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HIGHLIGHTS

•	 This review summarizes applications and developments of MXenes in solar cells by far.

•	 The issues needing to be addressed for performance improvement of the related solar cells are discussed.

•	 Suggestions are given for pushing exploration of MXenes’ application in solar cells.

ABSTRACT  Application of two-dimensional MXene materials in 
photovoltaics has attracted increasing attention since the first report 
in 2018 due to their metallic electrical conductivity, high carrier 
mobility, excellent transparency, tunable work function and superior 
mechanical property. In this review, all developments and applica-
tions of the Ti3C2Tx MXene (here, it is noteworthy that there are still 
no reports on other MXenes’ application in photovoltaics by far) as 
additive, electrode and hole/electron transport layer in solar cells 
are detailedly summarized, and meanwhile, the problems existing 
in the related studies are also discussed. In view of these problems, 
some suggestions are given for pushing exploration of the MXenes’ 
application in solar cells. It is believed that this review can provide a 
comprehensive and deep understanding into the research status and, 
moreover, helps widen a new situation for the study of MXenes in 
photovoltaics.

KEYWORDS  Ti3C2Tx MXene; Solar cells; Additives; Hole/electron 
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1  Introduction

With the ever-increasing demand of clean and renewable 
energy resources [1–4], considerable attention has been 
devoted to the development of novel materials toward effi-
cient solar cells [5–14]. As a family of important two-dimen-
sional materials, MXenes, layered carbides and nitrides of 
transition metals first reported by the Gogotsi group in 2011 
[15], which have been extensively investigated in various 
fields including energy storage [16–22], biomedical fields 
[23–25], electromagnetic applications [26–29], sensors 
[30–34], light-emitting diodes [35–37], water purification 
[38–43] and catalysis [44–47], have exhibited promising 
application in solar cells very recently. Among various 
MXenes, Ti3C2Tx (T represents some surface-terminating 
functional groups such as –O, –OH and –F) dominates the 
present study of MXenes in solar cells because of its high 
electrical conductivity and carrier mobility, excellent trans-
parency and tunable work function (WF) [48–50]. Since the 
first report of Ti3C2Tx as an additive in the photoactive layer 
of MAPbI3 (MA: CH3NH3)-based perovskite solar cells 
(PSCs) in 2018 [51], its application has been extended to 
electrode, hole/electron transport layer (HTL/ETL), additive 
in HTL/ETL and the component of forming the Schottky 
junction-based solar cells with silicon (Si) wafers, etc.

To comprehensively understand the achievements and 
meanwhile to provide insights and valuable suggestions for 
the following development, a timely summary and discussion 
of the related studies is highly necessary. In this review, we 
first categorize the roles of Ti3C2Tx played in the reported solar 
cells and then follow the roles to introduce the achievements 
and analyze the existing problems limiting device performance 
improvement. Finally, a perspective to outlook the further 
development of the MXenes’ application in solar cells is given.

As summarized in Fig. 1, the roles of the Ti3C2Tx MXene 
in application of solar cells can be categorized into three 
kinds, i.e., additive [51], electrode [52] and HTL/ETL [53]. 
In the meantime, the corresponding type of the solar cells is 
also summarized for each role played by Ti3C2Tx. Moreover, 
it is noted that the corresponding areas of the roles and the 
solar cells in Fig. 1 are in direct proportion to the number 
of the reports/publications. One thus can conclude that the 
Ti3C2Tx MXene is mainly applied in perovskite and organic 
solar cells (OSCs). In the following part, the review will be 
extended following the role of the Ti3C2Tx MXene.

2 � Applications of MXenes in Solar Cells

2.1 � Additive in Perovskite Materials, ETLs/HTLs

In 2018, Guo et al. first reported addition of Ti3C2Tx into the 
MAPbI3-based perovskite absorber [51], initiating explora-
tion of the MXenes’ application in solar cells. Their study 
indicates that addition of Ti3C2Tx can retard the nucleation 
process of MAPbI3 (see the schematic diagram in Fig. 2a), 
resulting in the enlarged crystal size. Moreover, the Ti3C2Tx 
additive is highly beneficial to accelerate the electron transfer, 
like a “carrier bridge” [54–57], through the grain boundary, 
which is further confirmed by the lower charge transfer resist-
ance for the Ti3C2Tx-added device as indicated by the electro-
chemical impedance spectra exhibited in Fig. 2b. Thanks to 
these effects, the average power conversion efficiency (PCE) 
increases from 15.18% to 16.80%. (Note: all PCEs in this 
review were measured at AM 1.5G illumination.)

In 2019, Agresti et al. reported the WF adjustment of the 
MAPbI3 films and thus optimization of the energy-level 
alignment for improving the performance of the related 
solar cells by adding the Ti3C2Tx MXene [58]. It was found 
that the WF of the perovskite films could be effectively 
tuned from 4.72 to 4.37 eV without affecting other intrinsic 

TITI CC TTxx MXene MXene

2018~20202018~2020

PPeerroo
vvsskk

iittee
ssoo
llaarr

ccee
llllss

PPee
rroo
vvss

kkii
ttee

ssoo
llaa
rr cc

eell
llss

Fig. 1   Roles of the Ti3C2Tx MXene played in application of varying 
solar cells. The areas correspond to the publication numbers for each 
application
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electronic properties such as bandgap, the relative position 
of the valance band to the Fermi level and film morphol-
ogy. The PCE of the Ti3C2Tx-incorporated MAPbI3-based 
solar cells can be improved by 26.5% after simultaneously 
introducing Ti3C2Tx addition in the ETL, as compared to 
the control one without Ti3C2Tx. Recently, Zhang et al. 
reported surface decoration of MAPbBr3 nanocrystals by 
few-layer Ti3C2Tx MXene nanosheets to form the perovskite/
MXene heterostructure via in situ solution growth, as shown 

in Fig. 2c [59]. The facilitated electron injection from the 
MAPbBr3 nanocrystals to the Ti3C2Tx MXene because of the 
matched energy levels, as indicated in Fig. 2d, is beneficial 
to performance improvement for the related solar cells.

Very recently, Chen et al. first reported employment of 
ultrathin Ti3C2Tx quantum dots (TQDs) to engineer the 
CsFAMA (FA: CH(NH2)2) perovskite absorber and the 
perovskite/TiO2 ETL interface, as indicated in Fig. 2e 
[60]. Thanks to the improved crystallinity of the perovskite 
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crystals and the coated Ti3C2Tx nanosheets. Copyright © 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. e Device architecture 
and cross-sectional scanning electron microscopy (SEM) image, and f energy-level alignment of the perovskite solar cell with the embedded 
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film and the matched energy-level alignment (Fig. 2f) and 
thus the enhanced electron extraction at the perovskite/
TiO2 ETL interface, the solar cell delivers a remarkable 
hysteresis-free PCE of 20.72% compared with 18.31% 
for the reference device and long-time ambient and light 
stability. It is notable that the improved performance and 
stability are also partly contributed by the addition of 
Cu1.8S in the HTL facilitating the perovskite crystallinity 
and the increased hole extraction at the perovskite/Spiro-
OMeTAD HTL interface because of the matched energy-
level alignment, as indicated in Fig. 2f.

Besides addition in the active layer, embedding the 
Ti3C2Tx MXene in ETLs/HTLs has also been reported. In 
2019, Yang et al. reported modification of the SnO2 ETL 
by adding 1.0 wt‰ Ti3C2Tx for the MAPbI3-based PSCs 
(Fig. 3a, b for the schematized architecture and cross-sec-
tional SEM image of the device). Thanks to the facilitated 
electron transport and enhanced hole blocking because of 
the optimized energy-level alignment due to Ti3C2Tx addi-
tion (Fig. 3c), PCE increases to 18.34% from 17.23% for the 
control device without Ti3C2Tx addition [61]. Huang et al. 
further advanced the Ti3C2Tx MXene-added SnO2 ETL by 
introducing TiO2 with a suitable crystal phase for forming 

an effective heterojunction structure, named a multi‑dimen-
sional conductive network (MDCN) structure, as exhibited 
in Fig. 3d, e. Owing to the matched energy-level alignment 
(Fig. 3f) of the ETL with the (FAPbI3)0.97(MAPbBr3)0.03 
photoactive and FTO transparent conductive layers, a PCE 
increment from 16.83% (SnO2 ETL) to 19.14% is achieved. 
Moreover, the MDCN-incorporated device exhibits high tol-
eration to moisture and maintains ~ 85% of the initial perfor-
mance for more than 45 days in 30–40% humidity air due to 
an oxygen vacancy scramble effect [62].

Besides modification of the MAPbI3 photoactive layer 
using Ti3C2Tx, Agresti et al. also incorporated Ti3C2Tx into 
the TiO2 ETL to finely tune its WF, i.e., from 3.91 to 3.85 eV 
that benefits for tuning the interface energy-level alignment 
between the perovskite absorber and the TiO2 ETL, thus 
reducing the barrier height and enhancing charge transfer 
[58]. Based on dual addition and optimization in both the 
MAPbI3 photoactive and TiO2 electron transport layers, the 
device delivers a PCE of 20.14%, ~ 26.5% higher than that 
of the control device without Ti3C2Tx addition. Moreover, 
it was found that the Ti3C2Tx addition reduces hysteresis 
in the current density–voltage (J–V) curves and meanwhile 
enhances long-time exposure stability of the PSCs. Very 
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recently, this group further investigated the MAPbI3 perovs-
kite/Ti3C2Tx-based MXene interface using density functional 
theory calculations, and the results show that the interface 
WF exhibits a strong nonlinear behavior when the relative 
concentrations of OH-, O- and F-terminating groups are 
varied, providing a deep insight regarding the energy-level 
alignment for high-performance device fabrication [63].

Similarly, adding the Ti3C2Tx MXene into HTLs also can 
improve device performance. Recently, Hou et al. reported 
modification of the conductive polymer, PEDOT:PSS 
(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)), 
normally as the HTL in OSCs using the Ti3C2Tx MXene 
nanosheets [64]. As demonstrated in Fig. 4a, after adding the 
MXene nanosheets, more charge transfer channels between 

PEDOT nanocrystals can be formed. In the meantime, 
the conformational transformation of PEDOT from a coil 
structure to a linear/expansion coil structure can be induced, 
hence leading to the improved electrical conductivity for the 
modified PEDOT:PSS, as verified by the conductivity meas-
urement shown in Fig. 4b. Using the modified PEDOT:PSS 
as the HTL, the OSCs based on the non-fullerene PBDB-
T:ITIC system were constructed, as schematized in Fig. 4c. 
Thanks to the improved electrical conductivity and matched 
energy-level alignment with the neighboring components 
(Fig. 4d) for the Ti3C2Tx-modified PEDOT:PSS, a PCE of 
11.02% is achieved as compared to 9.72% for the control 
device using pure PEDOT:PSS as the HTL. When using the 
PM6:Y6 system as the active layer, a PCE of 14.55% can be 
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delivered for the case of employing the Ti3C2Tx-modified 
PEDOT:PSS HTL as compared to 13.10% for the control 
device using pure PEDOT:PSS. Moreover, appropriate addi-
tion of the Ti3C2Tx MXene nanosheets can improve the per-
formance stability, as indicated in Fig. 4e.

Moreover, they also tried to add the Ti3C2Tx MXene 
nanosheets in zinc oxide (ZnO) to fabricate a novel ZnO/
Ti3C2Tx hybrid ETL by precisely controlling the amount 
of Ti3C2Tx in the sol–gel ZnO precursor solution [65]. The 
nanosheets act as the “electron bridges,” as aforementioned 
[54, 55], between the ZnO nanocrystals, thus providing addi-
tional charge transport pathways. Meanwhile, the Ti3C2Tx 
MXene passivates the surface of the ZnO nanocrystals by 
forming the Zn–O–Ti bonding, through which electrons can 
transfer. This ZnO/Ti3C2Tx hybrid ETL with excellent opti-
cal and electrical properties was applied in fullerene (PBDB-
T:ITIC and PM6:Y6) and non-fullerene (PTB7:PC71BM) 
OSCs (Fig. 4f, g for the architecture and energy-level align-
ment of the device), and the improved PCEs of 12.20%, 
16.51% and 9.36% from 10.56%, 14.99% and 8.18% for the 
control devices using the pristine ZnO ETLs were achieved 
by the solar cells based on the PBDB-T:ITIC, PM6:Y6 and 

PTB7:PC71BM photoactive layers, respectively. Moreover, 
the improved stability for the devices using the ZnO/Ti3C2Tx 
hybrid ETLs was observed, as shown in Fig. 4h.

2.2 � Electrode

The newly reported electrical conductivity of the Ti3C2Tx 
MXene has reached as high as 15,100 S cm–1 [66], and 
moreover, high transparency, outstanding flexibility 
and adjustable WF are associated with it [67–69]. All 
these properties make Ti3C2Tx suitable as electrodes 
in optoelectronic devices including solar cells. In the 
following, the review will be expanded in the sequence 
of the perovskite-based, organic, Si wafer-based and dye-
sensitized solar cells.

In 2019, Gao et  al. reported use of Ti3C2Tx MXene 
materials as the back electrode in noble-metal-free 
MAPbI3-based PSCs through a simple hot-pressing 
method, and Fig. 5a–c shows the preparation procedure, 
cross-sectional SEM image and energy-level alignment 
of each component for the devices [52]. One notes that 
as the back electrode, the Ti3C2Tx MXene can facilitate 
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hole injection from the MAPbI3 photoactive layer, and the 
device delivers a PCE of up to 13.83%, ~ 27.2% higher 
than that of the control device using the carbon electrode. 
Moreover, thanks to the seamless interfacial contact, the 
device exhibits improved stability compared with the con-
trol one. Recently, Mi et al. employed a mixed electrode 
consisting of carbon, carbon nanotube (CNT) and Ti3C2Tx 
in CsPbBr3-based PSCs, and Fig. 5d shows the device 
architecture and the cross-sectional SEM images of the 
mixed electrode. As indicated in Fig. 5e, the devices using 
the Ti3C2Tx-incorporated electrodes exhibit improved per-
formance compared with the devices employing the elec-
trodes without Ti3C2Tx [70].

In 2019, Tang et al. combined Ti3C2Tx nanosheets with 
Ag nanowire networks to fabricate the transparent, highly 
conductive and flexible hybrid electrodes for flexible OSCs 
that are based on different combinations of organic active 
materials including PTB7-Th:PC71BM, PBDB-T:ITIC and 
PBDB-T:ITIC:PC71BM [71]. This MXene/Ag nanowire 
hybrid electrode, prepared via a simple and scalable solu-
tion-processed method as shown in Fig. 6a, exhibits excellent 

performance. The flexible ternary (PBDB-T:ITIC:PC71BM) 
OSCs using this hybrid transparent electrode deliver a cham-
pion PCE of 8.30% and meanwhile exhibit robust mechani-
cal performance, i.e., 84.6% retention of the initial PCE 
after 1000 bending and unbending cycles to a 5-mm bend-
ing radius.

Recently, Qin et al. reported utilization of the Ti3C2Tx 
MXene thin film as a common electrode to fabricate the 
MXene-based all-solution-processed semitransparent flex-
ible photovoltaic (PV) supercapacitor by integrating a flex-
ible OSC and a transparent MXene supercapacitor in the 
vertical direction [72]. Figure 6b shows the schematic of 
the preparation (left), optical photograph (upper right) and 
cross-sectional demonstration (lower right) of the trans-
parent flexible electrode, and the device configuration and 
working principle are shown in Fig. 6c. The flexible OSCs 
with Ti3C2Tx as the transparent electrode can deliver a high 
PCE of 13.6%, comparable with that of the control device 
using an ITO electrode. The PV supercapacitor exhibits an 
average visible transmission of 33.5% and the maximum 
storage efficiency and overall efficiency of up to 88% and 
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2.2%, respectively. In addition, this strategy is suitable for 
blading, printing and roll-to-roll manufacturing, which is 
promising for the production of cost-efficient flexible PV 
supercapacitors to satisfy the increasing energy demands for 
portable, wearable and miniature electronic devices.

In 2019, Fu et al. drop-casted the Ti3C2Tx MXene solu-
tion on the groove surface of the n+-Si emitter as the back 
electrode in an n+–n–p+ Si solar cell (see Fig. 7a–c for the 
device architecture, groove surface before and after MXene 
coating) [73]. The ohmic contact between Ti3C2Tx and n+-
Si (see Fig. 7d for the energy-level alignment) facilitates 
electron transfer from the n+-Si emitter and thus suppresses 
charge carrier recombination, resulting in good output of 
the short-circuit current density (Jsc) and open-circuit volt-
age (Voc). Moreover, it was found that the rapid thermal 
annealing (RTA) treatment of 30 s can further improve the 
electrical contact and physical adhesion between the MXene 
coating and the n+-Si substrate, leading to the reduced series 
resistance (it can be concluded from the increased slope for 
the J–V curves around Voc in Fig. 7e and also verified by 
the resistance measurement, as exhibited in Fig. 7f) and 
thus a remarkable improvement of PCE to 11.5%. In some 

cases, MXenes serve both the electrode and the component 
of forming the Schottky junction with Si. For example, Yu 
et al. reported a Schottky junction solar cell fabricated based 
on Ti3C2Tx and n-Si, where the Ti3C2Tx electrode meanwhile 
serves as a transparent conducting film for charge collec-
tion, as shown in Fig. 10a (later) [74]. For this content, we 
would like to more detailedly discuss in the following part 
of MXenes as HTLs/ETLs.

The Ti3C2Tx MXene was also employed to fabricate the 
counter electrode (CE) in quantum dot-sensitized solar 
cells (QDSCs). In 2019, Chen et al. reported a composite 
CE consisting of hydrothermally grown CuSe nanopar-
ticles on Ti3C2Tx MXene nanosheets that were screen-
printed onto a graphite sheet [75]. This composite CE 
possesses the better electrical conductivity for electron 
transfer and a larger specific surface area to provide more 
active sites for polysulfide electrolyte reduction, as com-
pared to CuSe- and Ti3C2Tx-based CEs, respectively. 
The PCE of 5.12% can be achieved by the device using 
the CuSe/Ti3C2Tx composite CE with an optimal mass 
ratio. As a comparison, the devices using the CuSe- and 
Ti3C2Tx-based CEs deliver the PCE of 3.47% and 2.04%, 
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respectively. Similarly, Tian et al. fabricated the CuS/
Ti3C2 composite CEs via a facile ion-exchange method at 
room temperature, exhibiting a significantly faster electro-
catalytic rate toward the polysulfide reduction than pure 
CuS [76]. The QDSC based on this composite CE deliv-
ers an overall PCE of 5.11%, which is 1.5 times obtained 
from the device using the pure CuS CE. The performance 
enhancement is mainly attributed to the combined advan-
tages of the excellent conductivity of the Ti3C2 skeleton 
and the abundant catalytically active sites of the CuS 
nanoparticles.

2.3 � HTL/ETL

Owing to the easily tunable WF, the Ti3C2Tx MXene can 
also be applied as an HTL or ETL, and the related reports in 
PSCs, OSCs and crystalline Si solar cells can be found. In 
2019, Chen et al. reported insertion of Ti3C2Tx nanosheets 
between the CsPbBr3 active layer and the carbon electrode as 
the HTL [77], as indicated in Fig. 8a. The electron potential 
barrier because of the inserted Ti3C2Tx layer (Fig. 8b, c) 
effectively blocks the transfer of electrons from CsPbBr3 to 
the carbon electrode and thus mitigates the electron–hole 
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recombination. In addition, the CsPbBr3 grains can be 
well passivated by the functional groups in Ti3C2Tx, thus 
reducing the trap defects in the CsPbBr3 film and improv-
ing the perovskite film quality. A high initial PCE of 9.01% 
is obtained for the PSCs with long-term stability for more 
than 1900 h in a moisture environment and over 600 h under 
thermal conditions.

In the same year, employing the Ti3C2Tx layer as a novel 
ETL for MAPbI3-based PSCs was reported by Yang et al. 
[78], and Fig. 8d, e shows the device architecture and cross-
sectional SEM image of the solar cell. Under the assistance 
of ultraviolet–ozone (UV–O3) treatment, the Fermi level of 
Ti3C2Tx could be downshifted from − 5.52 to − 5.62 eV, as 
indicated in Fig. 8f, and meanwhile, the interface properties 
between Ti3C2Tx and MAPbI3 were improved because of 
the formation of the additional oxide-like Ti–O bonds on 
the surface of Ti3C2Tx (Ti3C2O2). Thanks to the enhanced 
hole blocking because of the downshifted Fermi level of 
Ti3C2Tx and meanwhile to the improved MAPbI3/Ti3C2Tx 
interface, a champion PCE of 17.17% was thus achieved for 
the device employing the Ti3C2Tx MXene film with 30 min 
UV–O3 treatment. However, the device using Ti3C2Tx with-
out UV–O3 treatment only delivers the 5.00% PCE. Fur-
ther investigations verified that the charge transfer was truly 
enhanced for the case with the optimal UV–O3 treatment of 
30 min, as indicated by the EIS measurement. In addition, 
UV–O3 treatment to Ti3C2Tx also contributes to improve the 
device stability.

Recently, Wang et al. reported a perovskite solar cell with 
a thin Ti3C2Tx MXene layer inserted between the F-doped 
SnO2 (FTO) electrode and the SnO2 ETL [79], and Fig. 8g, 
i shows the architecture and cross-sectional SEM image of 
the device. As indicated in Fig. 8h, the inserted MXene thin 
layer is favorable to form matched energy-level alignment 
between FTO and the SnO2 ETL, thus facilitating electron 
transport from SnO2 to FTO. Meanwhile, the strong interac-
tion and electron hybridization between MXene and SnO2 
can be introduced (see Fig. 8i for the simulated structure), 
thus leading to the enhanced electron mobility in SnO2. 
Moreover, the surface of the SnO2 ETL becomes more 
hydrophobic and smoother than the case without MXene, 
which is beneficial for growing high-quality perovskite lay-
ers. It was also found that compared with the case without 
MXene, non-radiative recombinations were significantly 
suppressed by the MXene-modified SnO2 ETL together with 
the remarkably improved homogeneity and reduced carrier 

transport loss (Fig. 8i). Thanks to these synergetic effects 
introduced by the MXene thin layer, the related device deliv-
ers a stabilized PCE of 20.65% (< 19.00% for the control 
device without MXene) with an ultralow saturated current 
density and negligible hysteresis.

In 2019, Yu et al. reported utilization of the UV–O3 treat-
ment or N2H4 treatment to increase or decrease the WF of 
Ti3C2Tx (in a range between 4.08 and 4.95 eV) because of 
the oxidation or reduction of the C element, respectively 
[53]. As shown in Fig. 9a, the Ti3C2Tx MXenes with dif-
ferent WFs can be used as either the HTLs or ETLs for the 
OSCs employing PBDB-T:ITIC as the photoactive layer. The 
PCEs of 9.06% and 9.02% were obtained for the cases using 
Ti3C2Tx as electron and hole-collection buffer layers, respec-
tively (Fig. 9b). Moreover, it was found that Voc increases 
with the treatment duration, as exhibited in Fig. 9c. In the 
same year, Hou et al. also reported employment of Ti3C2Tx 
as the HTLs in PBDB-T:ITIC-based OSCs to facilitate hole 
transport and collection, benefiting from the outstanding 
metallic conductivity of Ti3C2Tx, improved interface contact 
and matched energy-level alignment as exhibited in Fig. 9d 
[80]. It is notable that evident enhancement of PCE can be 
achieved for the devices using Ti3C2Tx as the HTLs com-
pared with the control one only using ITO (PCE: 4.21%). 
Moreover, the optimal Ti3C2Tx-based device also outper-
forms the state-of-the-art PEDOT:PSS-based device, i.e., 
10.53% vs. 10.11% (see Fig. 9e for the device performance 
comparison). Meanwhile, the Ti3C2Tx-based devices also 
exhibit the improved long-term stability under the atmos-
phere condition without any encapsulations, as indicated in 
Fig. 9f.

As briefly aforementioned, in 2019, Yu et al. reported a 
novel solar cell formed by depositing the Ti3C2Tx MXene 
on n-Si, where Ti3C2Tx serves as both the electrode for 
hole collection and the component to form the Schottky 
junction with n-Si [74], as demonstrated in Fig. 10a. Fig-
ure 10b shows the illuminated J–V curves for the devices 
prepared by depositing MXene using floating and oven 
transfer methods, respectively, with the initial efficiencies 
of 0.58% and 4.20%. Moreover, as exhibited in Fig. 10c, 
the PCE of the as-prepared device by oven transfer can be 
further improved, i.e., > 9% by a two-step chemical treat-
ment using HCl and AuCl3 in sequence and > 10% by further 
introducing a PDMS antireflection layer. More investigations 
indicate that the SiO2 thin layer formed between Ti3C2Tx 
and n-Si during oven transfer plays the key role to suppress 
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carrier recombinations and thus to achieve the higher device 
performance as compared to the floating method. For the 
improved device performance by the two-step chemical 
treatment, it can be attributed to the increased conductivity 
for the MXene layer due to the doping effect introduced by 

HCl, the increased Schottky barrier height (note: The WF 
of the MXene layer increases from 4.80 to 4.84 and further 
to 4.93 eV for the pristine, HCl- and AuCl3-treated sam-
ples) and enhanced charge transfer because of the formed 
Au nanoparticles from AuCl3.
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3 � Conclusion and Prospect

In this review, all applications and developments of the 
Ti3C2Tx MXene in solar cells since the first report in 2018 
are detailedly summarized. As can be seen, the Ti3C2Tx 

MXene mainly plays three roles, i.e., additive, electrode 
and charge (electron or hole) transport layer, and the type 
of the applied solar cells includes perovskite (mainly), 
organic (mainly), silicon wafer-based and quantum dot-
sensitized solar cells. (Note: The functions in differ-
ent roles for MXenes applied in solar cells are briefly 
summarized in Table 1, and meanwhile, the key device 
parameters are compiled in Tables 2, 3 and 4, according 
to the roles played by the Ti3C2Tx MXene.) Moreover, 
there is one report regarding a hybrid device combining 
electricity generation and storage, i.e., the so-called PV 
supercapacitor in which all electrodes are Ti3C2Tx, and 
the organic PV device and supercapacitor share one com-
mon electrode [72].

Generally speaking, report of MXenes in application of 
solar cells just began since the last quarter of 2018, and the 
related study is still in its infant stage mainly focusing on 
exploration of the feasibility in varying solar cells. Device 
performance including PCE and stability still has plenty 
of room for improvement [81]. Moreover, the influence of 

Table 1   Summary of the functions/properties of MXenes in different 
roles played in solar cells

Additive Accelerating the electron transfer, like an “electron” 
bridge

Improving crystallinity of the perovskite materials
Tuning the work function of the carrier transport materi-

als and other properties such as conductivity
Passivating the surface and engineering interface

Electrode Metallic conductivity, high transparency, outstanding 
flexibility and adjustable work functions

To form hybrid electrodes with other conducting 
nanomaterials, such as carbon nanotubes or metallic 
nanowires

HTL/ETL Easily tunable work functions and carrier conducting 
properties

Table 2   Summary of the key parameters for the solar cells employing MXenes as an additive

Device structure Jsc (mA cm−2) Voc (V) FF (%) PCE (%) Year References

ITO/SnO2/MAPbI3:Ti3C2Tx/Spiro-OMeTAD/Au 22.26 1.03 76.00 17.41 2018 [51]
FTO/c-TiO2/m-TiO2/CsFAMA-TQD/Spiro-OMeTAD:Cu1.8S/Au 24.12 1.14 78.70 21.64 2020 [60]
ITO/SnO2-Ti3C2/MAPbI3/Spiro-OMeTAD/Ag 23.14 1.06 75.00 18.34 2019 [61]
FTO/TiO2:SnO2:Ti3C2Tx/(FAPbI3)0.97 (MAPbBr3)0.03/Spiro-OMeTAD/Au 22.03 1.10 77.78 18.90 2020 [62]
FTO/c-TiO2:Ti3C2Tx/m-TiO2:Ti3C2Tx/Ti3C2Tx/MAPbI3:Ti3C2Tx/Spiro-

OMeTAD/Au
23.82 1.09 77.60 20.14 2019 [58]

ITO/PEDOT:PSS:Ti3C2Tx/PBDB-T:ITIC/PFN-Br/Al 17.08 0.91 70.93 11.02 2020 [64]
ITO/PEDOT:PSS:Ti3C2Tx/PM6:Y6/PFN-Br/Al 25.63 0.83 68.40 14.55 2020 [64]
ITO/ZnO:Ti3C2Tx/PBDB-T:ITIC/MoO3/Ag 18.63 0.93 70.39 12.20 2020 [65]
ITO/ZnO:Ti3C2Tx/PM6:Y6/MoO3/Ag 26.38 0.83 75.40 16.51 2020 [65]
ITO/ZnO:Ti3C2Tx/PTB7:PC71BM /MoO3/Ag 17.53 0.77 69.33 9.36 2020 [65]

Table 3   Summary of the key parameters for the solar cells employing MXenes as electrodes

Device structure Jsc (mA cm−2) Voc (V) FF (%) PCE (%) Year References

FTO/TiO2/MAPbI3/Ti3C2Tx 22.96 0.95 63.00 13.83 2019 [52]
FTO/c-TiO2/CPbBr3/Carbon:CNT:Ti3C2Tx 7.16 1.357 72.97 7.09 2019 [70]
Al/PrC60MA/PTB7-Th: PC71BM/PEDOT:PSS/MXene-AgNW-PUA 14.62 0.79 61.00 7.16 2019 [71]
Al/PDINO/PC71BM/PBDB-T: ITIC/PEDOT:PSS/MXene-AgNW-PUA 13.98 0.86 64.00 7.70 2019 [71]
Al/PDINO/PBDB-T:ITIC:PC71BM/PEDOT:PSS/MXene-AgNW-PUA 14.85 0.88 63.00 8.30 2019 [71]
Glass/Ti3C2Tx/PEDOT:PSS/PM6:Y6/PFN-Br/Al 24.97 0.84 64.90 13.62 2020 [72]
Ti3C2Tx/n+-Si/n-Si/p+-Si/Al2O3/SiNx/Ag/Al 36.70 0.54 57.99 11.47 2019 [73]
PDMS/Au/Ti3C2Tx/SiO2/n-Si/In:Ga 27.21 0.574 65.00 10.22 2019 [74]
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different contaminants on Ti3C2Tx and device performance 
is still lacking. Here, it should also be noted that the previ-
ous reports are mainly based on experiments. Accordingly, 
prediction and optimization of the material properties of 
MXenes terminated with different functional groups based 
on theoretical/simulation approaches are necessary for 
more accurately guiding the experiments [63, 82–84].

On the other hand, the properties of MXenes including 
morphology, conductivity, transparency, terminating groups, 
WF and stability are sensitive to the fabrication process. In 
the meantime, considering the application scenarios, i.e., 
solar cells, developing the fabrication methods of MXenes 
with accurately controllable properties, large scale and low 
cost is necessary [85–87]. Moreover, besides applications in 
solar cells, other optoelectronic devices such as light-emit-
ting diodes and photodetectors can find more innovations 
because of the unique optical, electrical and mechanical 
properties of MXenes. Another issue needing to be con-
cerned is the stability of MXenes if they were exposed to air 
for a long time due to oxidation, which would increase their 
resistance and thus reduce the device performance. Thus, 
appropriate passivation and/or encapsulation is necessary for 
stable working of the related devices [88–91]. In addition, 
F-free synthesis of the Ti3C2Tx MXene with high purity has 
attracted significant attention because of the high safety and 
environmental friendliness.

There exist more than 100 stoichiometric MXene com-
positions and a limitless number of solid solutions, which 
would provide not only unique combinations of properties 
but also plenty of ways to tune them by changing the ratios 
of M or X elements [92]. To date, only the first discovered 
MXene, Ti3C2Tx, has been applied in the PV field, while 
other types of MXenes have rarely been reported in appli-
cation of solar cells. The large underexplored family of 
MXenes with unique properties make us believe that many 
exciting discoveries are to come. We optimistically expect 

that MXenes-based PV devices could achieve a great pro-
gress in the near future with further efforts by the researchers 
in this area.

Based on the above discussion and analysis, several sug-
gestions are given for pushing exploration of MXene’s appli-
cations in solar cells: (1) deep understanding into the adjust-
ment and optimization of the Fermi level and the electrical 
properties for Ti3C2Tx MXene materials terminated with 
varying functional groups based on theoretical prediction 
and experimental examination for better guiding experimen-
tal realization of high-performance solar cells; (2) further 
improvement of device performance such as PCE and stabil-
ity based on (1), optimization of each interface in solar cells 
and incorporation of additional light management struc-
tures/components; (3) development of the related flexible 
PV devices considering the good flexibility of the MXene 
materials; (4) exploration of novel multifunctional inte-
grated devices such as PV supercapacitors/secondary bat-
teries and self-powered sensors considering the advantages 
of high transparency, abundant electrochemical active sites 
and remarkable adjustment of the electrical properties by 
functional groups for MXenes; and (5) in-depth study of the 
mechanism of the degraded performance for MXenes in air, 
exploration of the appropriate passivation and/or encapsula-
tion measures and development of fabrication approaches 
suitable for solar cell applications. Moreover, besides the 
further development of the Ti3C2Tx MXene, exploring other 
suitable MXenes applicable in solar cells is necessary to 
enrich the related studies and thus to find more opportunities 
to realize PV devices and/or integrated devices with high 
performance-to-cost ratios.
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