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Time‑Programmed Delivery of Sorafenib 
and Anti‑CD47 Antibody via a Double‑Layer‑Gel 
Matrix for Postsurgical Treatment of Breast Cancer

Liping Huang1, Yiyi Zhang1, Yanan Li2,4, Fanling Meng1,3, Hongyu Li1, Huimin Zhang1, 
Jiasheng Tu2, Chunmeng Sun2 *, Liang Luo1,3 *

HIGHLIGHTS

• A novel injectable double-layer-gel matrix is developed.

• The hierarchically structured dual lipid gel matrix enables time-programmed drug delivery.

• Applying a modest dose of sorafenib in advance can reeducate tumor-associated macrophages and potentiate anti-CD47 treatment.

ABSTRACT The highly immunosuppressive microenvironment after surgery has 
a crucial impact on the recurrence and metastasis in breast cancer patients. Program-
mable delivery of immunotherapy-involving combinations through a single drug 
delivery system is highly promising, yet greatly challenging, to reverse postoperative 
immunosuppression. Here, an injectable hierarchical gel matrix, composed of dual 
lipid gel (DLG) layers with different soybean phosphatidylcholine/glycerol dioleate 
mass ratios, was developed to achieve the time-programmed sequential delivery of 
combined cancer immunotherapy. The outer layer of the DLG matrix was thermally 
responsive and loaded with sorafenib-adsorbed graphene oxide (GO) nanoparticles. 
GO under manually controlled near-infrared irradiation generated mild heat and 
provoked the release of sorafenib first to reeducate tumor-associated macrophages 
(TAMs) and promote an immunogenic tumor microenvironment. The inner layer, 
loaded with anti-CD47 antibody (aCD47), could maintain the gel state for a much longer time, enabling the sustained release of aCD47 afterward 
to block the CD47-signal regulatory protein α (SIRPα) pathway for a long-term antitumor effect. In vivo studies on 4T1 tumor-bearing mouse 
model demonstrated that the DLG-based strategy efficiently prevented tumor recurrence and metastasis by locally reversing the immunosup-
pression and synergistically blocking the CD47-dependent immune escape, thereby boosting the systemic immune responses.
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1 Introduction

Surgery is among the first-line treatment modalities for 
solid tumors in clinic [1–3]. However, there is quite a pos-
sibility that surgery shows progress for a period of time 
followed by a stalling or continued growth and metastasis 
of cancer. Among solid tumors, breast cancer has a particu-
larly high rate of recurrence and distant metastasis due to 
the inherent invasive ability of tumor cells and rapid vascu-
larization [4]. In addition, the immunosuppression associ-
ated with postsurgical wound healing not only promotes 
cancer cell invasion and proliferation, but also restrains the 
activity of antitumor leukocytes [5–7]. This immunosup-
pression is also one of the key factors that obstructs current 
gold-standard postsurgical cancer treatment approaches, 
such as chemotherapy and radiotherapy, from achiev-
ing desirable clinical outcomes [8–10]. Although cancer 
immunotherapy has been considered to inhibit tumor recur-
rence and metastasis, many of these approaches become 
unfavorable when facing the highly immunosuppressive 
microenvironment of cancers after surgical treatment [5, 
11–16]. Strategies that can reverse postoperative immuno-
suppression and promote immunogenic tumor phenotype 
are immediately required to endow desired clinical benefit 
[17, 18].

Alternatively polarized tumor-associated macrophages 
(TAMs), or the M2-like TAMs, are prone to accumulating 
to high levels in postsurgical microenvironment, which is 
responsible for expediting the malignant tumor cells pro-
liferation and neo-angiogenesis, and further facilitating the 
progression of them toward a metastasis phenotype [19, 
20]. In contrast, classically polarized macrophages, or the 
M1-like TAMs, can secret a number of proinflammatory 
cytokines and reprogram tumor cells into an immunogenic 
phenotype [21–23]. Owing to the plasticity of macrophages 
[24], reeducating tumor-promoting M2-like TAMs to the 
tumoricidal, M1-like phenotype denotes an effective strat-
egy to reverse the immunosuppressive microenvironment 
in postsurgical cancer treatment. Sorafenib, a small mol-
ecule multi-kinase inhibitor approved for the treatment of 
hepatocellular carcinoma, renal cell carcinoma, and others 
[25], has been reported to modulate macrophage polarization 
and affect macrophages outside the primary tumor involved 
in metastasis formation [26, 27], in a dose-dependent man-
ner, thereby representing a promising candidate to alter the 

function of M2-like TAMs and reverse the immunosuppres-
sive cytokine profile of TAMs.

On the other hand, macrophages are critical mediators 
of innate immunity and responsible for directly presenting 
phagocytized foreign substance to T cells [28, 29]. However, 
a variety of tumor cells have upregulated CD47 protein on 
their surface, which can interact with signal regulatory protein 
alpha (SIRPα) on M1-like TAMs and trigger evasion of tumor 
cells from macrophage recognition [30, 31]. Blocking the 
interaction of CD47 with SIRPα is able to activate phagocytic 
cells, including M1-like TAMs and dendritic cells (DCs), and 
increase tumor cells phagocytosis [32–34]. Moreover, effector 
T cells can be activated for enhanced antitumor efficacy upon 
phagocytosis of tumor cells through CD47 blockade [33, 34]. 
Therefore, combining TAM modulation with CD47-blockade 
immunotherapy holds great promise for effective prevention 
of postsurgical tumor recurrence and metastases in clinic. 
Taking this into account, we hypothesize that sequentially 
delivering a modest dose of sorafenib prior to CD47-blockade 
immunotherapy is a rational implementation strategy. By this 
means, TAMs at the tumor resection sites can be reeducated 
by sorafenib first, followed by overcoming tumor immune 
escape via CD47 blockade, thereby establishing an overall 
immune-favorable microenvironment for enhanced therapeu-
tic outcomes. In addition, from recent clinical trials, CD47 
antagonists administered intravenously could cause serious 
clinical hematotoxicity, such as anemia and thrombocytopenia 
[35–37], so that it is pivotal to develop a localized delivery 
matrix that can co-load sorafenib and CD47 antagonist in an 
“all-in-one” manner and deliver them in a spatiotemporally 
regulated pattern [38, 39].

In this study, we designed an injectable hierarchically 
structured gel matrix with dual lipid gel (DLG) layers, the 
outer and inner layers of which were composed of different 
mass ratios of soybean phosphatidylcholine (SPC) and glyc-
erol dioleate (GDO), to realize the aforementioned sequen-
tial delivery of combined cancer immunotherapy (Fig. 1). 
We have previously demonstrated that the SPC/GDO binary 
lipid system is biocompatible and ideal for tunable drug 
delivery, whose gelation behaviors and drug release pro-
files can be regulated by simply adjusting the mass ratio of 
the two lipids [9, 40]. Here, the binary SPC/GDO system 
with a mass ratio of 35/65 is chosen as the precursor of the 
outer layer lipid gel (LG) of the DLG matrix, and loaded 
with sorafenib-adsorbed graphene oxide (GO) nanoparticles 
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(SG). Once injected, the outer layer LG precursor hydrates 
promptly into a thermal-responsive gel depot that under-
goes reversible gel-to-sol transition in response to a small 

temperature change at around 39 °C [9]. GO under manually 
controlled near-infrared (NIR, 808 nm) light irradiation can 
generate mild heat and induce the gel-to-sol phase change of 
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Fig. 1  Schematic illustration of time-programmed sequential delivery of combined cancer immunotherapy via a hierarchically structured gel 
matrix (DLG scaffold) for postsurgical tumor immune microenvironment modulation
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the outer layer LG, and provoke the photo-controlled release 
of sorafenib to reeducate TAMs and promote an immuno-
genic microenvironment. The inner layer LG precursor of 
the DLG matrix, loaded with anti-CD47 antibody (aCD47), 
is composed of SPC and GDO with a mass ratio of 50/50, 
and has a much higher phase transition temperature of 92 °C 
(Fig. S1). It will hydrate at a later stage and maintain the gel 
state for a much longer time, enabling the sustained release 
of aCD47 afterward to block the CD47-SIRPα pathway for 
a long-term antitumor effect. In vivo studies using mouse 
models bearing 4T1 breast cancer cells, with a relatively 
insufficient immunogenicity and high tendency to metas-
tasis [38], have validated the time-programmed sequential 
delivery of sorafenib and aCD47 via this hierarchical struc-
tured hydrogel, which successfully modulated the population 
ratio of M1/M2 and rebuilt an immune-favorable microen-
vironment. The strategic combined cancer immunotherapy 
efficiently prevented postoperative tumor recurrence and 
metastasis by synergistically reversing the local immuno-
suppression and boosting the systemic immune responses.

2  Results and Discussion

2.1  Design and Preparation of Hierarchically 
Structured DLG

To prepare the hierarchical DLG matrix, the lipid precur-
sors of the outer layer gel and inner layer gel were loaded 
into a tailor-made dual syringe kit and injected successively 
in Fig. 2a. The DLG formed immediately upon injection, 
with a clear boundary between the outer and inner gel lay-
ers (Fig. 2a and Video S1), ascribed to the different gelation 
properties of the precursors. Sorafenib was firstly adsorbed 
onto GO to form nanoparticles SG with improved drug-
loading efficiency and stability (Figs. S2 and S3). We then 
employed the Macrosol technique to encapsulate SG in the 
lipid precursor of the outer layer gel (SG@LG35/65), and 
aCD47 in the lipid precursor of the inner layer gel (aCD47@
LG50/50), respectively, according to a method we devel-
oped previously [9], followed by successive injections of the 
two lipid precursors, using the dual syringe kit, to form the 
desired DLG SG@LG35/65 + aCD47@LG50/50.

We next examined the photothermal conversion effi-
ciency of the GO-containing DLG matrix using an 808 nm 
laser. As shown in Fig. S4, the temperature of GO@

LG35/65 + LG50/50, which was loaded with GO in the outer 
layer but kept blank (no aCD47) in the inner layer, increased 
similarly to a GO solution within an irradiation period of 
10 min. In contrast, no obvious change in temperature was 
observed in a blank PBS solution or a blank DLG matrix 
(LG35/65 + LG50/50). Within the same irradiation time, the 
temperature of GO@LG35/65 + LG50/50 increased as the 
irradiation power went up (Fig. S5), and the photo-induced 
temperature elevation of the matrix kept constant during five 
consecutive on/off cycles of irradiation (Fig. S6), exhibit-
ing an excellent photothermal stability similar to the GO 
solution. The photothermal conversion of the DLG matrix 
in vivo was also investigated. The infrared thermal images 
showing the temperature change of 4T1-tumor-bearing mice 
were recorded (Fig. 2b), after various formulations were 
injected into the postsurgical tumor resection cavity and irra-
diated for different time. The constant mild heating for the 
desired phase transition of the outer layer gel was achieved 
quickly and maintained by manually tuning the laser power 
(Fig. 2c). As a comparison, the temperature at the surgical 
sites of the mice receiving PBS and blank DLG remained 
unchanged even after 20 min of irradiation, which was con-
sistent with the in vitro results.

The sequential drug delivery characteristics of the 
hierarchical gel matrix are critical for realizing the 
therapeutic outcomes of our combined cancer immu-
notherapy strategy [18]. We evaluated the in vitro drug 
release profiles of the outer and inner layer gels of the 
DLG matrix, respectively, using IgG as an alternative of 
aCD47 (Fig. 2D). The release of sorafenib from SG@
LG35/65 was relatively steady without NIR irradiation, 
and 30% of sorafenib could be released from the outer 
layer gel within 240 h. When NIR irradiation had been 
applied at 4, 48, 96, and 144 h, in a pattern similar to 
that shown in Fig. 2c, significantly enhanced release of 
sorafenib could be triggered, and over 50% of sorafenib 
was released from the outer layer gel at 240 h. The release 
of IgG from the inner layer gel was much more restrained 
compared to sorafenib, and only less than 10% of IgG 
could be released from IgG@LG50/50 at 240 h, regard-
less of the NIR irradiation on the DLG formulation.

To visualize the thermal-responsive sequential release 
process, we loaded AF 790 goat anti-mouse IgG as an 
alternative of aCD47 in the inner layer gel precursor 
(AFIgG@LG50/50) and Chlorine 6-capsulated GO (CG) 
as an alternative of SG in the outer layer gel precursor 
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(CG@LG35/65). The dye-loaded DLG matrix precursors 
were injected into the tumor resection cavity, and the 
fluorescence of labeled IgG and Ce6 was monitored by 
an in vivo imaging system (IVIS). As shown in Fig. 2e, 
f, the fluorescence of Ce6 in the DLG matrix showed 
a prolonged retention in mice than the CG PBS solu-
tion, and the f luorescence intensity attenuated more 
rapidly upon NIR irradiation, exhibiting an effective 
laser-triggered controlled drug release by the outer layer 
gel of the DLG matrix. Interestingly, the fluorescence 
of AFIgG exhibited negligible difference in the injected 
DLG matrix with or without NIR irradiation, and both 
groups endowed a long fluorescence retention of over 14 
d (Fig. 2g, h), suggesting that the inner gel layer of the 
DLG matrix enabled a sustained drug release unaffected 
by external laser irradiation. Collectively, the hierarchi-
cal DLG matrix providing hierarchical drug release pat-
terns was proved to be an ideal platform for on-demand 
sequential drug delivery.

2.2  Programming Sorafenib Release for the Optimized 
Tumor Microenvironment Modulation

A growing number of studies and clinical trials have dem-
onstrated that sorafenib not only triggers the apoptosis of 
tumor cells by inhibiting the angiogenesis of tumors, but 
also induces the aggregation of macrophages in TME [26, 
43, 44]. In addition, an appropriate dose of sorafenib can 
impede the polarization of macrophages to M2-like pheno-
type and reverse immunosuppressive tumor microenviron-
ment (TME), suggesting that the macrophage modulation 
and antitumor efficacy of sorafenib are dose dependent [26, 
27, 45]. Therefore, we posited that the effect of sorafenib 
on optimizing TME could be facilely optimized by pro-
gramming the volume ratio of the inner/outer layer gel of 
the DLG matrix as well as the NIR irradiation frequency 
and timing. As a proof of concept, we screened a series of 
DLG matrices (SG@LG35/65 + aCD47@LG50/50) with 
a fixed inner gel volume and different outer gel volumes, 
together with a variety of NIR irradiation regimens (Fig. 3a) 
to approach a maximized antitumor immune response. The 
doses of aCD47 and sorafenib were set as 70 and 50 μg per 
mouse, respectively. The study was executed on the surgi-
cal beds of randomly grouped 4T1-tumor-bearing mice, in 
each of which ~ 90% of the tumor was resected when the 

tumor volume reached approximately 300  mm3. The fre-
quencies of immunocytes in lymph nodes and tumor sites 
of the tested mice were analyzed on Day 8 after surgery. 
As shown in Fig.  3b, c, the percentage of mature DCs 
 (CD11c+CD80+CD86+) in Group S2 was ~ 24.0%, signif-
icantly higher than that in any other group. DCs are key 
antigen-presenting cells and play an important role in initiat-
ing and controlling the innate and adaptive immunity. More 
mature DCs should induce a stronger systemic antitumor 
response. As expected, the population of tumor-infiltrating 
 CD8+ T cells and  CD4+ T cells in Group S2 showed the 
strongest effect on producing antitumor T cell responses 
among all treatment groups (Figs. 3d, e and S7). Moreover, 
the proportion of M1-like TAMs  (CD80+CD11b+F4/80+) 
in Group S2 was the highest among all groups, whereas the 
proportion of M2-like TAMs  (CD206+CD11b+F4/80+) in 
Group S2 was the lowest (Figs. 3f, g and S8). Accordingly, 
the M1/M2 ratio in Group S2 greatly surpassed all other 
groups, which was 4.1-fold, 3.6-fold, 2.0-fold, 4.1-fold, and 
2.3-fold higher than that in Group S1, S3, S4, S5, and S6, 
respectively (Fig. 3h). In addition, immunofluorescence 
staining of tumor microvessels visualized the marked inhibi-
tion of angiogenesis of the residual tumor tissue in Group S2 
(Fig. 3i). The above results evidenced that regulated release 
of sorafenib by programming the outer gel volume of DLG 
matrix as well as the frequency and timing of NIR irradia-
tion could effectively reverse postsurgical immunosuppres-
sion, exhibiting great potential to sensitize tumor cells to 
immune checkpoint blockade therapy. On basis of the above 
screening, the treatment pattern in Group 2, i.e., a DLG 
matrix consisting 50 μL of outer layer and 50 μL of inner 
layer together with a 20 min of NIR irradiation on Days 0, 
2, 4, and 6, was selected for further antitumor effect studies.

2.3  In Vivo Antitumor Efficacy of Time‑programmed 
Sequential Delivery of Combined Cancer 
Immunotherapy via the DLG Matrix

To evaluate the antitumor efficacy of time-programmed 
sequential delivery of combined cancer immunother-
apy via the above screened treatment regimen, we used 
an incompletely resected 4T1-tumor mouse model and 
inspected the inhibition of tumor recurrence after sur-
gery (Fig. 4a). The tumor-bearing mice were randomly 
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grouped and approximately 90% of the tumor was surgi-
cally resected when the tumor volume reached ~ 300  mm3. 
The tumor resection cavities were then injected with dif-
ferent formulations before suture, including PBS solution 
(G1), LG35/65 + LG50/50 (G2), mixed aCD47 and SG 
solution in PBS (G3), LG35/65 + aCD47@LG50/50 (G4), 
SG@LG35/65 + LG50/50 (G5), SG@LG35/65 + aCD47@
LG50/50 (G6), SG@LG35/65 + aCD47@LG50/50 (G7). 
The volumes of outer layer gel and inner layer were both set 
to 50 μL, and the doses of aCD47 and sorafenib were 70 μg 
and 50 μg per mouse, respectively. After injection, the surgi-
cal beds on mice in G3, G5, and G7 were irradiated by an 
800 nm laser for 20 min on Days 0, 2, 4, and 6, respectively.

The growth of tumor residues was then monitored by bio-
luminescence signals from 4T1-luc tumor cells (Fig. 4b). 
The mice in G7 showed significantly weaker tumor fluores-
cence (Fig. 4c) than other groups in the whole experimental 
period (23 d), and the tumor weight on Day 23 in G7 was 
also the lowest among all treatment groups (Figs. 4d and S9, 
S10), exhibiting an enhanced inhibition on tumor regrowth 
by treatment of SG@LG35/65 + aCD47@LG50/50 and NIR 
irradiation. In addition, the mice receiving this treatment 
exhibited significantly prolonged survival periods com-
pared to the mice receiving other treatments (Fig. 4e), and 
the body weights of mice in all groups were not impacted 
by the treatment (Fig. S11). Moreover, hematoxylin and 
eosin (H&E) stained images of major organs collected from 
mice on Day 23, including heart, liver, spleen, lung, and 
kidney, exhibited minor side effects and inflammation infil-
tration (Fig. S12), indicating that the time-programmed local 
delivery of these therapeutics did not induce apparent side 
effect to mice. Furthermore, the complete blood panel test 
and serum biochemistry assay illustrated that our injectable 
double-layer-gel (DLG) preparation has good biocompat-
ibility (Fig. S13).

More importantly, the mice treated with free SG and 
aCD47 solution and NIR irradiation (G3), or with only 
aCD47 (G4), showed remarkable tumor suppression com-
pared with the control groups (G1 and G2) within the first 
several days. However, obvious tumor growths were observed 
in both G3 and G4 after Day 13, proving that the sequential 
delivery of SG and aCD47 via the DLG matrix was critical 
to maintain a long-term tumor inhibition effect, and the prior 
sorafenib release from the outer layer significantly ampli-
fied the antitumor efficacy of long-term released aCD47. In 
addition, immunofluorescence staining of the microvessels 

of the recurrent tumors was also examined on Day 8 after 
different treatments. Figure 4f shows that the signals of CD31 
and α-SMA in the vascular endothelial cells in the sorafenib-
releasing DLG groups (e.g., G5 and G7) were weaker than 
those in the other groups. The expression levels of VEGFR2 
and PCNA in G7 group were less than in other groups (Fig. 
S14), verifying the perfect inhibition effect of sorafenib on 
tumor vessels regeneration and tumor cells proliferation in 
the recurrent tumors via the designer DLG matrix.

2.4  Immune Responses Induced by the Programed 
Sequential Delivery of Combined Cancer 
Immunotherapy

The exceptional inhibition effect on tumor recurrence 
inspired us to rationale the antitumor immune response 
triggered by the time-programmed sequential delivery of 
combined cancer immunotherapy. To validate if the firstly 
released sorafenib could reeducate TAMs as designed, we 
investigated the relative proportions of M1-like TAMs 
and M2-like TAMs at the tumor resection sites using flow 
cytometry assays. Strikingly, compared with the mice 
in G1 group, the mice in G7 group showed a significant 
increase in the relative population of M1-like phenotype 
 (CD80+CD11b+F4/80+) from 8.2% to 19.4% (Fig. 5a, c), 
along with a large reduction of the relative population of 
M2-like phenotype  (CD206+CD11b+F4/80+) from 21.0% 
to 8.0% (Fig. 5b, d). The mice receiving other treatments 
all showed increased portion in M1-like phenotype and 
decreased portion in M2-like phenotype, but to a much less 
extent. Therefore, the population ratio of M1/M2 in G7 was 
significantly higher than that in any other group (Fig. 5e), 
suggesting that the reeducation/modulation of TAMs was 
effective and largely dependent on the time-programmed 
photo-controlled release of sorafenib. The reeducation of 
TAMs was further confirmed by the secreted cytokines in 
mice on Day 8 post-injection. We observed upregulated 
levels of proinflammatory cytokines, which are partially 
secreted by M1-like TAMs and can activate T lymphocytes 
and enhance T helper 1 type immunity [46, 47], includ-
ing interferon-γ (IFN-γ, Fig. 5f), tumor necrosis factor-α 
(TNF-α, Fig. 5g), interleukin 2 (IL-2, Fig. 5h), and inter-
leukin 6 (IL-6, Fig. S15). On the contrary, the immunosup-
pressive cytokine interleukin 10 (IL-10) level in plasma, a 
predominant cytokine secreted by the M2-like phenotype, 
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was significantly downregulated in the mice receiving the 
designed treatment (G7) compared to the mice in other 
groups (Fig. S16).

We next examined the immune response in lymph nodes 
and tumor sites of mice on Day 8 after surgery. As expected, 
the population proportion of mature DCs in lymph nodes of 

the mice receiving the designed treatment was the highest 
(~ 20.8%, G7) among all groups (Fig. 6a, d). Correspondingly, 
the populations of tumor-infiltrating  CD8+ T cells and  CD4+ 
T cells in both lymph nodes and tumor resection sites were 
higher in G7 than in other groups (Figs. 6b, d and S17–S19). 
In addition, the DC maturation and  CD8+ T cells in mice that 
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had received aCD47 treatments (G3 and G4) were also upreg-
ulated compared with the blank group (G1), evidencing that 
CD47 blockade could effectively activate the T cells immune 
responses and reverse the immunosuppressive postsurgical 
microenvironment (Fig. 6d, e). Moreover, we examined the 
level of regulatory T cells (Tregs,  CD4+CD25+Foxp3+), 
which can restrain the antitumor immune effects of cytotoxic 
T lymphocytes (CTLs) and induce an immunosuppressive 
microenvironment [48], in the local recurrent tumors by flow 
cytometry on Day 8 post-injection. As shown in Fig. 6c, f, the 
frequency of Tregs in the G7 was considerably lower than that 
in the other groups, indicating that the immunosuppressive 

microenvironment at tumor resection sites was significantly 
reversed by the time-programmed sequential delivery of com-
bined immunotherapy.

2.5  Long‑Term Immune‑Memory Effects

We further evaluated whether the local sequential delivery of 
combined cancer immunotherapy via the DLG matrix could 
induce systemic immune memory, using a more aggressive 
whole-body spreading tumor model. In this experiment, 
the treatment plan kept the same as the above anticancer 
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experiment until Day 30, when all the mice were intrave-
nously injected with 4T1 cancer cells (Fig. 7a). The mice 
were sacrificed after feeding them for another 21 days and the 
lung tissues were harvested for metastasis analysis in different 
groups. As shown in Fig. 7b, c, lung metastatic foci, as well 
as dense tumor mass on H&E staining of lung sections, were 

found in all groups except G7, suggesting that our strategy 
of sequentially delivering combined cancer immunotherapy 
via the designer DLG matrix was successful in inhibiting 
the lung metastasis. Additionally, the number of pulmonary 
metastasis nodules in G7 was remarkably lower than that in all 
control groups, and it was even 16-fold lower than that in G1 
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(Fig. 7d). We next carried out a series of memory T cell analy-
sis to have an in-depth understanding of the desirable antitu-
mor immune memory generated by this strategy. In general, 
effector memory T cells (TEM) are activated immediately by 
producing cytokines such as IFN-γ, while central memory T 
cells (TCM) need longer time to produce cytotoxic T cells 
until being repetitively stimulated by antigens [49–51]. The 
proportion of TEM in the lymph nodes in G7 was significantly 
higher than those in any other group (Figs. 7e and S20) on the 
 1st day after reinjecting 4T1 cells, while an increased popula-
tion of TCM can be found in G7 compared to other groups 
except G3 (Figs. 7f and S20). These results further declared 
that the DLG matrix-based time-programmed sequential 
delivery strategy was beneficial for the establishment of long-
term antitumor immune memory.

3  Conclusions

In summary, we have developed a hierarchical DLG 
matrix, composed of dual SPC/GDO LG layers with dif-
ferent mass ratios, for local time-programmed sequential 
delivery of combined cancer immunotherapy. Both the 
in vitro and in vivo drug release studies confirmed that 
sorafenib could be released on demand from the outer 
layer upon manually controlled NIR irradiation, followed 
by a relatively slower release of aCD47 from the inner 
layer. More interestingly, the volume ratio of the outer/
inner layers, as well as the reversible gel-to-sol transition 
of the outer layer, is programmable to achieve regulated, 
sequential delivery of various therapeutics for tumor 
immune microenvironment modulation. As a proof of 
concept, we screened a series of treatment regimens by 
modulating the volume of outer layer at a fixed inner layer, 
as well as the laser irradiation timing and frequency to 
approach an appropriate release dosage of sorafenib for 
the optimal antitumor immune responses. We success-
fully demonstrated that the time-programmed sequential 
delivery of sorafenib and aCD47 could reeducate TAMs, 
reverse immunosuppressive TME, and enhance the CD47-
blockade efficacy to inhibit the tumor recurrence, when 
applied to the surgical beds of mice with resected 4T1 
tumors. Notably, the local treatment strategy further gener-
ated a systemic anticancer immune memory that prevented 
lung metastasis. This injectable hierarchically structured 
DLG matrix holds a great potential as a local drug delivery 

platform to enable time-programmed sequential drug 
delivery on demand for enhanced therapeutic efficacy of 
immune-oncology.
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