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Dimensional Gradient Structure of  CoSe2@
CNTs–MXene Anode Assisted by Ether 
for High‑Capacity, Stable Sodium Storage

Enze Xu1, Pengcheng Li1, Junjie Quan1, Hanwen Zhu1, Li Wang2, Yajing Chang3, 
Zhenjie Sun1, Lei Chen1, Dabin Yu3 *, Yang Jiang1 *

HIGHLIGHTS

• Dimensional gradient structure of sheet–tube–dots was constructed with  CoSe2@CNTs–MXene for fast ion and electron transporta-
tion.

• Density functional theory study discloses the electrochemical difference of  CoSe2@CNTs–MXene in ether/ester electrolyte system.

• Phase transformation of  CoSe2@CNTs–MXene was analyzed by in situ XRD. The full cell based on  CoSe2@CNTs–MXene anode 
was also assembled.

ABSTRACT Recently, abundant resources, low-cost sodium-ion bat-
teries are deemed to the new-generation battery in the field of large-
scale energy storage. Nevertheless, poor active reaction dynamics, 
dissolution of intermediates and electrolyte matching problems are 
significant challenges that need to be solved. Herein, dimensional gra-
dient structure of sheet–tube–dots is constructed with  CoSe2@CNTs–
MXene. Gradient structure is conducive to fast migration of electrons 
and ions with the association of ether electrolyte. For half-cell,  CoSe2@
CNTs–MXene exhibits high initial coulomb efficiency (81.7%) and 
excellent cycling performance (400 mAh g−1 cycling for 200 times in 
2 A g−1). Phase transformation pathway from crystalline  CoSe2–Na2Se 
with Co and then amorphous  CoSe2 in the discharge/charge process is 
also explored by in situ X-ray diffraction. Density functional theory 
study discloses the  CoSe2@CNTs–MXene in ether electrolyte system 
which contributes to stable sodium storage performance owing to the strong adsorption force from hierarchical structure and weak inter-
action between electrolyte and electrode interface. For full cell,  CoSe2@CNTs–MXene//Na3V2  (PO4)3/C full battery can also afford a 
competitively reversible capacity of 280 mAh g−1 over 50 cycles. Concisely, profiting from dimensional gradient structure and matched 
electrolyte of  CoSe2@CNTs–MXene hold great application potential for stable sodium storage.
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1 Introduction

Recently, emerging sodium-ion batteries (SIBs) have 
been deemed to be the new-generation battery for large-
scale energy storage applications benefitting for abundant 
resources, low cost and low standard hydrogen potential 
(− 2.71 V) [1–4]. In the last ten years, researchers have 
developed a great variety of anode electrode materials and 
different kinds of cathode materials for SIBs [5, 6]. Mean-
while, advanced SIBs systems, such as Na–S, Na–metal and 
Na–O2 batteries, have also achieved prominent energy den-
sity in the effort of researchers [7–9]. However, owing to its 
large ionic radius (1.02 Å) compared to Li ion (0.76 Å) and 
dense molar mass, poor reaction kinetics, bad rate perfor-
mance and weak cycling performance limit the large-scale 
application of SIBs [10]. Therefore, constructing high spe-
cific capacity anode materials with good reaction kinetics 
is an effective method to build extraordinary energy den-
sity sodium-ion full cells. Meanwhile, appropriate electro-
lyte systems are another way to ensure long-term and high 
cycling performance for full batteries. So, it is necessary 
to develop compatible electrode materials and electrolyte 
system to promote the application of SIBs.

Transition metal chalcogenides (TMCs), a kind of nar-
row/zero bandgap materials with low cost, high electric 
conductivity and unique electrochemical properties, have 
been widely investigated as the potential active materials 
for alkali-ion batteries [11–14]. In most cases, pulveriza-
tion caused by huge volume change and dissolution of inter-
mediate in electrochemical processes leads to poor cycling 
performance. A generic strategy is encapsulating TMCs in 
functionalized carbon transferred from metal–organic frame-
works (MOFs) [15]. MOFs can provide high surface area and 
controllable microstructure. After carbonization and sele-
nylation process, the hollow functionalized carbon shell can 
tolerate tremendous phase change stress [16]. Meanwhile, 
heterogeneous element-doped carbon shell can also restrain 
the dissolution of sodium selenide in electrolyte [17]. Xu 
et al. synthesized ZnSe/N-doped hollow carbon architec-
tures for SIBs with a revisable capacity of 250.8 mAh g−1 
at 1 A g−1 exhibiting excellent stability [18].  CoSe2@N-CF/
CNTs can give a capacity of 428 mAh g−1 at 1 A g−1 after 
cycling for 500 times [19]. Synergistic effect in hierarchical 
gradient structure can greatly enhance electron/ion diffusion, 
as well as carbon shell encapsulation strategy can guarantee 
the stabilization of active materials and impede the strain 

during electrochemical processes. Therefore, constructing 
hierarchical structure of TMCs transferring from MOFs is a 
potential method to acquire high-performance sodium-ion 
anode materials.

Electrolyte, an ion conductor, is another critical compo-
nent of the rechargeable battery system [20]. Common car-
bonate ester-based solvents such as ethylene carbonate (EC) 
and propylene carbonate (PC) are widely applied in SIBs. 
These electrolyte systems can obtain high ionic conductivity, 
wide electrochemical window and stable solid electrolyte 
interphase (SEI) film on the surface of electrode materials 
[21]. However, low initial coulombic efficiency (ICE), poor 
cycling stability and the dissolution of reaction intermediate 
are severe challenges that need to be addressed. Compared 
with LIBs, the working voltage is usually lower than 4 V, 
which makes it possible for the adoption of ester electro-
lyte system [22]. On the other hand, the ester-based electro-
lyte can significantly improve ICE and rate performance of 
SIBs [23, 24]. Transition metal sulfides (TMDC) like ZnS 
showed a superior rate capability and outstanding long-term 
cyclability assisted by ether electrolyte [25].  Cu2MoS4–RGO 
exhibited excellent cycling stability (215 mAh g−1 after 
2000 cycles) and good full cell performance (75.5% after 
500 cycles) [26].

Herein, we report a dimensional gradient structure build-
ing with  CoSe2@CNTs–MXene anode materials for SIBs by 
exploiting a  NaPF6 in a new DEGDME electrolyte system. 
Cobalt (Co)–MOFs are deposited on the MXene by an easy 
coprecipitation method. Carbon nanotubes (CNTs) grow on 
the surface of MXene in the catalysis of Co particles, fol-
lowed by selenylation process. MXene, acting as the flexible 
matrix, not just promotes the fast ion and electronic trans-
mission by constructing a “sheet–tube–dots” hierarchical 
structure, but also impedes the dissolution of  Na2Se in elec-
trochemical processes. The  CoSe2@CNTs–MXene in ether 
electrolyte maintains an outstanding cycling performance 
of 400 mAh g−1 after 200 cycles at 2 A g−1 with a high ICE 
of 81.7% and excellent rate stability of 347.5 mAh g−1 at 
5 A g−1, which is much better than electrochemical behav-
iors in ester system (only 27 mAh g−1 for 200 cycles). The 
great electrochemical contrast of  CoSe2@CNTs–MXene 
in disparate electrolyte systems is evidenced by DFT cal-
culations. Meanwhile, phase transformation of  CoSe2@
CNTs–MXene in the first cycle was successfully analyzed by 
in situ XRD and dynamic electrochemical impedance spec-
troscopy (EIS) analysis. Importantly,  CoSe2@CNTs–MXene 
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and  Na3V2  (PO4)3/C full cell is assembled, delivering out-
standing cycle performance with a capacity of 280 mAh g−1 
after 50 cycles at 100 mA g−1.

2  Experimental Section

2.1  Materials

2-Methylimidazole, Co (NO)3 6H2O, methanol, LiF and HCl 
were purchased from Shanghai Aladdin Bio-Chem Technol-
ogy Co., Ltd.  Ti3AlC2 powders were purchased from Jilin 
11 Technology Co. Ltd., China. All chemical reagents were 
used without further purification. The ultrapure water was 
used throughout the experiment process.

2.2  Synthesis of  Ti3C2Tx MXene Nanosheets

Firstly, 1 g LiF was dissolved in 10 mL 9 M HCl at room 
temperature. Then, 1 g  Ti3AlC2 powders were added into 
LiF/HCl solution for 10 min to avoid overheating. The 
next, mixed solution was transferred into a Teflon autoclave 
and kept at 60 ℃ for 24 h. After cooling to room tempera-
ture, the etching product was washed with 3 M HCl and 
ultrapure water successively, until the pH of solution reached 
7. Finally, the black jelly was sonicated in water under the 
protection of argon for 2 h and centrifuged at 3500 rpm. The 
concentration of final obtained  Ti3C2Tx MXene nanosheets 
colloidal solution was about 8 mg mL−1.

2.3  Synthesis of  CoSe2@CNTs–MXene

In a popular method, 0.6 mmol Co (NO)3·6H2O and 10 mL 
MXene colloidal solution were mixed in 40 mL methanol. 
Then, 6 mmol 2-methylimidazole in 50 mL methanol with 
12 μL triethylamine was poured into the above solution 
followed by stirring continuously for 1 h. After washing 
with methanol, the ZIF-67@MXene was dried in vacuum 
at 80 ℃ for 12 h. Next, ZIF-67@MXene was annealed 
under Ar/H2 atmosphere at 700 ℃ for 2 h with a heating 
rate for 2 ℃ min−1, the Co@CNTs–MXene. At last, Co@
CNTs–MXene was mixed with Se powder at a weight ratio 
of 1:3 and heated under Ar atmosphere at 500 ℃ for 3 h. The 
preparation of  CoSe2@CNTs was synthesized by a similar 
method without MXene.

2.4  Materials Characterization

X-ray diffraction (XRD) was tested by Rigaku SmartLab 
SE with Cu Kα radiation (λ = 1.5406 Å). Thermogravimet-
ric analysis (TGA) was measured by STA 449 F5 Jupiter. 
Raman spectrum was obtained by LabRAM HR Evolution 
using 532-nm laser. The surface composition of samples 
was analyzed by X-ray photoelectron spectroscopy (XPS, 
ESCALAB250Xi). Morphology was acquired by a field 
emission scanning electron microscope (FESEM, ZEISS 
SIGMA) and a field emission transmission electron micro-
scope (FETEM, JEOL JEM-2100F); both of them were 
equipped with an EDX spectrometer (Oxford Instruments). 
In situ XRD was represented by a special electrochemical 
reaction unit with a beryllium (Be) window.

2.5  Electrochemical Measurements

For half-cell, active materials (AC), Super P and PVDF were 
stirred with a weight ratio of 8:1:1 by a high-speed homog-
enizer. The slurry was coated on copper foil with a scraper, 
and the mass load of AC is about 1.1 mg cm−2. Sodium foil 
and glass fiber (Whatman) were used as a counter electrode 
and a separator. Two different kinds of system ether (1 M 
 NaPF6 in DEGDME) and ester (1 M NaPF6 in PC) were 
adopted as electrolyte, respectively. And the ratio of electro-
lyte/electrode in the half-cell is about 10 uL mg−1. For full 
cell,  Na3V2 (PO4)3/C was adopted as cathode materials. The 
capacity matching was achieved by controlling the coating 
thickness and promoting the anode capacity having a 5–10% 
surplus compared with cathode capacity. The mass loading 
of cathode electrode slice is about 6 mg cm−2. Before assem-
bling full cell,  CoSe2@CNTs–MXene was activated for three 
cycles in advance. Cyclic voltammetry (CV) curves were 
obtained by CHI 660D workstation. A Neware BTS-4008 
system was employed for charge/discharge and rate perfor-
mance. Electrochemical impedance spectroscopy (EIS) was 
evaluated by using a Zahner IM6 system (0.01–105 Hz).

2.6  Computational Details

Quantum ESPRESSO v6.4.1 software packages were 
adopted for all density functional theory (DFT) calcula-
tion [27]. Perdew–Burke–Ernzerhof (PBE) in generalized 
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gradient approximation (GGA) considering van der Waals 
force (VDW) was employed to analyze the exchange func-
tional [28]. The kinetic energy cutoffs for the wavefunction 
were 60 Ry. 5 × 5 × 1 C–N surface and 3 × 3 × 1  Ti3C2O2 sur-
face built with a 20 Å vacuum region. A 3 × 3 × 1 k-point 
mesh of Brillouin zone was put to use. The binding energy 
(Ebind) of  Na2Se on different matrix could be calculated 
by Ebind = ENa2Se-matrix-ENa2Se-Ematrix. For all structure and 
adsorption models, the energy convergence accuracy was 
within 1 × 10–7 eV and 0.001 eV Å for force. Rietveld method 
was used to refine the XRD data of  Na3V2  (PO4)3/C [29].

3  Results and Discussion

3.1  Synthesis and Characterization of  CoSe2@CNTs–
MXene

CoSe2@CNTs–MXene was prepared by a universal strategy 
followed by carbonization and selenylation processes, which 

is displayed in Fig. 1a. Typically, single-layer  Ti3C2Tx was 
synthesized through a fluoride-based salt etchants method 
reported by Ghidiu [30, 31]. To avoid the oxidization of 
 Ti3C2Tx during usage, appropriate sodium L-ascorbate was 
added in the colloidal solution [32]. XRD patterns (Fig. S1) 
indicate successful synthesis of  Ti3C2Tx MXene. Micro-
structure of single-layer  Ti3C2Tx characterized by TEM 
is shown in Fig. S2, and the individual  Ti3C2Tx MXene 
looks ultrathin and transparent, with a size range from 100 
to 700 nm [33]. Selected area electron diffraction (SAED) 
patterns reveal excellent crystallinity and unique hexago-
nal structure of single-layer  Ti3C2Tx MXene [34]. Then, 
ZIF-67 nanocubes were prepared through a conventional 
co-precipitation method at ambient temperature [35]. SEM 
images of ZIF-67 (Fig. 1b) exhibit homogeneous octahe-
drons with a diameter of 150–250 nm. For ZIF-67/MXene, 
ZIF-67 with an average size of 25 nm covered the entire 
surface of MXene (Fig. 1c, d) evenly under the effect of 
electrostatic interaction [36]. The growth of ZIF-67 could 

Fig. 1  a Synthesis scheme of  CoSe2@CNTs–MXene. b SEM image of ZIF-67. c SEM image of ZIF-67/MXene. d TEM image of ZIF-67/
MXene. e SEM image of Co/CNTs-MXene. f TEM image of  CoSe2@CNTs–MXene. g HRTEM image of  CoSe2@CNTs–MXene
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well impede the reunion of MXene benefitting for construc-
tion the conductive network. XRD analysis in Fig. S3 also 
clearly shows the similarity between ZIF-67 and ZIF-67/
MXene. After annealing treatment at 800 ℃ under Ar/H2 
atmosphere, a novel “tube-on-nanosheet” structure of Co@
CNTs–MXene was obtained (Fig. 1e). CNTs with hundreds 
of nanometers grew neatly on the surface of MXene.  Co2+ 
ions were reduced to elemental cobalt (ICPDS No.15–0806) 
under the effect of  H2 (Fig. S4). Pure cobalt nanoparticles 
constantly catalyze the growth of carbon nanotubes during 
the carbonization process of ZIF-67 [37]. The final product 
 CoSe2@CNTs–MXene was acquired after selenylation at 
500 ℃ for 3 h, as displayed in Fig. 1f, g.  CoSe2 particles 
were encapsulated on the top of CNTs. Two crystal inter-
planar spacings, 0.253 and 0.319 nm, could be well fitted 
with the (221) of  CoSe2 and (103) of carbon, respectively. 
The elemental mapping of  CoSe2@CNTs–MXene is also 
displayed in Fig. S5. For comparison,  CoSe2@CNTs was 
also prepared without the addition of MXene (Fig. S6). The 
construction of a “sheet–tube–dots” hierarchical structure 
can significantly enhance the transport of electrons and 
sodium ions.

The XRD patterns of  CoSe2@CNTs and  CoSe2@
CNTs–MXene are displayed in Fig. 2a. Both of them clearly 
show a single-phase composition of cubic  CoSe2 (ICPDS 
no. 65–3327, space group: Pa 

-

3 ). No additional reflection 
appearing in the spectrogram means the high purity of prod-
ucts. At the same time, characteristic peaks of MXene at 
5–10° could not be found in the diagram. This phenomenon 
indicates MXene has been evenly dispersed in  CoSe2@
CNTs–MXene. Raman spectroscopy (Fig. 2b) of  CoSe2@
CNTs–MXene shows two peaks at 186 and 673  cm−1, 
respectively, owning to the  Ag and  A1g modes for  CoSe2. 
Some tiny peaks near 500 cm−1 can be attributable to the 
slight oxidation of  CoSe2 surface. D and G peaks for sp3 and 
sp2 carbon are situated at 1345 and 1586 cm−1, respectively. 
The ID/IG scale is about 1.07, indicating a good degree of 
graphitization, which is conducive to the transfer of elec-
trons and sodium ions.

TGA of  CoSe2@CNTs–MXene was tested in hot air from 
25 to 800 ℃ with a heating rate of 10 ℃  min−1, as shown in 
Fig. 2c. The mass increases between 400 and 500 ℃ owing 
to the formation of  SeO2 and oxidization of MXene, respec-
tively. The primary mass loss after 600 ℃ contributes to the 
transformation from  CoSe2 to  Co3O4 and the sublimation 
of  SeO2 [19]. Based on the above TGA tests, the calculated 

mass percentage of  CoSe2 in  CoSe2@CNTs–MXene is 
about 63%. XPS was measured to invesitage chemical states 
of CoSe2@CNTs–MXene, total spectrogram of  CoSe2@
CNTs–MXene (Fig. 2d) is clearly observed the coexistence 
of Co, Se, Ti, C and N, relatively.  Figure 2e–i exhibits the 
fine spectrogram of Co 2p, Se 3d, Ti 2p, C 1 s and N 1 s, 
respectively. The signal of Co 2p (Fig. 2e) shows two broad 
peaks locating at 781.1 and 797.2 eV corresponding to Co 
 2p3/2 and Co  2p1/2. Peaks at 778.4 and 793.7 eV can be cor-
responded to the Co–O bond due to the surface oxidiza-
tion of  CoSe2 [38]. Owing to the orbital between Co atoms 
and Se atoms, two satellite peaks also can be found in the 
spectrogram [35]. The Se 3d spectra (Fig. 2f) can be split 
into two main peaks at 54.5 and 55.4 eV for Se  3d5/2 and Se 
 3d3/2, respectively. Peaks between 57 and 62 eV belong to 
the existence of  CoSe2 and  SeO2 [39]. In the high-resolution 
Ti 2p spectra (Fig. 2g), peaks at 458.55 and 464.3 eV cor-
respond to Ti  2p3/2 and Ti  2p1/2 [40]. For C 1 s in Fig. 2h, 
three peaks locating at 284.8, 286.6 and 287.55 eV can be 
assigned to sp2 C, C–O and C = O, respectively. Peaks from 
left to right for N 1 s are attributed to graphitic, pyrrolic and 
pyridinic nitrogen, in turn [18].

3.2  Electrochemical Performance of  CoSe2@CNTs–
MXene

The unique structure of  CoSe2@CNTs–MXene makes it 
a promising application in energy storage fields. Electro-
chemical performances of  CoSe2@CNTs–MXene were 
investigated by assembling half-cell countering with 
sodium foil. Cyclic voltammetry (CV) curves of  CoSe2@
CNTs–MXene (Fig. 3a) in ether electrolyte were measured 
in 0.1–3 V at a scan rate of 0.1 mV s−1. In the first dis-
charge, a broad cathodic peak at 1.065 V corresponds to the 
insertion of sodium ion into  CoSe2, leading to the forma-
tion of  NaxCoSe2. With further discharge,  NaxCoSe2 was 
eventually broken into  Na2Se and Co till to 0.1 V. Then, 
in the anodic process, peaks locating at 1.7–2.0 V stand 
for  Na2Se, which regenerated to amorphous  CoSe2 clus-
ters [38, 41, 42]. For comparison, CV curves of  CoSe2@
CNTs are also displayed in Fig. S7. In order to reveal the 
electrochemical reaction progress of the first cycle, in situ 
XRD was also tested, which is displayed in Fig. 4. When 
the voltage decreased from 2.0 to 1.0 V, diffraction peaks of 
 CoSe2 at 30.5°, 34.2° and 37.6° gradually vanished. At this 
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stage, sodium ion embedded into  CoSe2 and further formed 
 NaxCoSe2. With the voltage down to 0.1 V,  NaxCoSe2 was 
decomposed completely and peaks of  Na2Se became appar-
ent. In the charging process,  Na2Se has sloughed the sodium 
ion and transformed to  CoSe2 again. Reaction processes can 
be described as Eqs. 1 and 2:

Due to the highly disordered structure of  CoSe2 in 
charge course, the characteristic peaks of  CoSe2 cannot 

(1)CoSe
2
+ xNa

+ + e
−
↔ Na

x
CoSe

2

(2)Na
x
CoSe

2
+ (4 − x) Na+ ↔ Co + Na

2
Se.

be discovered in the spectra. In order to illustrate this 
mechanism clearly, ex situ Raman was measured. After 
charging to 3 V, the characteristic peak of  CoSe2 is found 
in Fig. S8. All these pieces of evidence can prove the 
 CoSe2–Na2Se–CoSe2 conversion process.

Figure  3b exhibits the CV graphs of  CoSe2@
CNTs–MXene in the ester environment, which presents 
a distinct electrochemical process. The cathodic peak in 
0.8 V in the first cycle shifts left about 0.26 V than ether 
electrolyte, and a loose anodic peak exists around 2 V. 
However, reaction peaks could not fit commendably and 
disappeared gradually after the second cycle. Galvanostatic 
charge/discharge profiles of  CoSe2@CNTs–MXene in ether 
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at a current of 2 A g−1 are shown in Fig. 3c. In the first 
cycle, the discharge/charge capacities can be evaluated to 
397.5/324.6 mAh g−1, with high coulombic efficiency (CE) 
about 81.7%. Irreversible capacity loss in the first cycle can 
be attributed to the generation of solid electrolyte interface 
(SEI) film. At the same time, the plateaus in discharge/
charge processes can exhibit well fitness with CV curves. 
Reversible capacity for  CoSe2@CNTs–MXene in ether 
retains at 315.7, 317.2, 346.6, 376.8 and 397.7 mAh g−1 
after 2nd, 3rd, 20th, 50th and 100th cycles, with a CE of 
about 99.8%. Continuous capacity increase benefits from 
the improvement in electrode wettability and capacitance 
effect in electrochemical processes. On the other hand, 
a great deal of capacity loss was observed at  CoSe2@

CNTs–MXene in ester; discharge/charge capacities in the 
first cycle are 413/223.9 mAh  g−1 with a low CE of 54.2% 
(Fig. 3d). Side reactions of electrolyte and serious dissolu-
tion of selenide lead to the low coulombic efficiency in the 
first cycle. Reversible capacity after 2nd, 3rd, 20th, 50th and 
100th cycles is only 143.5, 122.9, 56.8, 40 and 31 mAh g−1, 
respectively. With the cycle proceeding in progress, dis-
charge/charge plateaus disappear gradually and only matrix 
materials contributive capacity exists after 200 cycles. Cycle 
performances of  CoSe2@CNTs–MXene in the different elec-
trolyte systems at 2 A g−1 are displayed in Fig. 3e.  CoSe2@
CNTs–MXene in the ether can keep up a stable capacity at 
400 mAh g−1 after 200 cycles, which is vastly superior to a 
low capacity of 27 mAh g−1 for the electrode in ester. For 
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 CoSe2@CNTs and pure MXene, the revisable capacity is 
only 215.34 mAh g−1 after 200 cycles (Figs. S9 and S10), 
respectively. Rate performances of  CoSe2@CNTs–MXene in 
the ether (Fig. 3f) can obtain invertible capacities for 450.5, 
423, 391.5, 366 and 347.5 mAh g−1 at a current of 1, 2, 3, 
4 and 5 A  g−1, respectively, which is superior to some other 
MXene-based anodes (Table S1). All of these performance 
tests indicate  CoSe2@CNTs–MXene can exhibit great 
electrochemical properties in ether electrolyte. In order to 
explain the huge electrochemical performance discrepancy 
of  CoSe2@CNTs–MXene in different electrolyte systems, 
XPS investigation for C 1 s, O 1 s and F 1 s of anode mate-
rials (after the first cycle) is shown in Fig. S11. The SEI 
layer comprises sodium inorganic/organic complex, organic 
matter and fluoride. For ether, an obvious peak locating at 
686.7 eV can be contributed to the C–F bond. Such high 
fluorine content guarantees prominent mechanical strength 
of SEI layer, which can keep the cycling stability during 
electrochemical processes [7]. After cycling for 100 times, 
separators were disassembled for XPS analysis. Spectra in 
Fig. S12 can also verify the dissolution of selenide. A weak 

peak ranging from 58 to 60 eV can be found in the ester 
spectra, which belongs to selenide signals. In contrast, no 
signal was detected in the ether separator.

3.3  DFT Calculations

Density functional theory (DFT) was used to describe the 
polyselenide shuttling constraint mechanism in different 
electrolytes. The space group of cubic  CoSe2 (Fig. 5a) is Pa 
-

3 , which can be well fitted with XRD data. Band structure 
of  CoSe2 demonstrates its metallic behavior and outstanding 
electron conductivity. For MXene, the bandgap of  Ti3C2O2 
is only 0.3 eV. In our previous research, sodium ion can 
migrate easily on the surface of MXene.  CoSe2 nanopar-
ticles, carbon nanotubes and MXene nanosheets together 
construct a spot–line–surface system that contributes to 
the ultrafast kinetics for ion transport and electron conduc-
tion. The lowest unoccupied molecular orbital (LUMO) and 
highest occupied molecular orbital (HOMO) of propylene 
carbonate (PC) and bis (2-methoxy ethyl) ether (DEGDME) 
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are shown in Fig. S13. Energy gaps of PC and DEGDME 
are 6.0363 and 5.2606 eV, respectively; both of them can 
satisfy the requirement of SIBs. Relaxed adsorption geome-
tries of  Na2Se/PC,  Na2Se/DEGDME,  Na2Se/C-N and  Na2Se/ 
 Ti3C2O2 are demonstrated in Fig. 5e–h. The binding energy 
between PC, DEGDME and  Na2Se is 0.69 and 0.6 eV. It 
follows that PC as the electrolyte solvent has an interaction 
with sodium selenide. DFT calculation further confirmed the 
binding strength of  Na2Se on C–N nanosheet is only 0.62 eV. 
So, when  NaxCoSe2 transferred into  Na2Se and pure Co in 
the first discharge process, abundant  Na2Se dissolved in the 
electrolyte, leading to the low initial coulombic efficiency 
and serious capacity loss. Charge density difference of 
 Na2Se on  Ti3C2O2 (Fig. S14) shows an electron-loss region 
around selenium atoms and an electron-rich region around 
MXene surface. Exposed Ti atoms and O atoms on MXene 
could capture electrons from selenium atoms under the effect 
of the Lewis acidity property [43]. Ti–Se bond and Se–O 
bond guarantee  Na2Se can be anchored tightly (2.04 eV) on 
the surface of MXene [42]. The enormous binding energy 

prevents the dissolution of  Na2Se in the process of electro-
chemical processes, which is in good agreement with experi-
mental results.

3.4  Kinetics Analysis of  CoSe2@CNTs–MXene

Capacitive/diffusion behavior analysis, galvanostatic 
intermittent titration technique (GITT) and electrochemi-
cal impedance spectroscopy (EIS) are adopted to inves-
tigate the excellent electrochemical kinetics of  CoSe2@
CNTs–MXene in detail. The cathode and anode peaks of 
 CoSe2@CNTs–MXene (Fig. 6a) at different scan rates 
(from 0.5 to 2.5 mV s−1) show no significant deviation and 
can be repeatable at a high scan rate. This evidence can 
also explain the reason for outstanding rate performances 
of  CoSe2@CNTs–MXene. The plot log (i) against log (v) 
and the fitting line are displayed in Fig. 5b. Calculation 
formulas of the capacitive contribution are Eqs. S1 and 
S2 described detail in supporting information. Capacitive 
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contribution for specific capacity is 47.6, 56.2, 61.2, 64.5 
and 67%, respectively, under the scan rate of 0.5, 1.0, 1.5, 
2.0 and 2.5 mV s−1 (Fig. 6c). Higher contribution of capac-
itance at high scan rate is conducive to favorable cycle 
and rate properties [44, 45]. Diffusion stability of sodium 
ion in  CoSe2@CNTs–MXene under different electrolytes 
could get further insight by GITT. Figure 6d shows the 
discharge curve from 3.0 to 0.1 V under an identical cur-
rent of 100 mA g−1 for 5 min followed by a relaxation step 
for 30 min until the cutoff voltage. The ether battery shows 
evident cycling stability than ester than the good reaction 
kinetics of  CoSe2@CNTs–MXene in ether electrolyte. 

Electrochemical impedance spectroscopy analysis of 
 CoSe2@CNTs–MXene in different electrolytes was also 
explored. Nyquist plots of  CoSe2@CNTs–MXene in ether 
and ester are displayed in Fig. 6e–f. EIS of  CoSe2@CNTs 
was also tested (Fig. S15). EIS curves can be divided into 
three parts, inductive reactance and semicircle related to 
the resistance of electrode in high-frequency region and 
the linear part for ion diffusion in low frequency [46]. 
Both curves can be well fitted with the classic equiva-
lent circuit model as shown in Fig. S16. Charge-transfer 
resistance between interfaces for  CoSe2@CNTs–MXene in 
ether is 9.77 Ω, which is much lower than the ester system 
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(239 Ω). Other parameters are also listed in Table S2. 
This phenomenon also proves the favorable invasion at 
interface. Low resistance for the interface of electrode and 
electrolyte contributes to high sodium-ion diffusion rate 
during electrochemical processes. Dynamic EIS analysis 
of  CoSe2@CNTs–MXene in different kinds of electrolyte 
at first discharge/charge cycle (Fig. S17) can also prove the 
excellent reaction kinetics of ether. The addition of MXene 
can also improve interface situations owing to the contact 
of the solid–liquid interface.

3.5  Full Cells Evaluation of  CoSe2@CNTs–MXene

To confirm the application value of  CoSe2@CNTs–MXene 
as the anode in SIBs,  Na3V2  (PO4)3/C cathode and 
 CoSe2@CNTs–MXene anode full cell was assembled 
with  NaPF6 in DEGDME as the electrolyte (Fig. 7c). The 
synthesis strategy of  Na3V2 (PO4)3/C was reported in our 
previous work [47]. Figure 7a displays the experimental 
XRD pattern and calculated data of  Na3V2 (PO4)3, with 
low Rwp (5.7%) and Rp (4.4%), indicating the high purity of 
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 Na3V2 (PO4)3 phase. Lattice parameters of  Na3V2 (PO4)3 
are a = 8.712798 Å, b = 8.712798 Å, c = 21.804346 Å with 
α = 90°, β = 90°, λ = 120° (R-3c), respectively, which can 
greatly match with preceding literature. Capacity–voltage 
curve of  Na3V2 (PO4)3/C at the first cycle (Fig. 7b) shows 
the voltage plateau is at 3.4 V and  Na3V2(PO4)3/C can pro-
vide an 80 mAh g−1 at 100 mA g−1 after 50 cycling periods 
(Fig. S18). For  Na3V2 (PO4)3/C//CoSe2@CNTs–MXene 
full sodium-ion batteries, the cell can provide an initial 
charge/discharge capacity (Fig. 7d), 401 and 331 mAh g−1, 
under the current of 100 mA g−1, respectively, from 0.5 
to 3  V (based on the weight of anode). Beyond that, 
the full cell can obtain an invertible capacity of about 
280 mAh g−1 after 50 cycles (Fig. 7e), indicating the good 
application prospect in energy storage fields.

4  Conclusions

Dimensional gradient structure of  CoSe2@CNTs–MXene 
transferred from ZIF-67/MXene has been successfully 
designed. A particular “sheet–tube–dots” hierarchical struc-
ture can greatly promote the fast ion/electronic transmission 
and keep the stability of  CoSe2 nanoparticles. Meanwhile, 
electrochemical performances of  CoSe2@CNTs–MXene in 
two-electrode systems, ether/ester electrolyte systems were 
systematically explored.  CoSe2@CNTs–MXene in ether 
exhibits outstanding cycling properties which can obtain 
400 mAh g−1 after 200 cycles at 2 A g−1 with a high ICE 
of 81.7%, and excellent rate stability of 347.5 mAh g−1 at 
5 A g−1 is much better than electrochemical behaviors in 
ester system (only 27 mAh g−1 for 200 cycles). Transfor-
mation mechanisms of  CoSe2 were also explored by in situ 
XRD and ex situ Raman. Density functional theory study 
discloses that the  CoSe2@CNTs–MXene in ether electrolyte 
system contributes to stable sodium storage performance 
owing to the strong adsorption force from hierarchical struc-
ture and weak interaction between electrolyte/electrode. For 
full cell,  CoSe2@CNTs–MXene//Na3V2 (PO4)3/C can also 
afford a reversible capacity of 280 mAh g−1 over 50 cycles 
at a current of 100 mA g−1. Briefly, unique dimensional 
gradient structure and suitable electrolyte design promote 
potential application of  CoSe2@CNTs–MXene in sodium 
storage fields.
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