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Single‑Atom Cobalt‑Based Electrochemical 
Biomimetic Uric Acid Sensor with Wide Linear 
Range and Ultralow Detection Limit
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HIGHLIGHTS 

• A single-atom catalyst of A–Co–NG is explored for electrochemical uric acid (UA) detection for the first time and realize practical 
UA monitoring in serum samples.

• The A–Co–NG sensor demonstrates high performance for UA detection with a wide detection range from 0.4 to 41950 μM and an 
extremely low detection limit of 33.3 nM.

• Combination of experimental and theoretical calculation discovers mechanism for the UA oxidation on the single-atom catalyst.

ABSTRACT Uric acid (UA) detection is essential in diagnosis of arthritis, 
preeclampsia, renal disorder, and cardiovascular diseases, but it is very chal-
lenging to realize the required wide detection range and low detection limit. 
We present here a single-atom catalyst consisting of  Co(II) atoms coordinated 
by an average of 3.4 N atoms on an N-doped graphene matrix (A–Co–NG) to 
build an electrochemical biomimetic sensor for UA detection. The A–Co–NG 
sensor achieves a wide detection range over 0.4–41,950 μM and an extremely 
low detection limit of 33.3 ± 0.024 nM, which are much better than previ-
ously reported sensors based on various nanostructured materials. Besides, 
the A–Co–NG sensor also demonstrates its accurate serum diagnosis for 
UA for its practical application. Combination of experimental and theoreti-
cal calculation discovers that the catalytic process of the A–Co–NG toward 
UA starts from the oxidation of Co species to form a  Co3+–OH–UA*, followed by the generation of  Co3+–OH + *UA_H, eventually leading to 
N–H bond dissociation for the formation of oxidized UA molecule and reduction of oxidized  Co3+ to  Co2+ for the regenerated A–Co–NG. This 
work provides a promising material to realize UA detection with wide detection range and low detection limit to meet the practical diagnosis 
requirements, and the proposed sensing mechanism sheds light on fundamental insights for guiding exploration of other biosensing processes.
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1 Introduction

Uric acid (UA) is the metabolization of purine alkaloids [1, 
2], and is recognized as an important biomarker for diseases 
such as arthritis, preeclampsia, renal disorder, and cardio-
vascular diseases [3–6]. The realization of UA detection is 
essential in diagnosing the diseases discussed above. Various 
methods have been developed for diagnosis of UA, which 
includes colorimetric enzymatic assays [7], liquid chroma-
tography [8], capillary electrophoresis methodologies [9], 
surface enhanced Raman scattering [10], and electrochemi-
cal method [11]. Among these methods, electrochemical 
detection offers simplicity in operation, fast response, high 
sensitivity, low cost, and potential in miniaturization. Cur-
rently developed electrochemical UA sensors are always 
based on enzymes such as uricase that have high cost, poor 
stability and harsh storage conditions [12, 13]. The enzyme 
sensors involve complex steps of UA decomposition to form 
allantoin and  H2O2, which are subsequently catalyzed to 
realize detection [14], restricting the clinical applications. 
More critically, UA concentrations have a very wide range in 
human bodies [15]. For example, the normal concentration 
range of UA in human blood is 15 to 80 mg  L−1. While for 
people suffers from the urate nephropathy and gout infec-
tion, the UA in human blood is as low as 6 mg  L−1. Moreo-
ver, UA levels in kidney stones can vary widely from day 
to day. Thus, the realization of enzyme-free sensing of UA 
with wide detection range and low detection limit is critical 
in clinical applications for diagnosis of the related diseases.

Recent efforts have been spent in exploring nanostruc-
tured materials to replace enzyme in electrochemical 
detection of UA, and some examples are Prussian blue 
(PB)/N-doped CNTs [13], polyacrylamide-coated CNT 
[16], Au nanocrystals anchored on graphene oxide (GO) 
[17], mesoporous  Co3O4 [18], ZnO/Ag2O/Co3O4 [19], and 
g-Ce2S3-CNT [20]. Although they could overcome draw-
backs of enzyme-based sensors, the nanostructured materi-
als-based ones still suffer from relatively narrow detection 
range and poor detection limit. The relatively poor sens-
ing performance should be attributed to their low density 
of exposed active sites. Besides, nanostructured materials 
show an inhomogenous elemental composition and facet 
structure, resulting in different and complicated catalytic 
mechanisms. Single-atom catalysts (SACs) that are defined 
as atomically dispersive activity sites have demonstrated 

promising applications owing to their advantages of homo-
geneous active sites, high metallic atom utilization and 
fast catalytic kinetic [21–23], which could bridge the gap 
between natural enzyme and nanozyme and understand-
ing of the catalytic mechanism. SACs have been applied 
in various catalytic reactions since the report of Pt atoms 
on  FeOx with high CO oxidation activity [24]. In particu-
lar, as a kind of SACs, nitrogen-doped carbon supported 
SACs (e.g., Metal–Nitrogen–Carbon shorten as M–N–C) 
have attracted great attention very recently because of their 
large specific surface area, high active site density, and good 
electrical conductivity [25, 26]. By arranging N and metal 
atoms, the M–N–C SACs possess similar M–Nx active sites 
as natural metalloenzymes, enabling enzyme-like behaviors 
[27]. For example, a SAC of carbon nanoframe-confined 
 FeN5 single active centers behaves as oxidase-like activity 
toward 3,3′,5,5′-tetramethylbenzidine [28]. Considering the 
enzyme-like activity together with high active site density 
and good electrical conductivity, it is expected that M–N–C 
SACs could be used as functional materials in electrochemi-
cal detection of UA to achieve long detection range and low 
detection limit. Among the transition metal (Co, Mn, Fe, 
Ni, and Cu) SACs, Co-SAC has been reported to behave 
the optimal d-band centers, which can function as a highly 
active and selective catalyst [25]. Nevertheless, such a pos-
sibility has not been explored yet.

In this work, we present the fabrication of a M–N–C SAC 
comprising high-density and isolated cobalt atoms anchored 
on an N-doped graphene matrix (shorten as A–Co–NG), 
which is the first report of SACs in electrochemical sens-
ing of UA. Material characterizations, experiments and 
theoretical investigations are carried out to elucidate the 
structure, properties, enzyme-like electrochemical activ-
ity of A–Co–NG and catalytic mechanisms as well as sub-
strate affinity and corresponding reaction energies. Results 
showed the single Co atom nanozyme exhibits high intrin-
sic enzyme-like activity, fast response and good selectiv-
ity toward UA oxidation compared with that of recently 
reported works due to its abundant and efficient activity 
sites. Eventually, the A–Co–NG-based electrochemical sen-
sor shows a long detection range and low detection limit 
toward UA. This work demonstrates a great approach for 
rationally designing high-efficient biomimetic nanozymes 
while offering scientific insights for understanding of intrin-
sic physiochemical mechanism of single-atom nanozymes.
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2  Experimental Section

2.1  Materials

Graphene oxide was synthesized from graphite flakes using 
the improved Hummers method [29]. Sodium hydrox-
ide (NaOH), cobalt chloride  (CoCl2·6H2O), cobalt nitrate 
(Co(NO3)2·6H2O), cobalt acetate ((CH3COO)2Co), uric acid 
(UA), melamine, glutamic acid, ascorbic acid (AA), dopa-
mine (DA), sodium sulfate (Na2SO4), potassium chloride 
(KCl), glucose (Glu) sulfuric acid  (H2SO4), sodium nitrite 
 (NaNO2), potassium hydroxide (KOH), potassium ferricya-
nide  (K3[Fe(CN)6]), potassium ferrocyanide  (K4[Fe(CN)6]) 
and Nafion were purchased from Sigma-Aldrich. Nitric 
oxide (NO) was prepared through the reaction between 
 H2SO4 and  NaNO2 and purified with different concentra-
tions of KOH. Buffer solution was prepared using Mettler-
Toledo pH meter. All of the other chemical reagents were 
purchased from Sigma-Aldrich and used directly without 
further purification. Milli-Q water (resistivity over 18 MΩ 
cm) from a Millipore-Q water purification system was used 
in all experiments.

2.2  Apparatus

The crystal structure, morphology and chemical compo-
sition of the samples were analyzed by scanning electron 
microscopy (SEM, Zeiss Merlin, Germany), transmission 
electron microscopy (TEM, FEI F20, USA) and energy 
dispersive X-ray spectroscopy (EDS, JEOL JED-2300 
Analysis Station, Japan). X-ray photoelectron spectroscopy 
(XPS) measurements were carried out on an ESCALAB 
250Xi photoelectron spectrometer (Thermo Fisher Scien-
tific, USA) at 2.4 × 1010 mbar using a monochromatic Al Kα 
X-ray beam (1486.60 eV). All measured binding energies 
were referenced to the C 1s peak (284.60 eV) arising from 
the adventitious hydrocarbons.  N2 adsorption–desorption 
isotherms were conducted on an 3H-2000PS1 accelerated 
surface area and porosimetry system (Bei Shi De, China) at 
77 K using Barrett–Emmett–Teller (BET) calculations for 
the surface area. The pore size distribution plot was deter-
mined with the desorption branch of the isotherm on the 
Barrett–Joyner–Halenda (BJH) model. X-ray diffraction 
(XRD) was conducted at Bruker D8 advance (Germany). 
Electrochemical measurements were performed in 0.1 M 

NaOH (pH = 13) on a CHI 760e electrochemical workstation 
(CH Instruments, Chenhua Corp., China). Three-electrode 
setup was employed with Pt plate (1.0 × 1.0 cm2) and satu-
rated calomel electrode (SCE) as the counter and reference 
electrode, respectively. And a working electrode was pre-
pared by using different materials modified electrode. The 
metal contents of the catalysts were measured by ICP-MS, 
which were carried out by a Thermo Scientific iCAP6300 
(Thermo Fisher Scientific, USA). X-ray absorption spectra 
were collected at Shanghai Synchrotron Radiation Facility 
(SSRF) on beamline BL14W1. All the data were collected in 
the transmission mode at ambient temperature. Data analysis 
was performed with Artemis and IFEFFIT software [30, 31].

2.3  Synthesis of A–Co–NG

Initially, 250 mg GO was added into 100 mL deionized water 
under continue sonicating to prepare an aqueous suspension 
of GO. Then,  (CH3COO)2Co was added in GO suspension 
with a mole ratio as GO: Co = 125: 1, the mixture was soni-
cated for another 2 h, and subsequently mixed with 500 mg 
melamine through ball milling, followed by freeze-dried for 
at least 24 h. The dried sample was placed in the center of 
a standard 1-inch quartz tube furnace. After pumping and 
purging the system with argon three times, the temperature 
was ramped at 20 °C up to 800 °C for 2 h with a heating 
rate of 3 °C  min−1 under the feeding of argon at ambient 
pressure. The final product A–Co–NG with a blackish color 
was obtained after the furnace and permitted to cool to room 
temperature under argon protection. Particle Co metal modi-
fied NG (P–Co–NG) was synthesized with the same proce-
dure under a mole ratio of GO: Co as 50: 1.

2.4  Synthesis of  Co3O4/GO,  Co3O4 and NG

Co3O4/GO nanocomposites were synthesized by mixing 
20 mL 9 mg mL−1 GO with 3.6 mg  (CH3COO)2Co (with 
a molar ratio of GO: Co as 50:1) under intense stirring for 
30 min, then the mixture was added in 20 mL 0.1 M NaOH 
solution and stirred for another 30 min. The obtained solu-
tion was transferred into 100 mL autoclave with a Teflon 
liner at 180 °C, and kept for 24 h. The obtained product 
was filtered, and then washed with  H2O and ethanol for 
several times, then dried naturally in air.  Co3O4 nanomate-
rial was obtained with the same procedure without adding 
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GO solution [32]. Nitrogen-doped graphene (NG) was 
obtained by annealing melamine with glutamic acid under 
 N2 protection.

2.5  Fabrication of the Modified Electrode

To prepare the UA biosensor, a disk glass carbon electrode 
(GCE) with a diameter as 3 mm was applied as the substrate, 
which was sequentially polished by 0.3 and 0.05 µm alu-
mina, followed by successive ultrasonication with distilled 
water and ethanol for 2 min until obtaining a mirror like sur-
face. Then, with aid of ultrasonic, 5.0 mg mL−1 A–Co–NG 
suspension was prepared applying ethanol and deionized 
water mixture (1:1) as a dispersing agent. Subsequently, 5 
µL A–Co–NG suspensions (25 µg) were dropped on clean 
GCE surface and dried in room temperature to obtain 
A–Co–NG/GCE. The thickness of the film was measured 
using SEM, showing a value of 14 ± 0.04 µM. The thick-
ness of the A–Co–NG film is quite uniform as confirmed by 
measuring different locations of the prepared electrode. The 
final electrode was applied to detect UA. For comparison, 
 Co3O4/GO/GCE,  Co3O4/GCE, NG/GCE, and P–Co–NG/
GCE were also prepared with same procedure for prepara-
tion of A–Co–NG/GCE.

2.6  Real Sample Detection

For real sample analysis, drug-free human serum samples 
were collected from healthy volunteers from Xinqiao Hos-
pital (Chongqing, China). All experiments were conducted 
in good compliance with the relevant laws and institutional 
guidelines. The serum samples were treated by centrifuga-
tion and filtration to remove large-size proteins, and then 
diluted 5 times with 0.01 M PBS. Then, standard addition 
method, commonly used to eliminate background effects 
on various sourced samples for measurement accuracy, was 
applied to conduct real sample detection. The method is 
performed by reading the electrochemical current responses 
of the serum samples, and then by measuring the current 
responses of the unknown sample with an amount of known 
standard added. In diagnosis, 250 µL diluted serum sample 
was added into 5 mL 0.1 M NaOH followed by adding 10 µL 
of 5 mM UA into the same serum sample to prepare a spiked 
one. The amperometric I−t measurements were performed 

before and after the addition of known concentrated UA with 
A–Co–NG/GCE, respectively. The recovery was calculated 
according the following equation:

C1 and C2 are concentrations of serum and spiked samples, 
respectively, which are calculated from the calibration curve. 
C3 stands for concentration of standard addition of UA.

2.7  Models and Computational Details for DFT

All the calculations in this work are carried within the 
framework of density functional theory (DFT) using the 
Vienna Ab initio Simulation Package (VASP) [33]. The 
exchange correlation energy was modeled by using the 
Perdew–Burke–Ernzerhof (PBE) functional within the 
generalized gradient approximation (GGA) [34]. Projec-
tor augmented wave (PAW) pseudopotentials [35] were 
used to describe ionic cores, while electron–ion interac-
tions were described by ultrasoft pseudopotentials. A 15 
Å vacuum was inserted in the z direction to prevent image 
interactions. The cutoff energy was 500 eV. To exclude the 
image effect in periodic models, a 6 × 6 supercell of gra-
phene with in-plane lattice parameters > 10 Å was used to 
construct models of Co-N4-doped and N-doped graphene. 
The k-point sampling employs a 3 × 3 × 1 mesh within the 
Monkhorst–Pack scheme [36]. For the calculation of reac-
tion intermediates, the van der Waals interaction is con-
sidered by the long-range interaction dispersive correction 
(DFT-D) method [37].

3  Results and Discussion

3.1  Structure Characterization of A–Co–NG

The A–Co–NG catalyst was prepared by absorbing 
 (CH3COO)2Co on GO and then mixing the composite with 
melamine through ball milling. Finally, the mixture was 
pyrolyzed in argon, as showed in Fig. 1a. SEM and TEM 
were applied to character its morphology and structure. 
The as-prepared A–Co–NG nanomaterial behaves a similar 
morphology feature to graphene with sheet-like structures 
with smooth surface (Fig. 1b, c). The referenced catalysts 
like P–Co–NG, NG,  Co3O4, and  Co3O4/GO composites were 
also characterized by SEM and TEM as shown in Figs. S1, 

Recovery =
(

C2 − C1

)

∕C3 × 100%
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S2. The homogeneous distributions of Co and N atoms 
are highlighted by the elemental mapping measurement 
(Fig. 1d), which indicates uniformly distribution of Co and 
N atoms throughout in carbon matrices. The HAADF-STEM 
image (Fig. 1e) exhibits isolated high-density bright spots 
distribute across the entire carbon framework in A–Co–NG, 
which corresponding to single Co atom has larger atomic 
mass than C. The content of Co atom in A–Co–NG is 1.03% 
determined by ICP (inset of Fig. 1e). The sizes of the bright 
spots are ~ 0.17 nm, and the statistic distance between adja-
cent bright spots (~ 0.46 nm) is larger, as shown in Fig. 1f. 
The atomic dispersion of Co atoms on graphene support was 
further confirmed by the XRD pattern. As shown in Fig. 1g, 
only (200) and (100/110) carbon diffraction peaks at 26.2° 
and 44.0° are observed, revealing no Co-derived particles or 

characteristic crystal peaks of Co are formed. Figure S3 dis-
played XRD patterns of P–Co–NG, NG,  Co3O4, and  Co3O4/
GO composites, from which typical crystal peaks of Co 
could be observed. BET investigation indicates A–Co–NG 
obtains a large surface area up to 816.108 m2  g−1 and numer-
ous mesopores with a mean pore size of 3.931 nm (Fig. S4).

The chemical composition and elemental states of Co 
atoms in samples were firstly investigated by XPS as shown 
in Figs. 2a, b and S5. The binding energy of Co  2p3/2 in 
A–Co–NG is at 789.6 eV, which slightly shift ~ 0.25 eV 
relative to the cobalt phthalocyanine (CoPc) (II), indicat-
ing similar valence states of Co for tow samples. From 
the high-resolution XPS N 1s spectrum of CoPc (II), the 
major peak at 398.85 eV was assigned to pyrrolic, which 
linked with Co atom. A–Co–NG was deconvoluted into 
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pyridinic (~ 398.05 eV), pyrrolic (~ 399.5 eV), quaternary 
(~ 401.15 eV), and oxidized (~ 402.3 eV) N species [38]. 
It could be deduced that pyridinic N mainly connected 
with Co atom in A–Co–NG from Fig. 2a. The chemical 
states of Co atoms in A–Co–NG was further investigated 
by the X-ray absorption spectra (XAS) (Fig. 2c, d). Fig-
ure 2c shows the K-edge X-ray absorption near edge spec-
tra (XANES) of A–Co–NG and reference samples. The 
rising edge of Co absorption for A–Co–NG is 7722.3 eV 
which is exactly same with that of CoPc, indicating +2 of 
oxidation state of Co atoms in the A–Co–NG. As shown 
in Fig. 2d, the coordination environment of Co atoms in 
the A–Co–NG was further analyzed by Fourier transform 
of extended X-ray absorption fine structure (FT-EXAFS), 
which shows only one strong shell (1.46 Å), that is 0.06 Å 
shorter than the Co–N (1.52 Å) bond in the CoPc (II) sam-
ple. Moreover, the features of Co–Co bond (~ 2.16 Å) for 
Co-foil and Co–C bond (~ 2.60 Å) for CoPc (II) are unde-
tectable in the A–Co–NG, confirming atomic dispersed 

and N atoms coordinated of Co atoms on graphene. The 
kind of backscattering atoms for the formation of peak 
at 1.46 Å of A–Co–NG was distinguished by analysis of 
the wavelet transform (WT) of the k3-weighted EXAFS 
spectrum. As shown in Fig. 2e, the A–Co–NG and CoPc 
(II) have the maximums intensity at the same k value (6.5 
Å−1), indicating the peak of first shell for A–Co–NG ori-
gin from same backscattering atoms as that of CoPc (II), 
that is N atoms. Moreover, the difference of bond length 
between two samples implies the N species with the Co 
atom in A–Co–NG is different with pyrrolic N in CoPc 
(II), which is in agree with the conclusion from differen-
tial of XPS N 1s between two samples. The FT-EXAFS 
of A–Co–NG and CoPc (II) was fitted by the Co-N path 
(Figs. 2f, S6 and Table S1), the coordination number is 
about 3.4. Based on the structural characterization and 
chemical state investigation, the Co atoms in A–Co–NG 
are atomic dispersed on graphene, in +2 valence state, and 
coordinated by about 3.4 N atoms, on average.
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3.2  Electrocatalytic Behaviors of A–Co–NG toward UA 
Oxidation

The oxidase-like activities of A–Co–NG were determined 
through electrochemical assays toward UA catalytic reac-
tion. Cyclic voltammetry (CV) curve (Fig. 3a black curve) 
shows a pair of defined redox peaks in 0.1 M NaOH solu-
tion (pH = 13) for A–Co–NG/GCE with oxidation and 
reduction peak potentials of 1.143 and 1.095 V versus 
RHE, respectively, which are in good agreement with 
the standard redox reaction potential of Co(II)/Co(III). 
After adding 400 μM UA into the 0.1 M NaOH solution 
(pH = 13), the oxidation current significantly increased, 
attributing to the oxidation of UA (Fig. 3a red curve). In 
addition, the response currents of A–Co–NG increases 
with the increase in UA concentration in a range of 0 
to 800 μM, as shown in Fig. S7, indicating an excellent 
performance of A–Co–NG nanozyme. Furthermore, we 
prepared a series of referenced catalysts like P–Co–NG, 
NG,  Co3O4/GO composites, and  Co3O4 for comparison. 
CV measurements reveal that P–Co–NG and NG show 
weak response toward UA oxidation without well-defined 
redox peaks,  Co3O4/GO and  Co3O4 can barely catalyze 

UA reaction (Fig. S8). The peak potential of UA oxida-
tion can be used to judge the intrinsic electrocatalytic 
activity of the UA sensing electrode. The more negative 
anodic peak potential, the higher electrocatalytic activ-
ity. Figures 3a and S8 show that the peak potentials of 
UA oxidation for A–Co–NG,  Co3O4, and P–Co–NG are 
0.16, 0.52, and 0.54 V, respectively, of which the oxida-
tion potential of A–Co–NG sensing anode is more nega-
tive than that of  Co3O4 and P–Co–NG by 0.36 and 0.38 V, 
respectively, clearly indicating that A–Co–NG electrode 
has much higher electrocatalytic activity than the latter 
two. Amperometric I − t response is applied to systemati-
cally study the oxidase-like activities of various catalysts 
as shown in Fig. 3b. The A–Co–NG nanozyme exhib-
its the highest oxidase-like activity with a sensitivity of 
301.6 μA  mM−1  cm−2. Besides, the experimental order of 
oxidase-like activity is A–Co–NG > P–Co–NG > Co3O4/
GO > Co3O4, indicating the intrinsic superiority of single-
atom nanozymes (Fig. 3c).

Effect of pH on performance of the A–Co–NG toward 
UA oxidation was investigated. Result in Fig. S9 shows 
that the response of A–Co–NG sensor increases with 
increase in the pH from 10 to 13, reaching the highest 
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response at pH 13. When the pH further increased to 14, 
the response decreases significantly. Thus, NaOH solution 
with pH of 13 was selected as the optimized condition for 
further investigation.

We further measured the cyclic voltammograms of 
A–Co–NG toward 500 μM UA in 0.1 M NaOH (pH = 13) 
at various scan rates form 0.03–0.4 V s−1. The anodic 
peak currents were found to be a linear function of the 
square root of scan rate with a linear regression equation 
as Ipa = 1.14 × 10−4 ν1/2–3.14 × 10−6 as shown in Fig. 3d. 
According to the relation of anodic peak current (IPa) 
versus square root of scan rate (ν1/2), an electron transfer 
number of 2 was obtained in terms of the equation [39] 
as follows:

where D0 is the diffusion coefficient, which is 7.5 × 10−6 
 cm2  s−1 for 500 μM UA [40]; C0 is the concentration of 
UA; A stands for electroactive surface area of the elec-
trode, of which the calculated value is 0.0998 cm2 using 

I
P
a = 2.69 × 105 ×

(

D0

)

⋅ C0 ⋅ A ⋅ �
1∕2

⋅ n
3∕2

[Fe(CN)6]3−/[Fe(CN)6]4−(5 mM) as a probe (data not show); 
n is the electron transfer number.

Moreover, under oxidizing conditions, the presence of 
antioxidant species, such as AA, DA, NO, and so on can 
interfere with the UA detection in biological applications. 
The selectivity of the A–Co–NG and referenced catalysts 
toward UA oxidation was examined using amperometric 
method at 0.3 V versus SCE by analyzing various potential 
interfering species coexisting with UA, such as AA, DA, 
Glu, NO,  K+,  Na+,  SO4

2−, and  Cl−. The current responses 
of these molecules, a key evaluate measurement for the 
specificity of proposed sensors, were summarized in Fig. 4a. 
Results show A–Co–NG (Fig. S10) performs the best selec-
tivity and anti-interference ability with the presence of 
mixed or single AA, DA, Glu, NO,  K+,  Na+,  SO4

2−, and 
 Cl−, which do not cause any noticeable interference to the 
UA response with the current signals relative standard devia-
tion (RSD) less than 5%.

The amperometric I−t response of A–Co–NG upon suc-
cessive addition of UA to a continuous stirred NaOH (0.1 M, 
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pH = 13) was recorded. The influence of applied potential 
controlled from 0.1 to 0.4 V versus SCE on response of 
the A–Co–NG toward 33 μM UA was investigated (Fig. 
S11). The amperometric currents gradually increased 
along with the increasing of potential and exhibited a sharp 
increase at 0.3 V versus SCE. Considering the interference 
of many coexisted foreign species at too positive potential, 
0.3 V versus SCE was chosen as the working potential to 
maintain a high sensitivity. As shown in Fig. 4b, the pro-
posed sensor exhibits a rapid stepped increase response 
for the injection of UA. Figure 4c displays the calibration 
curve of the A–Co–NG for UA determination with two lin-
ear ranges from 0.4 to 1055 and 1055 to 41950 μM, with 
linear equations as I (μA) = 1.3 + 0.022 CUA (μM) and I 
(μA) = 22.9 + 0.0015 CUA (μM) at a correlation coefficient 
of 0.9981 (n = 24) and 0.9986 (n = 7), respectively. A low 
detection limit of 33.3 ± 0.024 nM is achieved, which is 
estimated from the expression of LOD = 3 S/K, where S 
is the standard deviation of the blank signals (nB = 20), K 
is the analytical sensitivity that can be estimated from the 

slope of calibration curve at lower concentration ranges. 
The accomplished sensitivities of A–Co–NG nanozyme 
calculated from slopes of the calibration curves are 297.2 
and 21.2 μA  mM−1  cm−2, respectively. The calculated limit 
of quantitation (LOQ) of A–Co–NG for UA detection is 
400 nM. Moreover, A–Co–NG can give a much wider linear 
range and a lower detection limit than the reported materials 
(Table 1). Besides, the as-prepared sensor achieves 95% of 
the steady-state current within less than 3 s (Fig. 4d). The 
short response time may be attribute to the fast adsorption of 
UA by the single Co atom catalyst. Furthermore, A–Co–NG 
nanozyme exhibits good stability by retaining above 90.5% 
activity after store for 180 days (Fig. 4e), indicating a good 
shelf-lifetime. By assaying 400 µM UA with five prepared 
sensors in same experiment conditions, the calculated RSD 
was 1.38%, indicating a satisfactory reproducibility and 
repeatability of this sensor. The reversibility of the UA sen-
sor was also investigated, which can retain the response with 
a low RSD of 0.17% after testing for 10 times, indicating a 
good reversibility.

Table 1  Comparison of the performance of the previous studies and this work

UOx uricase oxidase, GOx glucose oxidase, PEDOT poly(3,4-ethylenedioxythiophene

Materials Linear range
(μM)

LOD (nM) References

PB/N-doped CNTs 1–1000 260 [13]
Polyacrylamide-coated CNT 100–1000 – [16]
GOx-CHIT/Co3O4 hollow nanopolyhedrons 0.3–3 100 [41]
Graphitic  C3N4 10–100 8900 [42]
E-RGO 0.5–60 500 [43]
UOx/carbon ink printed electrodes 200–1000 – [44]
SiO2/AuNP/PANI 5–1100 2000 [45]
Fe-Meso-PANI 10–300 5300 [46]
PANI-ABSA(p-aminobenzene sulfonic acid) 50–250 12,000 [47]
Polytetraphenylporphyrin/PPy/GO 5–200 1150 [48]
MoS2/poly(3,4-ethylenedioxythiophene) nanocomposite 2–25 950 [49]
AuNPs@ N-doped porous carbonaceous materials 1–150 100 [50]
MWCNT/PSVM/Au 0.05–1000 50 [51]
PEDOT/GCE 6–100 7000 [52]
rGO-ZnO 1–70 330 [53]
CeO2-x/C/rGO 49.8–1050 2000 [54]
AuNPs/MoS2-NSs 5–260 500 [55]
Polydopamine/Polypyrrole 0.5–40 100 [56]
A–Co–NG nanozyme 0.4–1055 and 1055–41,950 33.3 ± 0.024 This work
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Serum examination is a convenient, safe, and inexpen-
sive way to diagnose some diseases. To explore the potential 
applications of the single-atom nanozyme sensor toward UA, 
standard addition method was applied for several serum sam-
ples examination. The results are summarized in Table S2. 
As shown in Figs. 4f and S12, the recoveries ranged between 
97.7 and 105.5%, indicating its practical application for ana-
lyzing UA in real biomedical samples. Besides, the results 
in real serum samples detected by this A–Co–NG sensor 
were compared with the standard assay conducted by a fully 
automatic biochemical analyzer (HITACHI LABOSPECT 
008). The calculated accuracy of this sensor was 98.5% 
(RSD = 5.3%).

3.3  Theoretical Study on Enzyme‑like Activity of A–
Co–NG

To understand the interaction of A–Co–NG with UA analyte, 
the adsorption energies of UA on Co atom in A–Co–NG 
with vertically and parallel adsorption manner were calcu-
lated by DFT method (Fig. S13). The DFT results display 
long interaction distance of 2.31 and 2.38 Å for vertically 
and parallel adsorption configurations of UA on Co atom 
in A–Co–NG, respectively, indicating that interaction 
between UA and Co atom of A–Co–NG is weak. According 
to earlier study, A–Co–NG in aqueous solution were usually 
terminated by hydroxyl anion  (OH−) group accompanying 

the  Co2+ oxidized to  Co3+ [25]. In our experiment, based 
on relation between oxidation peak of Co atom and cata-
lytic active of A–Co–NG (Fig. 3a), we also find the cata-
lytic activity originates from  Co3+ rather than  Co2+. The 
CV curve of A–Co–NG nanozyme (Fig. 3a) showed the 
center Co atom oxidizes from  Co2+ to  Co3+ by a  OH− at 
positive bias ~ 0.3 V versus AgCl, resulting in the formation 
of  Co3+–OH structure, which is the same as the first step 
of oxygen evolution reaction (OER) in alkaline media. In 
process of OER on single Co atom catalyst, the step of sec-
ond electron transfer (from *OH to *O) with a larger energy 
barrier (1.23 + 0.52 eV) is a rate limiting step [57], whereas 
formation of  Co3+–OH–UA* state is energetic favorable 
with free energy of −0.796 eV, as shown in Fig. 5a. After 
formation of  Co3+–OH–UA* state, the charger redistri-
bution in the system happens under the driving force of 
oxidation potential. The insets of Fig. 5a show the charge 
density differences (CDD) isosurfaces of  Co3+–OH + *UA 
and  Co2+–H2O + *UA_H states, respectively. It is obvious 
electron transfers from UA to  Co3+–OH, which results in 
N–H bond dissociation, and a reduction of center Co atom 
from +3 to +2. The calculated energy barrier is 0.3 eV for 
 Co3+–OH + *UA state transferring to  Co2+–H2O + *UA_H 
(Fig. 5a), and the desorption of *UA_H from  Co2+–H2O 
is energetic favorable. Finally, followed by a  H2O desorp-
tion with free energy of 0.14 eV, the A–Co–NG nanozyme 
returns to its initial state. The proposed mechanism of the 
oxidation process of UA on A–Co–NG nanozyme is shown 
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in Fig. 5b. Overall, A–Co–NG nanozyme possesses excel-
lent catalytic activity for UA oxidation, and the generation 
of  Co3+–OH is the potential limiting step for UA oxidation.

The proposed catalytic mechanism was further confirmed 
by the comparison of the catalytic activity of A–Co–NG 
nanozyme at different states, in which the atomic Co center 
in +2 and +3 valence state, respectively. As shown in 
Fig. 3a, CV curves of the A–Co–NG in 0.1 M NaOH dem-
onstrate the single Co atom mainly presents as low-valent Co 
(II) anchored on N-doped graphene, which was subsequently 
oxidized to Co (III) with the driving force over 0.3 V. The 
amperometric I-t curves were recorded with selected bias 
voltages at −0.05 and 0.4 V, corresponding two states of 
catalytic Co atoms, Co (II) and Co (III), respectively. As 
shown in Fig. S14a, the UA oxidation current for biased at 
0.4 V is about 3 times of that of at -0.05 V, indicating higher 
UA oxidation catalytic activity of the *OH− assistant reac-
tion pathway. Moreover, although the redox behavior is not 
obvious, the potential-dependent UA detection performances 
of other cobalt-based samples (P–Co–NG) are similar with 
that of A–Co–NG nanozyme (Fig. S14b), which indicate that 
the catalytic mechanism of UA oxidation on the A–Co–NG 
is a general mechanism for UA oxidation.

4  Conclusion

In summary, we report a single-atom catalyst A–Co–NG 
offering atomically dispersed Co–N center sites for build-
ing an electrochemical biomimetic sensor to highly sen-
sitively and selectively detect UA. The A–Co–NG sensor 
also demonstrates its application in accurate serum exami-
nation toward UA, holding a great promise to its practical 
application in analysis of UA in real samples. This work 
provides a promising material with high active site density 
to realize UA detection with wide detection range and low 
detection limit, and the mechanism finding could be used 
to design and fabricate other kinds of SACs with enzyme-
like activities for a wide range of biomimetic applications.
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