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HIGHLIGHTS

• Few-layered  FePS3 nanosheets and ultrathin MXene are obtained by liquid ultrasonic exfoliation.

• The novel 2D/2D heterojunction of  FePS3 nanosheets@MXene composite is synthesized by in situ mixing MXene ultrathin nanosheets 
with  FePS3 nanosheets.

• Such unique nanostructure can promote rapid reaction kinetics, prevents electrode pulverization and agglomeration for the volume 
expansion, and provides the pseudocapacitive contribution.

ABSTRACT Searching for advanced anode materials with excel-
lent electrochemical properties in sodium-ion battery is essential and 
imperative for next-generation energy storage system to solve the energy 
shortage problem. In this work, two-dimensional (2D) ultrathin  FePS3 
nanosheets, a typical ternary metal phosphosulfide, are first prepared 
by ultrasonic exfoliation. The novel 2D/2D heterojunction of  FePS3 
nanosheets@MXene composite is then successfully synthesized by 
in situ mixing ultrathin MXene nanosheets with  FePS3 nanosheets. The 
resultant  FePS3 nanosheets@MXene hybrids can increase the electronic 
conductivity and specific surface area, assuring excellent surface and 
interfacial charge transfer abilities. Furthermore, the unique heterojunc-
tion endows  FePS3 nanosheets@MXene composite to promote the dif-
fusion of  Na+ and alleviate the drastic change in volume in the cyclic 
process, enhancing the sodium storage capability. Consequently, the few-layered  FePS3 nanosheets uniformly coated by ultrathin MXene 
provide an exceptional reversible capacity of 676.1 mAh g−1 at the current of 100 mA g−1 after 90 cycles, which is equivalent to around 
90.6% of the second-cycle capacity (746.4 mAh g−1). This work provides an original protocol for constructing 2D/2D material and dem-
onstrates the  FePS3@MXene composite as a potential anode material with excellent property for sodium-ion batteries.
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1 Introduction

As is known, developing clean and renewable energy 
sources, such as solar energy, wind energy, and geothermal 
energy, can reduce the dependence on fossil energy reserves. 
However, they are easily restricted in practical application 
by natural conditions [1]. Energy storage system is an effec-
tive mean to deal with the practical application problems of 
intermittent nature energy and improve the utilization effi-
ciency of various energy sources [2]. In the meantime, the 
development at top speed of consumer electronic devices and 
electric vehicles has placed higher demands on the energy 
density and cycle performance [3]. Therefore, developing 
higher energy density, lower cost, longer cycle performance, 
and higher efficiency energy storage system is imperative for 
next generation to overcome the energy shortage problem 
[4]. Although lithium-ion batteries (LIBs) can meet all those 
requirements, lithium resources on earth limit the expansion 
of large-scale energy storage and electric vehicle technology 
in the future [5]. The exploration and research of sodium-
ion batteries (SIBs) as a substitute of LIBs are extremely 
significant in light of the abundant sodium resources [6]. 
However, it is the larger ionic radius and higher molar mass 
of sodium that makes the  Na+ insertion/extraction kinetics 
process dilatory and restricts its growth and development. 
Therefore, searching for appropriate anode materials with 
high specific capacity, long circulation, and exceptional rate 
property is very crucial for practical application in the field 
of stationary energy storage [7, 8].

In 2000, Poizot put forward the mechanism of Li reactiv-
ity for transition metal oxides, which is along with the reduc-
tion and oxidation process of transition metal, distinguish-
ing from the classical intercalation reaction or the alloying 
reaction [9, 10]. Owing to much higher theoretical capacity 
and wider availability than intercalation-based electrodes 
[11–16] as a result of the multi-electron reaction system 
[17], conversion reaction-based materials, especially the 
transition metal sulfides and phosphides, are expected as the 
anode materials of SIBs [18–23]. Recently, a ternary metal 
phosphosulfide  (MPSn) material with particular two-dimen-
sional (2D) layered nanostructure, stacked by interlayer 
weak van der Waals, was applied as an excellent electrode 
material for supercapacitors, photocatalyst, electrocatalyst 
for hydrogen evolution reaction (HER), oxygen evolution 
reaction (OER), and water splitting, energy storage, and so 

on [24–30]. Based on the mechanism of conversion reac-
tion, the theoretical capacity of  FePS3 as an anode material 
for SIBs exceeds 1300 mAh g−1. However, severe volume 
expansion and dissolution of polysulfides co-occur in the 
conversion reaction during cyclic process, which cause poor 
cycling performance.

2D structure is expected as a fully exposed framework for 
the  Na+ transport and storage owing to the high specific sur-
face area, which supplies wide and fast access for the inser-
tion and extraction process of  Na+ with outstanding structural 
stability. As a result of the excellent structural features and 
various physicochemical properties, novel 2D materials have 
attracted the increasing attention in recent years [31], such as 
graphene [32], graphitic carbon nitride [33], hexagonal boron 
nitride [34], transition metal dichalcogenides [35], black 
phosphorus [36, 37], and MXene [38]. Graphene-like 2D 
nanomaterials MXenes with large redox-active surface area 
have been extensively used in the energy storage field due to 
the excellent conductivity [39–41]. There are several advan-
tages presented over others: (1) the exceptional crystalline 
properties provide lower energy barrier for speedy electron 
transportation within the atomic layer; (2) the layered struc-
ture generates abundant ion diffusion pathways, making the 
kinetics process more quickly; and (3) excellent strength and 
toughness can concurrently alleviate the volume stress in the 
reaction and hold a strong link between each layer [42–45].

In this work,  FePS3 was employed as the anode material in 
SIBs to investigate its potential application. The liquid-phase 
exfoliation of  FePS3 bulk crystal obtained by solid-state reac-
tion (SSR) method followed by combination with MXene was 
designed to construct  FePS3 nanosheets@MXene composite, 
which can buffer the volume expansion and promote a fast 
electron/ion transfer. When supplied as the anode of SIBs, 
a splendid reversible capacity of 676.1 mAh g−1 was main-
tained after 90 cycles at 0.1 A g−1 for the  FePS3 nanosheets@
MXene composite. While further improving the current den-
sity to 0.5 A g−1, a charge capacity of 527.7 mAh g−1 was 
still retained after prolonging to 90 cycles, benefiting from 
the favorable capacitance kinetics in the charge–discharge 
process at high-rate process. The resultant 2D/2D hybrid of 
 FePS3 nanosheets@MXene is supposed to enhance the elec-
tronic conductivity, promote the spread of  Na+, and buffer 
the severe volume expansion during cycling. Compared to 
binary metal sulfide and phosphide for SIBs, the  FePS3@
MXene nanocomposite material demonstrates a competitive 
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and exceptional electrochemical performance, due to the char-
acteristics of novel 2D/2D heterojunction and the phase trans-
formation mechanism. Therefore, the synthetic nanocompos-
ite of  FePS3@MXene is considered as a promising alternative 
anode material with superior performance for SIBs.

2  Experimental Section

2.1  Chemical Preparation

The following chemicals were used: iron powder (Fe, ≥ 99.9%, 
Nanjing Crystal Chemical), red phosphorus powder (P, ≥ 98.5%, 
Energy Chemical, Shanghai), and sublimed sulfur (S, ≥ 99.98%, 
Nanjing Chemical Reagent). All the reagents and chemicals 
were used in this research without further purification.

2.1.1  Synthesis of Bulk  FePS3 and Exfoliation 
of Layered  FePS3

Typically, bulk  FePS3 crystals were obtained by heating 
the mixture of elements in a required stoichiometric ratio 
(Fe/P/S = 1:1:3) in a sealed quartz ampoule under vacuum 
(~ 10−6 mbar) at 750 °C for 6 days [46]. After a low-temper-
ature solid-state reaction (SSR) process, the products were 
heated to 500 °C for 2 h in a flowing argon (Ar) atmosphere 
to remove excess sulfur and red phosphorus. The few lay-
ers of  FePS3 were prepared by exfoliation of bulk crystals. 
Briefly, 100 mg bulk crystals were dispersed in 100 mL DI 
water (deionized water, obtained from Milli-Q water puri-
fication system) and ultra-sonicated for 8 h in an ice bath. 
Finally,  FePS3 nanosheets were collected after freeze-drying.

2.1.2  Synthesis of  Ti3C2Tx Ultrathin Nanosheets

Multi-layered MXene was obtained by etching of Al from 
 Ti3C2Tx. The solution for etching was synthesized through 
adding 2 g LiF (lithium fluoride) to 30 mL 9.0 M HCl solution 
(hydrochloric acid) followed by stirring for 5 min. Afterward, 
2 g  Ti3C2Tx powder was added slowly into the above solu-
tion at 40 °C and stirred for 36 h. Then, the suspension was 
washed with DI water until the value of pH reached greater 
than 6, sonicated under Ar flow for 2 h, and centrifuged at 
3500 rpm for 1 h. Finally, the supernatant was collected and 
cryopreserved at 4 °C.

2.1.3  Synthesis of  FePS3@MXene Composites

In a typical procedure, 100 mg  FePS3 nanosheets were dis-
persed in 100 mL DI water followed by ultrasonication for 
30 min to form a uniform solution; then, 3 mL or 6 mL MXene 
aqueous solution with a concentration of 3 mg mL−1 was 
poured into the solution and stirred for 24 h. After freeze-
drying, the products were collected and designated as  FePS3@
MXene-1 and  FePS3@MXene-2, respectively.

2.1.4  Synthesis of NVP/C Powders

Briefly, NVP/C ((Na3V2(PO4)3/C, sodium vanadium phos-
phate/carbon) powder was synthesized by a carbothermal 
reduction approach.  NH4VO3 and  NaH2PO4·2H2O were 
applied as the reactants, and glucose was employed to provide 
the carbon, dispersed and mixed in ethanol, and then milled for 
24 h in a planetary mill. After fully drying in an oven at 80 °C, 
the precursor was placed into a corundum boat and calcined 
under an Ar flow at 900 °C for 4 h.

2.2  Material Characterization

X-ray diffraction (XRD, Bruker D8 Advance, CuKa radia-
tion) was performed to investigate the phase composition. 
Scanning electron microscopy (SEM, Regulus 8100, 15 kV) 
and HRTEM (high-resolution transmission electron micros-
copy, FEI Tecnai G2 F20, 15 kV) were supplied to observe 
the micro-appearance and the distribution of element with an 
energy-dispersive X-ray spectroscopy (EDS). X-ray photoelec-
tron spectroscopy (XPS, Escalab 250Xi) was used to explore 
the elemental composition on the surface and valence states. 
On the base of BET multipoint approach and BJH model, the 
pore distribution was characterized by  N2 adsorption/desorp-
tion at 77 K (V-Sorb 2800P). Atomic force microscopy (AFM, 
Veeco Multimode V) was performed to measure material 
thickness at room temperature.

2.3  Electrochemical Measurements

All electrochemical tests were measured in a CR2032 model 
packaged in a glove box  (H2O,  O2 < 0.01 ppm) by taking 
sodium metal as the counter, 1.0 M  NaPF6 dissolving in 
ethylene carbonate/diethyl carbonate (EC/DEC) = 1:1 in a 
volume ratio with 5% fluoroethylene carbonate (FEC) as the 
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electrolyte, and GF/C (glass fibrous membrane, Whatman) 
as the separator. The anode was produced by a simple slurry 
process; the as-prepared samples, SWCNTs–COOH (single-
walled carbon nanotubes), and CMC (carboxymethylcellu-
lose sodium) were mixed with DI water in a mass ratio of 
7:2:1, and then, the mixture was applied onto Cu foil with 
a coating scraper (MTI, Shenzhen) and then dried at 80 °C 
overnight. The GCD (galvanostatic charge–discharge) curves 
were received using a NEWARE measurement system 
(BTS3000n, Shenzhen) in the potential range of 0.01–3 V 
(vs.  Na+/Na) at usual temperature. The cyclic voltammetry 
(CV) measurements were implemented on an electrochemi-
cal workstation (CS2350H). The GITT was tested by dis-
charging or charging the cells for 10 min at 100 mA g−1 
followed by a relaxation of 60 min. The electrochemical 
impedance spectroscopy (EIS) tests were performed from 
the frequency of 100 kHz to 0.01 Hz at 10 mV ac oscillation 
amplitude under open-circuit voltage status. The mixture of 
NVP/C, Super-P, and PVDF (polyvinylidene fluoride) in a 
mass ratio of 7:2:1 with NMP (N-methyl-2-pyrrolidone) was 
coated on an aluminum foil to prepare the cathode for  Na+ 
full cell. And the mass ratio of cathode/anode is around 10:1.

3  Results and Discussion

As schematically exhibited in Fig. 1, bulk  FePS3 crystals 
were obtained by SSR process. Multi-layered  Ti3C2 MXene 
was synthesized by selective etching of Al atom from the 

MAX phase,  Ti3AlC2 (Fig. S1a). In virtue of the unique 2D 
layered structure property, few-layered  FePS3 nanosheets and 
ultrathin MXene can be obtained by liquid ultrasonic exfo-
liation (Figs. S2 and S1b). Few-layered  FePS3 nanosheets 
of thickness 2–3 nm were uniformly coated by ultrathin 
 Ti3C2 MXene after mixing the  FePS3 and MXene aqueous 
solutions, which is denoted as  FePS3@MXene. By the wet 
etching approach with in situ HF forming [44–47], MXene 
can be endowed with high hydrophilicity for the –OH, –O, 
and –F surface functional groups, which was beneficial to 
combine with  FePS3 nanosheets.

Figure 2a shows the SEM image of bulk  FePS3 crystal 
synthesized by SSR step, which is made up of thousands of 
layers stacked by the weak van der Waals. The correspond-
ing line scan profile analysis of AFM image displayed that 
the thickness of  FePS3 nanosheets by liquid exfoliation 
is found to be around 2.0 nm, indicating 3–4 individual 
layers in Fig. 2b (the thickness of monolayer is 6.42 Å). 
Such ultrathin layers lead to high BET surface area of 
around 14.3 m2  g−1 (Fig. S3). In Fig. 2c, the clear interlat-
tice indicates the good crystallinity of few-layered  FePS3 
nanosheets, and the distance of 0.232 nm is ascribed to 
the lattice plane of (201) [48]. The SEM image of  FePS3@
MXene nanocomposite in Fig. 2d reveals the uniform coat-
ing of few-layered  FePS3 nanosheets by ultrathin MXene 
without obvious bulk crystal in those images. There is 
no evident difference between  FePS3 and MXene due to 
the similar 2D structure and characteristic in Fig. 2e. The 
EDX analysis of  FePS3@MXene composite can confirm 
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Fig. 1  a Synthesis process diagram of  FePS3@MXene. b Schematic illustration of MXene assembled on  FePS3 nanosheets surface and the 
micromolecular structure in enlarged view
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the presence and homogeneous distribution of Fe, P, S, Ti, 
C, and F elements, certificating the uniform mixture of the 
 FePS3 and  Ti3C2 MXene (Fig. S4). In Fig. 2f, the ultrathin 
MXene spreads great amorphous phase and the interlattice 
distance is proved as  FePS3 phase, which reveals a 2D/2D 
layered morphology. Through the elemental mapping 
images exhibited in Fig. 2g, the strong iron, phosphorus, 
sulfur, titanium, and carbon signals can also illustrate the 
uniform existence and distribution of  FePS3 nanosheets 
and MXene.

The phase of samples was initially confirmed by com-
paring with pure phase XRD patterns as shown in Fig. 3. 
The XRD patterns of  FePS3 and  FePS3@MXene compos-
ites show six weak characteristic peaks, which correspond 
to the (001), (002), (−201), (131), (202), and (−331) 
planes of  FePS3 phase (JCPDS No. 78-496). The sharp and 
intense diffraction peaks of (001) demonstrate the highly 
crystalline property. It indicates a high purity of samples 
without impurity peaks. No characteristic diffraction peaks 
of MXene are observed due to its lower loading content 
and weak crystallization (Fig. S5).

XPS analysis further demonstrated the surface elemen-
tal composition and valence states. Low-resolution XPS 

survey verifies the presence of Fe, P, S, O, and C elements 
in  FePS3 sample and Fe, P, S, Ti, C, F, and O elements 
in  FePS3@MXene-1 sample, respectively (Fig. S6). In 
Fig. 4a, the deconvoluted high-resolution XPS spectrum 
of  FePS3@MXene indicates clearly four peaks in the Fe 2p 
spectrum. The peaks at 725.94 and 712.18 eV are ascribed 
to  2p3/2 and  2p1/2 core levels of  Fe2+, respectively, while 
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Fig. 2  a SEM image of bulk  FePS3. b, c AFM and HRTEM images of  FePS3 nanosheets. d–f SEM, TEM, and HRTEM images of  FePS3@
MXene. g Elemental mapping images of Fe, P, S, Ti, and C
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the peaks at 722.44 and 709.11 eV correspond to  Fe3+. 
The XPS spectrum of  FePS3 presents separately two peaks 
(731.63 and 725.44 eV) at higher binding energies and two 
peaks (714.84 and 711.64 eV) at lower binding energies 
in the similar range [24, 25]. The obvious peak shift and 
area change of Fe 2p spectrum were caused by the con-
nection between the Fe atom and the surface coating of 
ultrathin MXene. Each spin orbit consists of two satellite 
peaks with higher binding energy, proving that there is a 
hybrid between the  Fe2+,  Fe3+ levels and the  PS3 ligand 
orbit. Furthermore, the XPS spectra of P and S fitted at 
2p tracks are similar between  FePS3 and  FePS3@MXene. 
In Fig. 4b, the two splitting peaks located at 131.93 and 
133.72 eV were described as the  2p3/2 and  2p1/2 of the fit-
ted P 2p spectrum, respectively. As exhibited in the decon-
voluted S 2p spectrum, the two splitting peaks viewed at 
131.71 and 133.57 eV were supposed to  2p3/2 and  2p1/2 

orbitals, respectively. These peaks centered at 164.65 and 
169.03 eV were expected to the S 2p and oxidized groups 
S–O in Fig. 4c. It maintains high consistence between 
those outcomes with formerly reported data yet. As shown 
in Fig. 4d, three predominant Ti  2p3/2 peaks of  FePS3@
MXene are positioned at 459.10, 456.23, and 455.57 eV, 
corresponding to the Ti–O, Ti–F and Ti–C bonds. Except 
for the above three Ti  2p3/2 peaks, the peak located at 
456.97 eV is attributed to the Ti–S bond between  FePS3 
and MXene, indicating the  FePS3 nanosheets successfully 
coated by ultrathin MXene [49].

Figure 5a shows the CV profiles of  FePS3@MXene-1 
composite, which was tested at the scan rate of 0.1 mV s−1 
in the potential range of 0.01–3.0 V. Superior cycling perfor-
mances of  FePS3@MXene have been evaluated. As exhib-
ited in Fig. 5b, c, a high reversible capacity (676.1 mAh  g−1) 
of  FePS3@MXene-1 electrode was maintained at 0.1 A  g−1 
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after 90 cycles, which corresponds to approximate 90.6% 
of the second-cycle capacity (746.4 mAh  g−1), while it still 
held 527.7 mAh  g−1 at 0.5 A  g−1 through 90 cycles. How-
ever, pristine  FePS3 electrode displays poor cycling stability, 
and a low reversible capacity of 111.3 mAh  g−1 is retained 
after 90 cycles at 0.5 A  g−1. It shows the GCD curves of the 
1st, 2nd, 3rd, and 50th, and the first coulombic efficiency is 
74.3% (Fig. S7). Figure 5d, e shows the rate performances 
of  FePS3,  FePS3@MXene-1, and  FePS3@MXene-2. A high 
reversible capacity of 767, 744, 713, 674, 608, and 449 mAh 
 g−1 was delivered by  FePS3@MXene-1 electrode at the cur-
rent densities of 0.1, 0.2, 0.5, 1, 2, and 5 A  g−1, respectively; 
while the rate returns to 0.1 A  g−1, the specific capacity of 
792 mAh  g−1 can be retained. Meanwhile,  FePS3@MXene-2 
electrode demonstrates a reversible specific capacity of 610, 
568, 517, 476, 418, and 316 mAh  g−1 at the same current 
densities. As a contrast, pristine  FePS3 electrode merely 
demonstrates the specific capacity of 779, 701, 576, 436, 
299, and 154 mAh  g−1 and pristine ultra-nanosheet MXene 
barely demonstrates the capacity of 16.3, 10.7, 5.8, 3.6, 2.2, 
and 1.4 mAh  g−1 under the same test conditions (Fig. S8), 
providing minority contribution to the specific capacity.

The  FePS3@MXene nanocomposite as an anode mate-
rial for SIBs delivers superior reversible capacity and cyclic 

stability in this work. The better superior rate performance 
of the  FePS3@MXene nanocomposite is attributed to the 
following factors. (i) MXene restricts the shuttle effect of 
polysulfides and relieves the dramatic volume expansion in 
the charge–discharge circulation. (ii) The intercalation of 
MXene acts as a conductive skeleton, reducing the resistiv-
ity of the  FePS3 nanosheets, which also can be proved by 
the EIS tests. (iii) Unique 2D skeleton structure provides a 
large number of active sites and insertion channels, which 
leads to high-rate performance. In Fig. 5f, the Nyquist plots 
of the three samples consist of a broad semicircle at the high 
frequency relating to the charge-transfer-kinetics-controlled 
section and a straight line at the low frequency represent-
ing the mass-transfer-controlled Warburg region, confirm-
ing a better electronic and ionic conductivity of  FePS3@
MXene than that of pristine  FePS3 nanosheets. Adding 
a small amount of MXene, the slope of the straight line 
increases obviously and the curvature radius of the semicir-
cle decreases greatly, respectively. Due to the intrinsic char-
acteristic of  FePS3, the curvature radius of the semicircle 
has no significant change and the slope of the straight line 
increases slightly while the proportion of MXene continues 
to increase. The ultra-small-size active material is uniformly 
distributed in the conductive MXene throughout the charge 
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and discharge process, thereby ensuring rapid charge transfer 
for ion and electron.

According to  FePS3 + 9Na+ + 9e− → 3Na2S + Fe + Na3P, 
the theoretical capacity of pristine  FePS3 material is around 
1318 mAh  g−1 for SIBs [50]. It is expected as a potential 
anode material because of the high theoretical capacity. 
Based on the intercalation: xNa + FePS3 → NaxFePS3, the 
sharp peak located at 1.24 V is described to the insertion 
process of  Na+ into  FePS3 monolayer without phase change 
in the first cathodic scan. This reaction also can be proved 
by the potential platform in the first discharge curve (Fig. 
S7), while another wide peak positioned at the range of 
0.3–1.0 V, corresponding to the gentle platform in the first 
discharge curve in Fig. 5a, is assigned to the production of 
 Na2S,  NaxP, and metallic Fe in the conversion reaction, along 
with the gradual formation of the irreversible solid electro-
lyte interface (SEI) film. In the subsequent anodic scan, a 
sharp peak positioned at 2.20 V and a weak peak located 
at 1.60 V were distinctly displayed, which were related 
to the oxidation process of the  Na2S phase and metal Fe, 
respectively. The following four cathode scans show nearly 
overlapping CV profiles with two weak peaks at 1.60 and 
0.70 V, respectively, corresponding to  Na+ intercalation into 
the 2D channel of  FePS3, the production of Fe and  Na2S. 
Similarly, the following three cycles of the GCD profiles are 
nearly identical, indicating that the electrochemical storage 
of sodium is stable and reversible [51].

To reveal the high cyclic and rate capability of  FePS3@
MXene electrode, the sodium storage mechanism was stud-
ied by analyzing CV profiles at diversity scan speeds from 
0.1 to 1.5 mV s−1 in Fig. 6a. The overall charge storage 
mechanism of the  FePS3@MXene electrode can be quan-
tified by dividing the i (current) response at a constant V 
(potential) into two mechanisms: k1v (capacitive effects) and 
k2v1/2 (diffusion processes).

Here, a and b are tunable parameters, v means various scan 
rates, and  k1 and  k2 are constants. The value range of b is 
from 0.5 to 1, corresponding to insertion effect and capaci-
tive effect. As depicted in Fig. 6b, the values of b for peak 
A, B, C, and D through calculating the slope of log(v)–log(i) 
plots are 0.66, 0.93, 0.86, and 0.79, respectively. Figure 6c 
exhibits the normalized contribution ratio of capacitive and 
diffusion-controlled capacities, respectively. When the v 
value is adjusted to 0.5 mV s−1, the capacitive contribution 
ratio reaches 58.2% shown in Fig. 6d, which indicates that 

i(v) = a
v
b = k

1
v + k

2
v
1∕2

.

the  Na+ storage mechanism of surface pseudocapacitance 
contribution should dominate and determine fast and stable 
sodium storage capability at high current densities.

Due to all the advantages of  FePS3@MXene nanocompos-
ite mentioned above, a full cell of SIBs applying the  FePS3@
MXene nanocomposite as an anode material and NVP/C as 
a cathode material was assembled and measured to prove 
the applicability of the  FePS3@MXene nanocomposite. The 
NVP/C powder was synthesized by the method reported in 
the previous literature [52]. The XRD data show that the 
bulk NVP/C sample exhibits high-purity crystal phase after 
the comparison (Figs. S9 and S10). The cycle test of full 
cell was performed at 0.1 A  g−1 within the potential range 
of 0.01–3.0 V. The first-cycle charge and discharge capaci-
ties of the sodium-ion full cell are 1072 and 796 mAh  g−1, 
as shown in Fig. 7b. Due to the capacity balance problem 
among anode material, cathode material, electrolyte, and 
system optimization, the capacity is less than the capac-
ity recorded in half-cell. The cycle stability is depicted in 
Fig. 7b, indicating that the reversible capacity was remained 
approximately 302 mAh  g−1 with a coulombic efficiency 
of 91% after 29 cycles. The energy and power density of 
the assembled full sodium-ion cell are 424 Wh  Kg−1 and 
131 W  Kg−1 at 100 mA g−1 after 20 cycles, respectively. 
(The calculation results are based on the quality of the anode 
material.) According to more sufficient exploration of the 
entire system, consisting of cathode and electrolyte, the 
coulombic efficiency and cyclability of the full cell can be 
further enhanced.

4  Conclusions

To summarize, this work examines the potential of ternary 
 FePS3 as anode material for SIBs. Through the liquid-
phase exfoliation approach and the combination strategy, 
ultrathin MXene is evenly dispersed onto the few-layered 
 FePS3 nanosheets to form  FePS3@MXene hybrid. The 
unique 2D/2D heterojunction structure promotes rapid reac-
tion kinetics, prevents electrode pulverization and agglom-
eration for volume expansion, inhibits the shuttle effect of 
polysulfides and provides the pseudocapacitive contribution, 
showing superior rate capacity and cycle stability. Apart 
from those superiorities of the heterojunction nanostructure, 
the phase transformation mechanism of pristine  FePS3 mate-
rial in essence also imparts the expected electrochemical 
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performance, based on a buffer matrix by the mixed phases 
for each other. Generally, the work provides a potential 
anode material  FePS3@MXene nanocomposite for SIBs 
through combining the virtues of oriented nanoengineer-
ing with the intrinsic phase transformation process of  FePS3 
material.
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