate
receptor

Activated
macrophages

Polysaccharides
of glucose

Endocytosis
Activated

macrophages

Macrophage
depletion

Macrophage
re-education

Inflamed
synovium

Destroyed
cartilage

Thickened
subchondral

bone
Osteoclast Osteoclast

Bone
remodeling

Balanceb bone
remodeling
Anti-inflammation
Pain relief

Anti-
inflammation
Pain relief

Released drugs

NGF

Dorsal root
ganglion (DRG)

Destroyed
cartilage

Thickened
subchondral

bone

pain

NGF

Pain relief

Netrin-1

VEGF-A

Inflamed
synovium

Released
capsaicin

Pain relief
Decrease clearance of drugs
Promote resident skeletal stem-
cell to regenerate cartilage

p75NTR TrkA

Fig. 8  Other potential target tissues in addition to cartilage according to the known pathological mechanisms. a Schematic graph illustrates 
nanoparticles-based therapy targeting synovial membrane and subchondral bone. b Schematic graph illustrates nanoparticles-based therapy tar-
geting nerves and blood vessels. Abbreviations: VEGF-A, vascular endothelial growth factor A; NGF, nerve growth factor; TrkA, tropomyosin-
receptor-kinase A; p75NTRs, p75 neurotrophin receptors



 Nano-Micro Lett. (2021) 13:149149 Page 30 of 48

https://doi.org/10.1007/s40820-021-00670-y© The authors

netrin-1 production inhibition (e.g., gene delivery by 
nanoparticles for inhibition netrin-1) is emerging.

5.4.3  Pain Relief Targeting Blood Vessel

Angiogenesis is another factor that contribute to struc-
tural damage and OA pain [211, 212]. Increased vas-
cularization in OA is mainly caused by inflammation-
associated macrophage infiltration and reduced cartilage 
resistance to angiogenesis [211]. As some pathways and 
molecules stimulate both vascular cells and nerve growth, 
sensory nerves often grow along new blood vessels which 
disrupt the osteochondral junction and penetrate non-cal-
cified articular cartilage [211, 212]. Consequently, both 
vascularization and inflammation contribute to nerves 
sensitization and increased pain [211, 212]. In addi-
tion, angiogenesis in OA cartilage increased clearance 
of drugs. Moreover, anti-angiogenesis is capable of pro-
moting resident skeletal stem-cell to regenerate cartilage 
[213]. Therefore, antiangiogenic nanoparticles to relieve 
pain and slow the progression of joint damage is a poten-
tial strategy for OA therapy (Fig. 8b).

Anti-angiogenesis can be divided into direct inhibi-
tion (e.g., targeting vascular cells) or indirect inhibi-
tion (e.g., reducing inflammation, inhibiting the matrix 
degradation and osteochondral channel formation). 
Nanoparticles for anti-angiogenesis in OA has not been 
reported previously. Anti-angiogenesis nanoparticles in 
tumor therapy also have potential for the treatment of 
OA since the neovascularization mechanisms are simi-
lar. Several growth factors (e.g., vascular endothelial 
growth factor A (VEGF-A), bFGF and TNF-α) have 
been proved to stimulate quiescent vascular endothe-
lium to enter the cell cycle [214], which are possible to 
be the main targets for nanoparticles anti-angiogenesis 
therapy (Fig. 5b). For example, Au nanoparticles bind 
to heparin-binding growth factors (HB-GFs) such as 
VEGF165 and bFGF to inhibit angiogenesis [215]. Ag 
nanoparticles show anti-angiogenic activity by down-
regulating PI3 K/Akt pathway and inhibiting HIF-1α 
protein accumulation to further inhibit the expression of 
VEGF-A [216, 217]. Nanoparticles-based gene delivery 
to inhibit expression of genes such as VEGF and HIF-1α 
is also promising for anti-angiogenesis therapy [218].

5.5  Personalized Therapy According to the Pathology 
Stages

The clinical heterogeneity of OA affects the therapeutic 
outcome, as different phenotypes need specific thera-
peutics. Therefore, the design of “smart” nanoparticles 
with diverse physicochemical properties for personalized 
therapies needs to be based on different etiological factor 
and pathological mechanisms. For example, in senile OA, 
disease progression is associated with increased chronic 
inflammation and mitochondrial dysfunction [219]. In 
contrast, in post-traumatic OA, a vigorous inflammatory 
response occurs very early after joint injury and then sus-
tained at a lower level [220]. The determination of the 
optimal approach and timing of anti-inflammatory inter-
ventions will provide reference for the control release of 
nanoparticles. Meanwhile, manipulating one aspect of 
mechanism may affect another. For example, inhibiting 
inflammation at optimal stage may also indirectly pro-
mote chondrogenesis [221]. At the later stage of OA with 
severe cartilage defects, anti-inflammatory therapy may 
only relieve the symptoms. Modifications of nanoparticles 
to enhance function of cartilage protection and/or promo-
tion of chondrogenesis are needed.

The convergence of biomaterial science and biomedi-
cine opens unprecedented opportunities for the diverse 
medical applications of nanoparticles. Thus, in the future, 
with the development of noninvasive diagnostic technol-
ogy, it is worthwhile to identify the pathological charac-
teristics of each patient’s joint before modification of size, 
charge, and surface-functional properties of nanoparticles 
for individualized treatment.

6  Perspective of “Smart” Bioresponsive 
and Multi‑modality Nanoparticles

6.1  Bioresponsive Nanoparticles for Controlled 
Delivery

Tradition drug delivery system provides sustainable drug 
release; however, it is likely to cause sub- or supra-thera-
peutic drug levels locally since the disease activity changes 
over time. Ideal “smart” nanoparticles ensure that the drug 
will be released with proper rates at the target sites, and 
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therefore minimize non-specific toxicity and enhance the 
therapy efficacy. The controlled release, depending on 
the biological signals (e.g., pain intensity) or pathologi-
cal abnormalities (e.g., severity degree) of OA, can be 
achieved by responding to endogenous and/ or exogenous 
stimulus. The release of external-responsive nanoparticles 
can be subjectively controlled (e.g., when pain occurs) 
by a physician or patient, whereas the release of internal 
stimuli-responsive nanoparticles can be triggered depend-
ing on objective pathological changes.

Making full use of the nanomechanical properties is ben-
eficial to regulate the smart intra-articular drug delivery. The 
basal drug release rate and trigger energy should be fully 
balanced during the design and fabrication. Nano-motors as 
a research hotspot have been regarded as the new generation 
of drug delivery system owing to the tiny size and unique 
mobility [222]. External-responsive nanoparticles, precisely 
powered by external field, such as magnetic field, electric 
field, and ultrasonic field, can be developed as nanomotors 
to penetrate cartilage tissue and trigger the drug release 
[222, 223]. Joint movement directly affects the retention 
and penetration of nanoparticles, and at the same time, the 
heat generated by friction also indirectly affects the degrada-
tion of nanoparticles. The design of mechanical stimuli or 
thermal responsive nanoparticles could be inspired by the 
joint movement. This section highlights the development 
opportunities of stimulus-responsive nanoparticles for inter-
articular drug delivery.

6.1.1  External‑Responsive Nanoparticles

Magnetically guided nanoparticles including iron oxide 
nanoparticles, iron oxide hybrid nanoparticles, and other 
magnetic nanoparticles may be applied for the controlled 
delivery by a magnetic guidance under a permanent mag-
netic field or alternating magnetic field [223, 224]. An extra-
corporeal magnetic field near cartilage can be applied for 
magnetic guidance and on-demand release after the intra-
articular injection of a magnetically responsive nanoparticles 
(Fig. 9a). For instance, Jafari et al. utilized dynamic mag-
netic fields to guide the transport of magnetic nanoparticles 
through the entire thickness of bovine articular cartilage 
[225]. The alternating magnetic field induces a nearly 50 
times increase in magnetic nanoparticles transport as com-
pared with static field conditions [225]. Moreover, magnetic 

nanoparticles can be used as cell labels and guided seeding 
for cartilage repair [226]. Meanwhile, the magnetic nano-
particles (e.g.,  Fe3O4)-mediated physical stimuli promote 
chondrogenic differentiation in vitro by enhance level of 
sulfated glycosaminoglycan (sGAG) and collagen synthesis 
[227]. It should be noted that whether the increased tem-
perature under the alternating magnetic field has adverse 
effect on the cartilage repair is unclear and should be con-
firmed before the therapy application. Ultrasound waves 
can trigger controlled release of drugs through the thermal 
and/or mechanical effects (Fig. 9b) [224]. Cartilage penetra-
tion depth can be regulated through cavitation phenomena 
or radiation forces [224]. Since pulsed ultrasound has been 
proved to be effective in pain relief in OA, therapy based on 
ultrasound responsive nanoparticles may lead to both con-
trolled drug release and function improvement [228, 229]. 
Photosensitiveness-induced structural modifications of the 
nanoparticles can trigger drug release in response to light 
(Fig. 9c) [224]. The irradiation wavelength and power can 
be adjusted to achieve noninvasive controlled release by 
cleaving the light-sensitive chemical bonds or assembling 
in response to light [230–232]. Photoresponsive nanoparti-
cles, which achieve drug release in response to ultraviolet, 
visible or near-infrared (NIR) regions, can be engineered. 
However, due to the strong scattering properties of soft tis-
sues, the penetration depth of visible light and ultraviolet 
light is limited to less than 10 mm, so they are not suitable 
for intra-articular delivery [224]. NIR laser (700–1,000 nm 
range) can replace the ultraviolet–visible light with a deeper 
tissue penetration (2–5 cm) [224]. For example, doxoru-
bicin-loaded hollow gold nanoparticles convert the photon 
energy adsorbed during irradiation (808 nm) into heat to 
trigger drug release [233].

6.1.2  Internal Stimuli‑Responsive Nanoparticles

OA (especially in knee), as a joint failure with myriad 
causes, is affected more by mechanical stress rather than 
systemic factor such as inflammation, aberrant metabolic 
regulation, and obesity [234]. The fabrication of mechani-
cal stimuli-responsive nanoparticles has been reported pre-
viously [235, 236]. For example, Holme et al. fabricated 
lenticular liposomes made from an artificial 1,3-diami-
nophospholipid which are stable under static conditions but 
release their encapsulated contents at elevated shear stress 
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[235]. It is theoretically possible to use such nanoparticles 
on the wear and tear surface to achieve automatic release of 
drugs for improved treatment outcome (Fig. 9d). The gen-
eral concept is based on the assembly and disassembly of 
mechano-responsive structures under the changing mechani-
cal environment.

Thermal responsive hollow nanoparticles have been 
reported to enhance the delivery efficiency in OA (Fig. 9e) 
[155, 237]. Further functional improvements of thermal 
responsive nanoparticles can be learned from experience 
in cancer research [238]. Generally, thermal responsive 
nanoparticles in cancer therapy remain stable at body tem-
perature (∼37 °C) and release drug rapidly in a higher tem-
perature (∼40–42 °C) [223, 224]. Potential of using such 
nanoparticles in OA therapy is based on the two possible 
reasons. Firstly, the joint temperatures in OA (especially in 
the defected area) may be higher which is related to greater 
joint friction effects and retarded cooling [239]. Secondly, 
joint inflammation may also lead to high local temperature.

Lower pH during cartilage degeneration alters the proteo-
glycans structure and concentration, leading to decreased 
viscosity [240]. pH‐responsive nanoparticles may tune drug 
release and cell uptake in OA cartilage for achieving high 
therapeutic performance (Fig. 9f). For instance, chitosan as 
a pH responsive polysaccharide has been utilized to fabricate 
pH‐responsive nanoparticles which can release faster in acid 
environment (pH ~ 5.5) than neutral environment [241]. In 
a sodium bicarbonate-encapsulated particle, the release of 
anti-inflammatory drug can also be triggered by an acidic 
milieu induced decomposition reaction (Fig. 9i) [242]. Lys-
osomal molecules are upregulated in OA which involved 
in the modulation of chondrocytes death [243]. The acidic 
luminal pH in OA lysosome compartment is also likely to 
trigger the release of pH sensitive particles in defected cell 

for effective intracellular drug accumulation. The feasibility 
still needs to be verified as pH-sensitive nanoparticles may 
lead to leakage of lysosomal enzymes by disturbing lysoso-
mal membranes and further cause autophagy and cell death.

Since matrix-degrading enzymes, such as MMP3, 
MMP13, and ADAMTS5, are upregulated in OA cartilage, 
they can be exploited to achieve enzyme-mediated drug 
release (Fig. 9g). For example, nanoparticles containing 
matrix metalloproteinase substrate peptide (e.g., H2N–GPL-
GVRGC–SH as MMP-13 cleavable specific peptide sub-
strate) undergo morphological transition for drug release 
when react with matrix metalloproteinase in a mouse OA 
model (Fig. 9j) [53].

As an avascular tissue, cartilage is hypoxic in nature. 
This property can be utilized to design hypoxia-sensitive 
nanoparticles for the controlled release of drug in cartilage. 
Hypoxia-sensitive nanoparticles are normally constructed 
with hypoxia-sensitive materials or derivatives such as 
2-nitroimidazole, nitroimidazole, metronidazole, azoben-
zene, nitro-benzene derivatives and iridium (III) complexes, 
etc. [223]. Before the design, oxygen tension in health carti-
lage and OA cartilage needs to be confirm.

6.2  Multi‑modality Nanoparticles

6.2.1  Nanoparticles in OA Diagnosis

Cartilage degradations in OA can only be diagnosed when 
the size of defected area is larger enough. Consequently, 
prompt diagnosis is often important for early treatment, 
however difficult due to the lack of diagnostic options. To 
fill this gap, there is a significant growth of interest in the 
use of nanoparticles as optical imaging probes in diagnostics 
(Fig. 10a, c, d). Deeper imaging penetration, photostability, 
and biocompatibility should be fully considered.

Noble metal nanoparticles (e.g., gold nanoparticles), 
fluorescent nanoparticles, and magnetic nanoparticles, with 
advantages of increased the sensitivity, better detection 
capabilities and ease of operation have been studied for pos-
sible application of OA diagnosis [54, 186, 244–248]. The 
advantages of fluorescent dyes include high selectivity, high 
sensitivity, and high fluorescence quantum yield; however, 
obstacles including potential toxicity, poor fluorescence sta-
bility limit their medical use. Metal oxide nanoparticles can 
be used as contrast agents in magnetic resonance imaging. 

Fig. 9  Potential therapeutic strategies by using stimuli-responsive 
nanoparticles for control delivery in OA. a–c Schematic graphs illus-
trate external-responsive nanoparticles for OA therapy. d–h Sche-
matic graphs illustrate internal stimuli-responsive nanoparticles for 
OA therapy. Reproduced with permission [242]. Copyright © 2015 
American Chemical Society. i Example of pH responsive nanoparti-
cles for OA imaging and therapy. j Example of enzyme responsive 
nanoparticles for OA therapy. Reproduced with permission [53]. 
Copyright © 2019 Elsevier Ltd. Abbreviations: OA, osteoarthri-
tis Copyright © 2015 American Chemical Society. i Example of pH 
responsive nanoparticles for OA imaging and therapy. j Example of 
enzyme responsive nanoparticles for OA therapy. Reproduced with 
permission [53]. Copyright © 2019 Elsevier Ltd. Abbreviations: OA, 
osteoarthritis
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For diagnosis, metal nanoparticles are more stable than 
organic fluorescent labels and the surface can be modified 
(e.g., by polymers and surfactants). Gd and Mn elements are 
used as a T1-weighted contrast agent for magnetic resonance 
(MR) imaging [249, 250]. However, drawbacks such as tox-
icity and tissue accumulation limit the applications [251]. 
Fe element-based nanoparticles with superparamagnetism 
have been studied as nanoprobe to provide dark T2-weighted 
imaging [186, 244–246]. For example, synthesized magnet-
ite  Fe3O4 nanoparticles penetrate cartilage and the size of 
impregnated particles shows the degree of cartilage degra-
dation [245].

Gold nanoparticles-based probes are appealing for the 
diagnosis of OA. They are inert and therefore are biocom-
patible and non-toxic. The surfaces of gold nanoparticles 
can be easily modified. Moreover, gold nanoparticles can 
be incorporated into larger structures such as polymers or 
liposomes for enhanced diagnostic applications [247]. For 
example, by conjugating gold nanoparticles with a FITC-
modified ADAMTS-4- specific peptide (DVQEFRGVTA-
VIR), the gold nanoparticles probe has been developed for 
detection of aggrecanase [248]. When the probe is incubated 
with aggrecanase ADAMTS-4, the fluorescence intensity 
significantly increases [248]. As a result, the increased 
aggrecanase activity can be detected for early diagnosis of 
cartilage-degradation [248].

NIR‐II photoacoustic molecular imaging is emerging as 
a strategy for effective diagnosis. Compared to conventional 
optical imaging modalities, NIR-II photoacoustic molecular 
imaging is generated by the absorption of light by a mol-
ecule under short pulse laser irradiation, which overcomes 
the common optical diffusion limit [252–254]. NIR‐II-con-
jugated polymer nanoprobe displays effective noninvasive 
diagnosis of cartilage disease [252].

Nanoparticles probes can also be designed based on 
the changes of inflammation states during OA. As the 

macrophage activity often increases in OA, a nanoprobe has 
been fabricated by conjugating hyaluronic acid with near-
infrared dye and folic acid (FA), to bind to folate receptors 
of macrophages [190]. In addition, the overproduction of 
nitric oxide (NO) in OA stimulates the production of proin-
flammatory cytokines, such as TNF α and IL-1β [255]. By 
encapsulating the NO sensing molecules (e.g., 4-amino-5-
methylamino-2′,7′-difluorofluorescein Diaminofluorescein-
FM (DAF-FM)) within nanoparticles, NO release can be 
monitored which permits the indirect real-time evaluation 
of OA development [255].

6.2.2  Nanoparticles in Cell Tracking

Advances in cell therapy have emphasized the role of chon-
drocytes and mesenchymal stem cells (MSCs) with chondro-
genic differentiation ability, migratory, anti-inflammatory 
and/or immunosuppressive properties in treating cartilage 
lesions (Fig. 10b, e) [256]. A noninvasive means of imaging 
and tracking the cell fate after in vivo implantation could 
be extremely valuable. Quantum dots such as fluorescence-
labeled mesoporous silica nanoparticles and superparamag-
netic iron oxide (SPIO) nanoparticles have been developed 
for in vitro and in vivo bioimaging [257, 258]. The basic 
principle for the cell-labeling agents is that enough num-
ber of nanoparticles should bind to cells to be detectable. 
Besides, nanoparticles should not interfere the cellular 
functions such as cell viability and differentiation capac-
ity. By using superparamagnetic iron oxide nanoparticles 
(SPIONs) cell labeling, magnetic resonance imaging (MRI) 
can visually monitor the in vivo dynamic biodistribution of 
implanted cell. With good biocompatibility, SPIONs do not 
affect cell viability, proliferation, and differentiation capa-
bilities [259, 260].

6.2.3  Theranostic Applications of Metal Nanoparticles

Theranostics are combinatorial approaches that aim to deliver 
therapy and examine the effect at the same time. Combining 
the nanoparticle-based drug delivery strategy with the diag-
nostic techniques of nanoparticles provides the possibilities to 
achieve this aim [261]. For example, chitosan-modified  Fe3O4 
nanoparticles have been fabricated for delivery KGN, which 
can be used as for both diagnosis under magnetic resonance 
(MR) imaging and osteochondral regeneration [186]. Noble 

Fig. 10  Multiples applications of nanoparticles in OA. a Schematic 
graph illustrates application of nanoparticles in OA diagnosis. b 
Schematic graphs illustrate application of nanoparticles in cell track-
ing. c Example of fluorescent labeled nanoparticles in cartilage dis-
eases. Reproduced with permission [252]. Copyright © 2020 Wiley‐
VCH GmbH. d Example of magnetic nanoparticles in OA diagnosis. 
Reproduced with permission [186]. Copyright 2020, Ivyspring Inter-
national Publisher. e Example of magnetic nanoparticles in cell track-
ing. Reproduced with permission [260]. Copyright 2012, Springer 
Nature. Abbreviations: CT, computed tomography; MRI, magnetic 
resonance imaging; OA, osteoarthritis; PET, positron emission 
tomography; SPECT, single-photon emission computed tomography
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metal nanoparticles, such as gold, silver, or a combination of 
both, with advantages of high surface-to-volume ratio, ease of 
synthesis and highly tunable optical properties, can comprise 
nucleic acids (DNA/RNA), drugs and biocompatible polymers 
(e.g., polyethylene glycol and PEG) for delivery. In addition, 
there unique properties can be utilized (e.g., gold nanoparticles 
for diagnostics [262]; silver and platinum (Pt) nanoparticles as 
reactive oxygen species scavengers [263]). For example, silver 
nanoparticles have been explored to alleviating joint inflamma-
tion via reeducate macrophages [191]. It is possible to expect 
more effective therapy through the diagnosis and prediction 
of pathological process to control of drug release by adding 
stimuli-responsive components in nanoparticles. However, the 
major shortcoming is that noble metal NPs are difficult to be 
degraded from organisms which may interfere medical diagno-
ses. Moreover, the degradation by lysosomes within cells may 
produce toxic free metal ions such as  Ag+ and  Au+/3+, which 
affect cell homeostasis [264]. As such, it is important to bal-
ance action, clearance and toxicity. Zinc (Zn), and magnesium 
(Mg), as the best-explored biodegradable metals for orthope-
dic applications, hold promise to be fabricated as the moiety 
of nanoparticles to solve the non-degradable problems [265, 
266]. After degradation, the cations (e.g., Zn 2+,  Mg2+) may be 
resorbed by the negative charged cartilage matrix. However, 
 Zn2+ in OA increases the synthesis and secretion of matrix-
degrading enzymes which aggravated the progression of OA 
[267]. In contrast, Mg nanoparticles may be more promising 
for OA therapy as intra-articular injections of  Mg2+ at 0.5 mol 
 L−1 attenuate the progression of OA by inhibiting inflamma-
tion and matrix-degrading enzymes [268]. Moreover, particles 
containing magnesium powder can continuously evolve gase-
ous  H2 which can also effectively mitigate joint inflammation 
[269]. Future smart design of theranostic nanomaterials needs 
to improve the stability of biomaterials and reduce toxicity for 
co-delivery of multiple components and more sensitive detec-
tion [270]. At the same time, how to design the bio‐inspired 
materials for better interaction with the pathological features 
needs to be explored [271, 272].

7  Translation from ‘Bench to Bedside’

Dozens of nanoparticles including liposome, polymer, 
micelle, inorganic, nanocrystal and protein nanoparticles 
have received FDA approval and are currently available for 
clinical use for the therapy of disease such as kidney disease, 

cancer, sclerosis, and bone defect [273, 274]. Preclinical 
studies discussed above show the potential of nanoparti-
cles to improve the drug delivery efficiency for the treat-
ment of OA. However, to date, there is still limited clinical 
application for the therapy of OA. For example, FX006 as a 
PLGA-based drug delivery system for the treatment of OA 
in clinical trials results in clinically minimal improvement 
in pain relief [275]. To bridge this gap, there is a need to 
understand the challenges. Firstly, the basic principle for 
the clinical application is low toxicity. Toxicological studies 
on the application of nanoparticles in cartilage are still few. 
Besides, more efforts are needed to confirm the pharma-
ceutical stability and the in vivo behavior, such as cellular 
and molecular interactions. It is apparently a great challenge 
to choose effective pharmacological agents, given that the 
clinical efficacy and mechanisms (e.g., hyaluronic acid, glu-
cosamine, and chondroitin) for OA therapy are still uncer-
tain. More importantly, the modification of nanomaterials in 
basic research makes their structures and components more 
complex and their functions more diverse, which need high 
development cost for the clinical translation. In contrast, it 
is more feasible to evaluate the clinical safety and efficacy 
of nanomaterials with simpler structures and components. 
However, maybe it is “Easier Said Than Done.” For the avas-
cular cartilage tissue, it is more difficult to ensure the effi-
cacy with simple materials. Extensive efforts are needed for 
controlling the complexity without decreasing therapeutic 
efficacy.

8  Conclusions

Current nanoparticles-based intra-articular delivery repre-
sents a new frontier arisen from an urgent need to address 
the issues of low drug retention. Ideal nanoparticles with 
suitable size, charge, and modification are supposed to pen-
etrate the cartilage matrix easily and provide sustainable 
drug or gene delivery upon demand, which is conducive 
to the relief of OA symptom and cartilage regeneration. A 
comprehensive understanding of nanoparticle transport and 
nano–cartilage interactions in vivo is vital for improving 
therapeutic efficacy, avoiding or minimizing the adverse 
effects. Further advances are in progress to bring forth more 
“smart” diagnosis and therapy with the constant improve-
ment of material technology and continuous evolvement of 
the understanding of OA. We anticipate that with better and 
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fundamental understanding on cartilage–nanoparticle cross-
talk, multidisciplinary collaborations, we will definitively be 
able to advance nanomedicine toward early diagnosis and 
effective therapy for OA.
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