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HIGHLIGHTS

• A facile  NH4
+ method was proposed to prepare Sn nanocomplex pillared few‑layered  Ti3C2Tx MXene nanosheets.

• The MXene nanosheets showed excellent lithium‑ion storage performances among MXene‑based materials, which can maintain 1016 
mAh  g−1 after 1200 cycles at 2000 mA g−1 and deliver a stable capacity of 680 mAh  g−1 at 5 A  g−1.

ABSTRACT MXenes have attracted great interest in various fields, and 
pillared MXenes open a new path with larger interlayer spacing. How‑
ever, the further study of pillared MXenes is blocked at multilayered state 
due to serious restacking phenomenon of few‑layered MXene nanosheets. 
In this work, for the first time, we designed a facile  NH4+ method to 
fundamentally solve the restacking issues of MXene nanosheets and 
succeeded in achieving pillared few‑layered MXene. Sn nanocomplex 
pillared few‑layered  Ti3C2Tx (STCT) composites were synthesized by 
introducing atomic Sn nanocomplex into interlayer of pillared few‑lay‑
ered  Ti3C2Tx MXenes via pillaring technique. The MXene matrix can 
inhibit Sn nanocomplex particles agglomeration and serve as conductive 
network. Meanwhile, the Sn nanocomplex particles can further open the 
interlayer spacing of  Ti3C2Tx during lithiation/delithiation processes and therefore generate extra capacity. Benefiting from the “pillar 
effect,” the STCT composites can maintain 1016 mAh  g−1 after 1200 cycles at 2000 mA g−1 and deliver a stable capacity of 680 mAh  g−1 
at 5 A  g−1, showing one of the best performances among MXene‑based composites. This work will provide a new way for the development 
of pillared MXenes and their energy storage due to significant breakthrough from multilayered state to few‑layered one. 
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1 Introduction

Two‑dimensional (2D) materials have stimulated great 
research interest in the fields of energy storage, catalysis, 
sensor, semiconductor, etc, because of their novel physical 
and chemical properties [1–4]. MXenes are a new family 
of 2D transition metal carbides and nitrides discovered in 
2011 [4, 5]. They can be prepared by selectively etching 
“A” atomic layers from 3D layered MAX phases  (Mn+1AXn, 
where M is an early transition metal, A is an IIIA or IVA 
group element, n = 1, 2, 3, and X is C and/or N) [6, 7]. 
The final chemical formula of MXenes can be denoted as 
 Mn+1XnTx; the meaning of each letter is the same as that of 
MAX phases  (Mn+1AXn), except for  Tx representing termi‑
nated –OH, –F, and –O functional groups at surface [8, 9].

Although MXenes show promising application prospect in 
energy storage [10–12], the practical electrochemical perfor‑
mance of MXenes falls short of expectations [13]. This poor 
result is probably due to the blocking effect of surface anion and 
excessive accumulation of layers [14–16]. In order to improve 
the electrochemical performance of MXenes, many modifica‑
tion strategies have been carried out, including increasing the 
interlayer spacing by insertion of other agents [17–19], con‑
structing 3D morphology [20, 21], and creating porous struc‑
ture [22, 23]. The first modification strategy of enlarging inter‑
layer spacing has been proved an effective method to improve 
the capacities of MXenes, and it is figuratively called “pillar‑
ing” technique. The pillaring agents could be small molecu‑
lar cations [24], cationic surfactant [25], polymers [26], metal 
nanocomplex [27], and so on. Figure S1 shows the develop‑
ment history of pillaring technique in MXene‑based electrode 
materials. In detail, the interesting pillared MXenes with active 
materials date back to 2016, and then, a series of works about 
pillared MXenes were reported from different perspectives, 
including various intercalation agents (CTAB [25], KOH [17]), 
active materials (Sn [25, 28, 29], Co [15], S [18]), and differ‑
ent battery systems [18, 25, 30]. Due to “pillar effect,” which 
means the interlayer spacing of MXene matrix was enlarged 
by active materials, providing more lithium storage interspace 
and endowing the pillared MXene nanocomposites excellent 
electrochemical performance [25, 28]. Unfortunately, up to 
now, all of these reports were blocked at the state of multi‑
layered MXenes with thickness about 5 μm, correspond‑
ing to about 5000 layers calculated on the interlayer spacing 
of ~ 1 nm (Fig. S2) [13]. Particularly, due to serious restacking 

issues of few‑layered MXene nanosheets [31, 32], there is no 
report about pillared few‑layered MXene composites. It is well 
known that few‑layered structure is considered to benefit the 
electrochemical properties of 2D materials [33–35]. Therefore, 
discovering effective method to prepare pillared few‑layered 
MXene‑based composites is of great significance; realization 
of pillared few‑layered MXenes with active materials is still a 
big challenge to be taken.

Herein, for the first time, we synthesized atomic Sn nano‑
complex pillared few‑layered  Ti3C2Tx (STCT) composites via 
pillaring technique with the assistance of  NH4

+ method and 
investigated its electrochemical properties as anodes for lith‑
ium‑ion battery, effectively solving the restacking phenome‑
non of few‑layered MXenes. Notably, benefiting from the few‑
layered nanosheet structure and pillared ultra‑large interlayer 
spacing, the STCT composites exhibit significant improve‑
ment in electrochemical performance. It delivers outstand‑
ing cycling stability with a capacity retention of 1016 mAh 
 g−1 after 1200 cycles and superb rate ability with a capacity 
retention of 680 mAh  g−1 at 5 A  g−1. The electrochemical 
performance is even superior than that of the pillared multi‑
layered MXenes with low formula weights [15, 17], although 
the related theoretical study indicates that MXenes with low 
formula weights (such as  V2C,  Ti2C) show more promising 
prospect in energy storage than the ones with high formula 
weights [36]. The results strongly demonstrate the advantages 
of pillared few‑layered MXenes in the field of energy storage.

2  Experimental Section

2.1  Synthesis Methods

2.1.1  Synthesis of Multilayered  Ti3C2Tx MXenes

Commercial  Ti3AlC2 powders (98% in purity) were pur‑
chased from Beijing Forsman Technology Company. The 
multilayered  Ti3C2Tx MXene powders can be easily obtained 
according to previous report [28].

2.1.2  Synthesis of Few‑layered  Ti3C2Tx MXenes  (NH4+ 
Method)

Multilayered  Ti3C2Tx MXene powders (1 g) were immersed 
into 10  mL aqueous solution of tetramethylammonium 
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hydroxide (25 wt%, TMAOH) and stirred at room tempera‑
ture for 24 h. Organic molecules were intercalated into the 
interlayer of MXenes, and then, the intercalated multilayered 
 Ti3C2Tx MXenes were collected by centrifugation and washed 
with deionized (DI) water for three times. The final precipi‑
tation was dispersed in 50 mL DI water for ultrasonic treat‑
ment at atmosphere of argon gas. After ultrasonication for 
1 h, the supernatant was collected for subsequent usage via 
centrifugation at speed of 3500 r  min−1 for 10 min, and the 
precipitation was again dispersed in 50 mL DI water for fur‑
ther ultrasonic treatment, and the above process was repeated 
for 4 times. Then, all the above‑mentioned supernatants were 
collected together with nearly volume of 200 mL. In order to 
reduce water volume, shorten working time of freeze‑drying 
process and avoid the restacking phenomenon of few‑layered 
MXene nanosheets, 20 mL ammonia water (28%) or 25 mL 
ammonium bicarbonate aqueous solution (0.5 mol  L−1) was 
added into the MXene supernatants, and an obvious electro‑
static flocculation phenomenon can be observed. After rest‑
ing for 1 h, the flocculation settles down automatically and 
can be collected. Few‑layered  Ti3C2Tx MXene powders can 
be obtained by freeze‑drying of the flocculation and subse‑
quent annealing treatment (180 °C, 6 h) with Ar atmosphere. 
Since the above‑mentioned preparation process of few‑lay‑
ered MXene powders was first time proposed, we termed it 
as  NH4+ method, which was first time put forward and can 
fundamentally solve restacking issues of few‑layered MXene 
nanosheets. It should be noted that the other ammonium salts 
are also suitable for electrostatic flocculation process.

2.1.3  Synthesis of CTAB‑Ti3C2Tx MXenes

The CTAB‑Ti3C2Tx MXenes were prepared by treating 
 Ti3C2Tx MXene powders in hexadecyl trimethyl ammonium 
bromide (CTAB) solutions as reported [28].

2.1.4  Synthesis of STCT Composites

As‑prepared multilayered or few‑layered  Ti3C2Tx MXene 
powders (0.3  g) were immersed into 40  mL 0.2 wt% 
CTAB solution and stirred for 24 h at 40 °C, then 2.6 g 
SnCl4 ⋅ 5H2O was added and mixed solution was stirred 
again for 24 h for ion‑exchange process, and the final prod‑
uct of Sn nanocomplex pillared few‑layered  Ti3C2Tx (STCT)
composites can be obtained after centrifugation (3500 r 

 min−1, 10 min), freeze‑drying, and annealing treatment in 
Ar atmosphere (180 °C, 2 h). Note that STCT composites 
are at few‑layered state in this manuscript unless otherwise 
specified.

2.2  Material Characterization

X‑ray diffraction (XRD) measurements were taken by Shi‑
madzu XRD 6000 with Cu Ka radiation in the range of 
2θ = 3°–90°. AFM results were collected by Oxford Cypher 
S to detect the height of the nanosheets. The microstructure 
of the as‑prepared samples was measured by field emission 
scanning electron microscopy (FESEM, Hitachi, SU8010) 
and transmission electron microscopy (TEM, FEI Ltd, Tec‑
nai F20). X‑ray photoelectron spectroscopy (XPS) analy‑
sis was carried out in Thermo Fisher 250XI to investigate 
chemical bonds of the samples. The discharged electrodes 
were washed with fresh dimethyl carbonate (DMC) solvent 
to remove surficial residuals before related characterization.

2.3  Electrochemical Measurements

Coin type cells (2032) were assembled in argon‑filled glove 
box using STCT composites as working electrodes and Li 
foil as the negative electrode. The electrodes were prepared 
with mixed STCT composites, super‑P, and carboxyl methyl 
cellulose (CMC) to form slurry at the weight ratio of 7:1:2. 
Cyclic voltammogram (CV) curves at different scan rates 
between 0.01 and 3.0 V were obtained, and batteries were 
also analyzed by EIS measurements using Solartron 1470E 
Electrochemical Interface (Solartron Analytical, UK). 
Cycling performance and discharging/charging measure‑
ments were carried out on LAND battery test system.

3  Results and Discussion

The preparation process of samples is illustrated in Fig. 1. 
Briefly, few‑layered  Ti3C2Tx MXene powders were pre‑
pared via  NH4

+ method, which can fundamentally solve the 
restacking issues of few‑layered MXene nanosheets, and 
the detailed process can be seen in experimental section. 
Followed by CTAB pre‑pillaring, ion‑exchange insertion, 
and  Sn4+ pillaring process, we finally obtained Sn nano‑
complex pillared few‑layered  Ti3C2Tx (STCT) composites 
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with few‑layered structure. In contrast, multilayered 
 Ti3C2Tx is obtained via HF etching without subsequent 
process (Fig. S3). Because of the delicate properties and 
structures, it is difficult to effectively prepare powders of 
few‑layered MXenes from colloids after exfoliation process 
(Fig. S4). In this work, for the first time, we employed 
electrostatic flocculation of  NH4

+ method to prepare few‑
layered  Ti3C2Tx nanosheet powders. Due to absorbed  Tx 
groups, MXene nanosheet is negatively charged, which is 
also one of the basic properties of MXene colloids and 
consistent with the result of zeta potential test (Fig. S5) 

[37]. MXene nanosheets can be uniformly dispersed in 
colloidal state because of electrostatic repulsion among 
different nanosheets. The  Ti3C2Tx nanosheets settle down 
after the addition  NH4

+ solution owing to destruction of 
electrostatic equilibrium state of the MXene nanosheets 
(Fig. S6a–e), leading to formation of flocculation [38], and 
the yield is considerable after freeze‑drying of flocculation 
and annealing process (Fig. S7), ranging from 50 to 70% 
(Figs. S6f–g and S9).

The structure of materials in different steps is identified 
by XRD and exhibited in Figs. 2 and S8 with different dif‑
fraction angle ranges. There is an obvious shift in the main 
peak of (002), which explains well the change of interlayer 
spacing [25, 28, 38]. As shown in Fig. 2a, b, the disappear‑
ance of main peak (104) at 39° of  Ti3AlC2 after HF etch‑
ing suggests the complete etching of Al layer, and the left 
shift of peak (002) indicates enlarged interlayer spacing [6]. 
After immersing few‑layered  Ti3C2Tx in CTAB solution 
for hours, the main peak of  Ti3C2Tx shifts dramatically to 
a lower angle, implying the high pillaring ability of cati‑
onic surfactant [25]. The intense diffraction peaks centered 
at 4° further confirm the successful intercalation of CTAB 
into the interlayers of  Ti3C2Tx (Fig. 2c). Afterward, with 
the insertion of Sn nanocomplex via ion exchange based on 
 Sn4+, the main peak of STCT composites shifts to a higher 
angle, which indicates the CTAB is replaced by Sn nano‑
complex particles with small volume, resulting in interlayer 

Tin nanocomplex CTAB

CTABSn4+

NH4

pillaring pre-pillaring

Few-layered Ti3C2Tx MXenes

+ method

Exfoliating; Freeze-drying; AnnealingHF etching

35 °C

Fig. 1  Schematic illustration of the preparation procedure of Sn 
nanocomplex pillared few‑layered  Ti3C2Tx (STCT) composites by 
etching, sonication, pre‑pillaring, and pillaring processes
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Fig. 2  XRD patterns of  Ti3AlC2,  Ti3C2Tx, CTAB‑Ti3C2Tx, and STCT composites at different diffraction angle ranges: a 2 theta from 3° to 90°, 
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spacing diminution [25]. As shown in Fig. 2c, the broad 
peaks corresponding to Sn nanocomplex are concealed by 
the intense diffraction peak of  Ti3C2Tx MXenes.

As shown in Fig.  3a, b, the few‑layered structure of 
 Ti3C2Tx can be confirmed by AFM test. The scanned pro‑
file height of nanosheets indicates the number of layers of 
MXenes is about 2 or 3, demonstrating successful prepara‑
tion of few‑layered  Ti3C2Tx MXene powders, which show 
obvious nanosheet structure with microscale size in ab 
plane. The uniform nanosheet morphology without agglom‑
eration can be further testified by SEM images at different 
magnifications (Fig. S10 and Fig. 3c). The translucent state 
under transmission electron beam confirms the few‑layered 
structure of  Ti3C2Tx (Fig. 3d, e). The slight curl morphol‑
ogy indicates the flexibility of few‑layered  Ti3C2Tx MXene 
nanosheets. As the SEM images of STCT composites are 
shown in Fig. 3f, g, the lamellar structure remains in com‑
parison with  Ti3C2Tx; nevertheless, the thickness of  Ti3C2Tx 

slice increases slightly, suggesting the successful decoration 
of Sn nanocomplex. For better observation, the multilayered 
 Ti3C2Tx is also pillared. As shown in Fig. S11, the inter‑
layer space is padded by small particles, further confirming 
the Sn nanocomplex pillaring in  Ti3C2Tx interlayers. TEM 
image in Fig. 3h clearly reveals the uniform distribution of 
Sn nanocomplex dots in the few‑layered  Ti3C2Tx matrix. 
The HRTEM images further exhibit the detailed distributed 
situation of Sn nanocomplex dots (Fig. 3i–k). The small Sn 
nanocomplex particles about 3–5 nm were anchored tightly 
at surface of  Ti3C2Tx, and ultrasmall atomic Sn nanocom‑
plex dots were intercalated into the interlayers of  Ti3C2Tx 
[15] or within the inner side of V‑like construction between 
nanosheets. CTAB acts as pre‑pillaring agent and surface‑
stabilizing agent, which effectively inhibits Sn nanocom‑
plex particle growth and agglomeration [39]. The interlayer 
spacing of few‑layered  Ti3C2Tx is sizeable after CTAB pre‑
pillaring, which provides enough space for accommodating 
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Fig. 3  Characterization of few‑layered  Ti3C2Tx and STCT composites. a, b AFM images, c SEM image, and d, e TEM images of few‑layered 
 Ti3C2Tx. f, g SEM images and h–k TEM images of STCT composites
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Sn nanocomplex dots (Fig. S12). The interlayer spacing 
further restricts grain growth and insures the ultrasmall Sn 
nanocomplex size.

The chemical bonding is collected by XPS. The full spec‑
tra comparison (Fig. 4a) of individual  Ti3C2Tx and STCT 

composites further verifies the successful decoration of Sn 
nanocomplex. The detailed analysis shows that the Sn 3d 
peak consists of two primary peaks centered at 495.4 and 
487.0 eV, attributed to the Sn  3d3/2 and  3d5/2, respectively. 
These two peaks can be deconvoluted into two pairs of peaks 
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corresponding to  Sn2+ and  Sn4+, respectively, indicating 
the incomplete oxidation state of Sn nanocomplex [40, 41] 
(Fig. 4b). As shown in Fig. 4c, d, the Ti 2p peaks of  Ti3C2Tx 
and STCT composites consist of four primary peaks, of 
which the two peaks with higher binding energy belong to 
Ti  2p1/2, while the lower two belong to Ti  2p3/2. These four 
peaks can be further split into eight peaks, respectively, cor‑
responding to  Ti2+,  Ti3+, Ti–O, and Ti–C peaks [40, 42]. 
The O 1 s peak of  Ti3C2Tx can be deconvoluted into three 
peaks, respectively, matched to the C–Ti–(OH)x, C–Ti–Ox, 
and Ti–O peaks [42]. However, for the STCT composites, 
a peak corresponding to Sn–O bond (530.4 eV) emerges, 
indicating the bonding between Sn oxide particles with 
the terminating groups (such as –OH, –O) at the surface 
of  Ti3C2Tx matrix [40]. In addition, slight shift of Ti  2p3/2 
and O 1 s to higher binding energy also implies the forming 
of strong attraction between Sn nanocomplex and  Ti3C2Tx 
matrix [28]. As shown in Fig. S13, the sharp decline of C–Ti 
peak intensity and emergence of C=O peak further indicate 
the formation of chemical binding between Sn nanocomplex 
particles and  Ti3C2Tx matrix. The formation of interfacial 
Sn–O–Ti bonds can grant robust structure of the pillared 
composites, thereby assuring a stable electrochemical per‑
formance of STCT composites.

In order to evaluate electrochemical performance of STCT 
composites, we assembled 2032 type coin cell using lithium 
metal foil as counter electrode. As shown in Fig. 5a, the CV 
curves of STCT composites were measured between 0.01 
and 3 V. The cathodic and anodic current response can be 
attributed to the electrochemical reactions between lithium 
ions and Sn nanocomplex as well as  Ti3C2Tx matrix. The 
redox peak current positions are consistent with previous 
reports [40, 43, 44]. In the first cathodic scanning process, 
a broad hump centered around 0.8 V is attributed to the 
formation of solid electrolyte interface (SEI) layers and 
the reduction reaction of Sn nanocomplex with  Li+ to form 
Sn and  Li2O; the latter reaction is reversible and reflects a 
stable peak at 0.92 V in subsequent cycles [44–46]. The 
dominant peak below 0.5 V owes to electrochemical lithium 
storage by forming  LixSn and trapping of  Li+ within the 
 Ti3C2Tx matrix, which are partially reversible and mainly 
responsible for sharp capacity decay at the first cycle [25, 
40]. The reduction peaks are greatly different at subsequent 
scans compared with the first scan, suggesting the dynamic 
enhancement after the initial lithiation/delithiation activation 
combined with partially reversible reaction [28, 47]. In the 

anodic scanning, the dominant peak at approximately 0.54 V 
belongs to dealloying reaction of  LixSn. Remarkably, two 
minor peaks are detected around 1.2 and 1.9 V, which are 
related to reversible conversion reaction of Sn to SnO and 
SnO to  SnO2, respectively [48, 49]. The good overlap of CV 
curves after the initial scan demonstrates the good revers‑
ibility and robustness of the STCT composite electrodes at 
subsequent cycles [28, 50].

The galvanostatic charging/discharging curves of STCT 
composites at different cycles are presented in Fig. 5b. The 
charging/discharging platforms have one‑to‑one corre‑
sponding relationship with the redox peaks in CV curves. 
The discharge and charge capacities of the first cycle are 
1892.4 and 1291.7 mAh  g−1, respectively, with an initial 
coulombic efficiency of 68.3%. This value is relatively 
high among the  Ti3C2Tx‑based electrode materials [18, 
21, 25, 40]. The irreversible capacity of the first cycle 
comes from unavoidable formation of SEI layer, irrevers‑
ible conversion reaction of partial Sn nanocomplex, and 
irreversible capture of  Li+ in layered  Ti3C2Tx matrix [28, 
40]. The coulombic efficiency rapidly climbs to 97.2% 
at the second cycle and remains stable above 99.7% dur‑
ing subsequent cycles. There is a descent in the initial 30 
cycles, which may result from irreversible lithiation of 
 Ti3C2Tx MXene matrix (Fig. 5e, f) [50, 51]. The capac‑
ity stabilizes at about 745 mAh  g−1 at 500 mA g−1 and 
no capacity decay in subsequent cycles, indicating the 
excellent electrochemical performance because of stable 
structure of STCT composites, which can work steadily 
over 1000 cycles with obvious electrochemical platforms 
(Figs. S14 and S19). SEM and TEM images of STCT 
electrodes after cycles are shown in Fig. S15, the cycled 
STCT electrodes remain stable structure, and no fissures 
can be observed at surface. Furthermore, the Sn nano‑
complex particles are still dispersed uniformly at  Ti3C2Tx 
matrix after cycles, without agglomeration or pulveriza‑
tion (Fig. S16). The capacities of raw  Ti3AlC2 material 
and multilayered  Ti3C2Tx are quite low under the same 
test conditions, only delivering about 60 and 121 mAh  g−1 
(Fig. S17). The multilayered STCT composites deliver a 
reversible capacity of 367.4 mAh  g−1 after 100 cycles at 
500 mA g−1 (Fig. S18), which is about triple of the capac‑
ity provided by individual multilayered  Ti3C2Tx without 
pillaring treatment. The result further demonstrates the 
significant effect of pillaring technique. An upward trend 
of capacity is observed upon cycling, especially in the 
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long‑term cycling at 2000 mA g−1. The capacity increases 
from 761.4 mAh  g−1 at the 600th cycle to 1010.2 mAh  g−1 
at the 1075th cycle, giving a high capacity retention of 
142% compared with the 40th cycle (Fig. S19). The uplift 
of capacity can be ascribed to the increased interlayer 
spacings of  Ti3C2Tx matrix [51–53], which are propped 
by the volume expansion of Sn nanocomplex during lithi‑
ation and persistent shuttle of ions and electrons in the 
interlayers, leading to continuous enhancement of lithium 
storage capacity of the composites upon cycling [25]. It 
is found that a higher current density can induce earlier 
uptrend of capacity due to more violent ion and electron 
flows, leading to faster expansion of the interlayer spacing 
(Fig. S20 and Table S1).

The rate performance of STCT electrode can be meas‑
ured at different current densities from 50 to 5000 mA g−1 
(Figs. 5c and S21). As the current density increases, the 
capacity decreases progressively. The stable discharging 
capacities at 500 and 5000 mAh  g−1 are 881.5 and 662.2 
mAh  g−1, respectively, indicating that the capacity remains 
up to 75.1% even the current density increases 10 times 
from 500 to 5000 mA g−1. As the current density returns to 
500 mA g−1, the capacity recovers to 793.3 mAh  g−1, sug‑
gesting the good reversibility of the electrode (Fig. S21a–c). 
The electrode can still cycle steadily at 500 mA g−1 after rate 
test, indicating the stable structure during high‑rate test (Fig. 
S21b). The outstanding rate performance mainly benefits 
from the ultrathin  Ti3C2Tx layers, the ultrafine Sn nanocom‑
plex particles, and the “pillar effect” that caused increasing 
interlayer spacing of  Ti3C2Tx nanosheet matrix [28, 41, 54]. 
This rate capability and corresponding specific capacities 
in LIBs are much better than previous reports about pil‑
lared MXenes due to usage of few‑layered MXenes without 
restacking phenomenon (Figs. 5d and S22) [15, 17, 25, 28], 
further demonstrating the effectiveness of  NH4+ method and 
advantages of pillared few‑layered MXenes.

In order to investigate reason for the excellent lithium 
storage of STCT composites, we analyzed the electrochemi‑
cal kinetic mechanism by testing CV curves at various sweep 
speeds ranging from 0.1 to 2 mV s−1 (Fig. 6). As shown 
in Figs. 6a and S23a, b, a regular negative shift for the 
cathodic peaks and positive shift for the anodic peaks occur 
because of the polarization enhancement as the sweep speed 
increases [55]. The relationship between the peak current (i) 
and the scan rate (v) obeys the power law (Eqs. 1 and 2) [56]:

where a and b are adjustable constants. The b value can 
reflect the dominant factor of the electrochemical process. 
When the b value is close to 1.0, the electrochemical reac‑
tion is mainly controlled by the surface capacitive effect, 
while when the b value is close to 0.5, a solid‑state diffusion‑
controlled process should be dominant [57]. As shown in 
Fig. 6b, the b value can be determined through calculating 
the slope of the log(v)–log(i) plots. The b values for the 
cathodic and anodic processes are estimated to be 0.842 
and 0.755 (Fig. S23c, d), respectively, indicating a more 
favored surface‑dominated lithium storage mechanism of 
STCT electrode [58].

The capacity contributions from surface‑dominated and 
diffusion‑dominated processes can be further quantita‑
tively analyzed through the analysis approach established 
by Dunn et al. [59]. The current response of CV scan at a 
potential (V) varies with the scan rate (v) and obeys Eq. 3:

k1v and k2v1∕2 , respectively, represent the capacitive and 
diffusion‑dominated processes [60] where k1 and k2 are 
adjustable constants. Figure 6c shows the typical quantita‑
tive separation of capacitive current response compared with 
the total current response at a scan rate of 0.1 mV s−1. The 
capacitive effect contribution (black‑shaded area) composes 
about 52.94% of the total capacity (red line surrounded 
area). As the scan rate rises from 0.1 to 2 mV s−1, the capaci‑
tive contribution proportion gradually increases from 52.94 
to 86.96%. The analysis result manifests the important role 
of capacitive lithium storage process, especially at high 
current densities. The high proportion of surface‑controlled 
process implies the short ion transport path and efficient 
charge transfer kinetics, thereby pledging the excellent rate 
capability and superior cycling stability. The electrochemi‑
cal kinetic result well explains the excellent electrochemi‑
cal performance of STCT composites and further testifies 
the superior kinetic characteristics of pillared few‑layered 
 Ti3C2Tx MXenes.

Based on the characterization and electrochemical test 
results, benefited from “pillar effect,” the pillared few‑
layered  Ti3C2Tx nanosheets are ideal carrier for Sn nano‑
complex; STCT composites were synthesized successfully 
and show outstanding electrochemical performance, which 
can be attributed to the following reasons: (1) The pil‑
lared few‑layered  Ti3C2Tx matrix with enlarged interlayer 

(1)i = av
b

(2)logi = blogv + loga

(3)i(V) = k1v + k2v
1∕2
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spacing behaves as efficient lithium storage container [28], 
which can also act as 2D conductive network to enhance 
the electron transfer and  Li+ transport [61, 62]. (2) The 
 Ti3C2Tx can effectively confine the Sn nanocomplex par‑
ticles within interlayer and work as a flexible skeleton 
to keep the structural stability of the composites during 
cycling process. (3) In addition, the ultrasmall Sn nano‑
complex dots further reinforce the kinetics properties [63]. 
Therefore, the conversion reaction of Sn oxide is partially 
reversible in STCT composites. The reversible utilization 
of  Li2O can not only increase the specific capacity of the 
electrode, but also improve the coulombic efficiency [64, 
65]. (4) The atomic Sn nanocomplex particles are anchored 
into the few‑layered  Ti3C2Tx matrix through electrostatic 
or chemical adsorption via formation of Sn–O–Ti bond‑
ing; the grain growth and aggregation of the particles are 
thoroughly restrained. The Sn nanocomplex can act as 

ideal pillaring agent to significantly improve the capacity 
of  Ti3C2Tx, because the drastic volume fluctuation dur‑
ing lithiation/delithiation will further pry the interlayer 
of  Ti3C2Tx and acquire more lithium storage interspace, 
leading to fascinating electrochemical performance, espe‑
cially rate performance. As far as we know, the STCT 
composites exhibit the best electrochemical performance 
among tin‑based materials/MXene composites reported so 
far, and one of the best among the MXene‑based materi‑
als (Table S2). Pillared few‑layered MXenes can provide 
enlightenment for the insightful development of pillared 
MXenes, which open a new path for the application of 
MXenes due to larger interlayer spacing. In the future, 
it is believed the MXenes of n = 3 in chemical formula 
 (Mn+1CnTx) are more attractive because of intrinsic larger 
interlayer spacing (1.4 nm) than that of n = 2 (1 nm) or 
n = 1 (0.7 nm) [15, 25, 66–69].
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4  Conclusions

In summary, we design a facile  NH4+ method to funda‑
mentally solve the restacking phenomenon of few‑layered 
MXenes, which is important for further study of various 
MXenes. Besides, partial atomic Sn nanocomplex pillared 
few‑layered  Ti3C2Tx composite (STCT) was fabricated by 
CTAB pre‑pillaring and Sn nanocomplex pillaring process. 
The pillared few‑layered structure is deemed responsible 
for the superior electrochemical performance of the as‑
prepared MXene‑based material. The novel few‑layered 
structure will not only facilitate the full utilization of 
 Ti3C2Tx in lithium storage, but also improves the dynamic 
properties of decorated Sn nanocomplex. The ingenious 
combination of  Ti3C2Tx and Sn nanocomplex can gener‑
ate “pillar effect.” On the one hand, the highly conductive 
 Ti3C2Tx can effectually restrain Sn nanocomplex particle 
growth and agglomeration, thereby ensuring the high use 
ratio of Sn nanocomplex and activating reversible conver‑
sion reaction of Sn back to Sn oxide. On the other hand, 
the large volume expansion of Sn nanocomplex during 
charging/discharging processes will further open the 
interlayers of  Ti3C2Tx and allow more  Li+ storage; as a 
result, Sn nanocomplex pillared few‑layered  Ti3C2Tx com‑
posite exhibits outstanding electrochemical performance: 
It delivers a stable discharging capacity about 800 mAh 
 g−1 at 500 mA g−1 and maintains 1016 mAh  g−1 after 
1200 cycles at 2000 mA g−1. A high capacity retention 
of 680 mAh  g−1 is also obtained at 5 A  g−1, suggesting 
remarkable rate ability of STCT composites. Our work 
demonstrates the pillared few‑layered MXene nanosheets 
are ideal matrix for high capacity anode materials with 
large volume expansion. We believe this work can provide 
enlightenment for the modification of other energy storage 
materials.
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