
Vol.:(0123456789)

1 3

Magnetic Array Assisted Triboelectric 
Nanogenerator Sensor for Real‑Time Gesture 
Interaction
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HIGHLIGHTS

• By counting the positive/negative pulses in unit time to sense the degree, speed, and direction of finger motion in real-time.

• The magnetic array assisted sliding structure translates sliding motion into contact-separation thus improves the durability and low-
speed signal amplitude.

• The magnetic track constrains the sliding direction that greatly improves the stability.

ABSTRACT In human-machine interaction, robotic 
hands are useful in many scenarios. To operate 
robotic hands via gestures instead of handles will 
greatly improve the convenience and intuition of 
human-machine interaction. Here, we present a mag-
netic array assisted sliding triboelectric sensor for 
achieving a real-time gesture interaction between a 
human hand and robotic hand. With a finger’s trac-
tion movement of flexion or extension, the sensor 
can induce positive/negative pulse signals. Through 
counting the pulses in unit time, the degree, speed, 
and direction of finger motion can be judged in real-
time. The magnetic array plays an important role in 
generating the quantifiable pulses. The designed two parts of magnetic array can transform sliding motion into contact-separation and 
constrain the sliding pathway, respectively, thus improve the durability, low speed signal amplitude, and stability of the system. This direct 
quantization approach and optimization of wearable gesture sensor provide a new strategy for achieving a natural, intuitive, and real-time 
human-robotic interaction.
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1 Introduction

Intuitive human-machine interaction (HMI) plays more and 
more an important role in duties and daily life. From tradi-
tional keyboards to various touchpad nowadays, HMIs have 
been developed to be more natural [1], integrated [2], port-
able [3, 4], and even wearable [5, 6]. For the skillful robotic 
hand in industry, military service, surgery, or entertainment, 
traditional interaction method based on handles cannot meet 
current requirements [7, 8]. A wearable gesture sensor that 
can perceive the dexterous movement of each finger will 
fulfil this need [9–12]. The emergent triboelectric nano-
generator (TENG) exhibits great potential as an alterna-
tive scheme in some fields, including physiological signal 
collection [13, 14], mechanical signal detecting [15, 16], 
and visual tracking [8, 17]. Based on the coupling of tribo-
electrification and electrostatic induction, TENG has been 
applied in energy harvesting [18, 25, 26] and self-powered 
mechanical sensing [1, 19–24]. However, most studies in 
gesture sensing based on TENG take signal amplitude as 
feature to represent finger’s once time movement and ignore 
the intermediate process [13, 14, 16]. Moreover, to quan-
tify the bending degree via signal amplitude is unstable, 
because there are too many factors affecting the amplitude. 
Therefore, a finger-wearable TENG sensor for quantifying 
the finger’s bending/straightening for a real-time gesture 
interaction is expected [15, 27].

In this work, we present a magnetic array assisted sliding 
triboelectric sensor (Ma-s-TS) to achieve a real-time ges-
ture interaction between a human hand and robotic hand. 
During the bending of the finger, as shown in Fig. S1, the 
rotation angle is proportional to the tensile displacement at 
the joint (as the fulcrum). Therefore, We can judge the bend-
ing degree by the sliding displacement. The basic sensing 
principle of Ma-s-TS is to induce positive/negative pulses 
under the finger traction movement (flexion/extension), 
and then by counting the pulses in unit time, to sense the 
degree, speed and direction of a finger motion in real-time. 
It is a creative design that the magnetic array assisted sliding 
structure can constrain the sliding pathway and translate the 
sliding motion into contact-separation, and thus can improve 
the stability, durability and low speed signal amplitude. This 
work brings an optimized scheme for real-time gesture inter-
action based on a wearable TENG sensor, and it promises a 
widespread application of intuitive, natural HMIs.

2  Methods

2.1  Fabrication of Ma‑s‑TS

Typically, the Ma-s-TS was fabricated as two main parts, 
stator and slider. The stator (20 × 12  mm2) was made up 
of an electrode layer (thickness: 0.01 mm) sandwiched 
between upper layer of polytetrafluoroethylene (PTFE) film 
(thickness: 0.08 mm) and bottom layer of flexible halbach 
magnetic arrays made of strontium ferrite magnetic pow-
der and rubber (thickness: 0.315 mm), which was pasted 
on an acrylic board. The slider (length: 10 mm, width: 
20 mm) was a Y-shaped PET strip, which covered a layer 
of flexible rubber and a layer of halbach magnetic arrays. 
Finally, a copper layer (0.02 mm) was pasted on the surface 
of the as-fabricated flexible rubber as the positive tribo-
material by polyimide tape. It should be noted that both 
the magnetic rubbers on the stator and slider were divided 
into two parts (part I and part II). The magnetic array of 
part I is perpendicular to the sliding direction, while that 
of Part II is parallel to the sliding direction, by which the 
two tribo-layers were alternately pushed up and down in 
sliding process.

2.2  Characterization and Measurement

For electric signal test of the Ma-s-TS, a home-made 
hinge component [15] was fabricated to simulate the fin-
ger’s motion. A numerical controlled electric stepping 
motor was adopted to operate the Ma-s-TS. An electrom-
eter (Keithley 6514) was used to measure the voltage 
signal. NI USB-6356 (National Instruments Corporation) 
was used for multi-channel data collection. The software 
was constructed on LabVIEW platform for real-time data 
acquisition, analysis and control. A commercial robotic 
hand (LOBOT uhand, Shenzhen Hiwonder Technol-
ogy Co., Ltd.) was adopted in the real-time interaction 
system.

3  Results and Discussion

The structure follows a sliding mode as illustrated in Fig. 1. 
Figure 1a presents the structural scheme of the Ma-s-TS, 
which consists of an acrylic rectangular cavity and a slider. 
The multilayer structure from bottom to top is the acrylic 
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Fig. 1  Structure of the Ma-s-TS. a Schematic diagram and multilayer 
structure of the Ma-s-TS. The insets: developing photograph of the 
magnetic array on the substrate and slider. b Overall structure dia-
gram. c Magnetic array assisted contact-separation state (top and bot-
tom). d Photograph of an as-fabricated sensor (scale bar: 1 cm)

substrate, the magnetic stripe distributed in two vertical 
directions (part I and part II) in plane, the copper electrode 
divided into two parts, and the polytetrafluoroethylene 
(PTFE) surface. The slider also consists of two parts, which 
from bottom to top is the copper layer and the magnetic 
stripe distributed in same direction with the stator on each 
part. The insets show the developing photograph of the mag-
netic array on the substrate and slider. Left part forms an 
attractive track for stable sliding, while the right part forms 
the attraction–repulsion of magnetic pole in sliding. The 
operating principle is described later in Fig. 2. Figure 1b 
shows the overall structure diagram. Figure 1c shows the 
contact-separation state of the right part of slider and the 
stator in sliding process. In this process, the left part of slider 
is always in attraction state to the stator to form a stable slid-
ing track. Figure 1d shows the as-fabricated Ma-s-TS. The 
detailed fabrication process is presented in the Experimental 
Section.

The operating mechanism of the Ma-s-TS is illustrated in 
Fig. 2. Firstly, electrons transfer from the electrode layer to 
the FEP film owing to the different triboelectric polarities. 
And then, for part A, the slider separates from the stator 
under the repulsive force of the magnetic field when their 

magnetic properties are identical. Keeping sliding, the slider 
contacts with the stator under the attraction when their mag-
netic properties are different. At the same time, for part B, 
the slider is always attracted to the stator and slides along 
a straight line due to the magnetic pull. Thus, as shown in 
Fig. 2a, b, the alternating electric signals from the paired 
double electrodes in contact-separation state are a series of 
periodic narrow pulses in part A. For part B, the electrode in 
free-standing mode generates alternating wide-pulse signals 
in a sliding cycle. These two kinds of signals are coupled to 
form a series of positive/negative pulses representing the fin-
ger’s flexion/extension. To interpret the working principle, 
the potential distribution of part A electrode (top, Fig. 2c) 
and part B electrode (bottom, Fig. 2c) under open-circuit 
condition is simulated by COMSOL in four phases of an 
ordinary cycle. The actual measured open-circuit voltage 
of part A and part B and that of the coupled circuit can be 
referred to Fig. S2. Furthermore, corresponding to Fig. 2b, 
the load voltage signals out of part A and part B are individ-
ually measured to verify the working principle. Figure 2d–f 
shows the real signals detected from the two independent 
parts and the coupled circuit.

To quantitatively characterize the performance of the 
Ma-s-TS, a numerical controlled electric stepping motor is 
used to drive a hinge component to operate it [15]. To dem-
onstrate the pulse number representing the finger’s flexion/
extension degree, the stepping motor is set to rotate through 
different angles (54°, 72°, and 90°) at a rotation speed of 
0.375 rps. Meanwhile, the sequences of pulses generated by 
the Ma-s-TS are recorded, as illustrated in Fig. 3a–c, respec-
tively. The generated pulse number is linear to the rotation 
angle. Therefore, the pulse number represents the finger’s 
flexion/extension degree. To investigate the influence of 
rotation speed, the stepping motor is set to rotate through 
90° at different rotation speed (0.375, 0.50, and 0.625 rps). 
From Fig. 3d–f, it can be found that the total pulse number is 
a constant at the same rotation degree, which means through 
counting the pulse number the finger’s flexion/extension 
degree can be judged stably/accurately. In addition, through 
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calculating the number of pulses per unit time, the motion 
speed can also be determined. The influence of the thickness 
to sensing accuracy is also tested in Fig. S3, because differ-
ent thickness of magnetic stripe has different number of pole 
pairs. Meanwhile, the relationship between driving force and 
thickness also be explored in Fig. S4.

The output signal is a coupled signal of two parts of elec-
trode. Therefore, the area ratio of the two parts will affect the 
character of the output signal, hence further affect the back-
end interaction. The detailed features are studied as shown 
in Fig. 4. Figure 4a illustrates the area adjustment diagram of 
the copper electrode of part A and part B, which corresponds 
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Fig. 2  Operating-principle of the Ma-s-TS. a Schematics of electron transfer process in the sliding. b Schematics of output signal in sliding 
process. c COSMOL simulation of potential distribution under various states in sliding process. d–f Test output signal corresponding to Fig. 2b
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to narrow pulses and wide pulses, respectively. According to 
the test data, as shown in Fig. 4b, when area ratio of part B 
to part A increases, the motion speed response range shifts 
left. To further understand this feature, the test data of an 
area ratio of 0.8 is illustrated in Fig. 4c. Figure 4d–f is the 
enlarged signals of Fig. 4c at a low, medium, and high rota-
tion speed for a better understanding. From rotation speed 
of 0.25–1.75 rps, when the slider moves slowly, the positive/
negative narrow pulses are almost evenly distributed beside 
baseline and not be biased by the wide pulse from part B, 
hence hard to be distinguished (as shown in Fig. 4d). When 
the slider moves fast, the positive/negative narrow pulses 
are excessively biased by the wide pulse from part B and 
are hardly distinguished (as shown in Fig. 4f). For different 
response range requirements, in the state of slow sliding, a 
bigger area ratio of part B to part A helps getting a bigger 
bias (left shifts, Fig. 4b); while in the state of fast sliding, a 
smaller area ratio of part B to part A helps getting a smaller 

bias (right shifts, Fig. 4b). An ideal state in Fig. 4e shows 
that the best response range of the area ratio of 0.8 is around 
1.0 rps. Therefore, it is necessary to choose the area ratio of 
the two parts of Ma-s-TS according to the speed response 
range requirements in different applications.

Based on the features of the Ma-s-TS above, a real-time 
gesture interaction system is demonstrated as shown in 
Fig. 5. Figure 5a shows the Ma-s-TS worn on the fingers. In 
Fig. 5b, the positive/negative pulses represent extending and 
bending of fingers, respectively. The phases of the human-
robotic hand corresponding to the mark numbers in Fig. 5b 
are demonstrated in Fig. 5c. The motion of the robotic finger 
is totally/completely synchronous to the motion of human 
fingers in real-time. A real-time multi-directional continuous 
control of the robotic hand is demonstrated in Video S1. In 
this demonstrations, the real-time control can recover at any 
breakpoint in finger’s flexion/extension process. Besides, 
Ma-s-TS also showed good stability in multichannel control. 
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When some fingers bend, the other fingers are often driven 
unconsciously. And the unconscious movement will always 
produce a wrong cross talk signal. As demonstrated in Video 
S2, Ma-s-TS can suppressed the cross talk between differ-
ent channels effectively, benefitting from restriction of mag-
netic force to slider. Here, the cross talk between channels 
of the Ma-s-TS (Fig. 5e) is compared with previous joint 
motion triboelectric quantization sensor (Fig. 5d) [15]. The 
Ma-s-TS is more stable and thus the cross talk caused by 
finger linkage is suppressed, which is very important for 
achieving a stable real-time gesture interaction. Futhermore, 

the durability of Ma-s-TS also has been tested in Fig. S5. 
After 6,200 operation cycle (at the working frequency of 
0.5 Hz), the result shows that the normalized output declines 
to 84.6% due to intermittent contact. Besides, the output 
signal of previous work produced continuous narrow pulse 
signals based on the freestanding model is greatly affected 
after working for a long time. Hence, we also compared the 
durability of part A with previous work, as shown in Fig. 
S5b.
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4  Conclusions

In summary, a magnetic array assisted sliding triboelectric 
sensor has been proposed for achieving a real-time gesture 
interaction between a human hand and robotic hand. Through 
counting the positive/negative pulses that represent extend-
ing and bending of fingers, respectively, the degree, speed 
and direction of the fingers’ flexion/extension can be judged. 

Besides, the magnetic array assisted sliding structure con-
strains the sliding direction and translates the sliding motion 
into contact-separation, which greatly improve the stability, 
durability and low-speed signal amplitude. Based on these 
novelties, a real-time gesture interaction system has been 
established. Furthermore, this Ma-s-TS can be applied in other 
similar joint’s motion detection for a more natural, high-preci-
sion and real-time synchronous human-machine interaction.
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