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3D Carbon Frameworks for Ultrafast Charge/
Discharge Rate Supercapacitors with High 
Energy‑Power Density

Changyu Leng1, Zongbin Zhao1 *, Yinzhou Song1, Lulu Sun1, Zhuangjun Fan3, 
Yongzhen Yang4, Xuguang Liu4, Xuzhen Wang1, Jieshan Qiu1,2 *

HIGHLIGHTS

• 3D carbon frameworks (3DCFs) constructed by interconnected nanocages show a high specific surface area, hierarchical porosity, 
and conductive network.

• The deoxidization process removed most of surface oxygen-containing groups in 3DCFs that leads to fast ion diffusion kinetics, good 
electric conductivity, and limited side reactions.

• The deoxidized 3DCFs exhibit an ultrafast charge/discharge rate as electrodes for SCs with high energy-power density in both aqueous 
and ionic liquids electrolytes.

ABSTRACT Carbon-based electric double layer capacitors (EDLCs) 
hold tremendous potentials due to their high-power performance and 
excellent cycle stability. However, the practical use of EDLCs is lim-
ited by the low energy density in aqueous electrolyte and sluggish dif-
fusion kinetics in organic or/and ionic liquids electrolyte. Herein, 3D 
carbon frameworks (3DCFs) constructed by interconnected nanocages 
(10–20 nm) with an ultrathin wall of ca. 2 nm have been fabricated, 
which possess high specific surface area, hierarchical porosity and good 
conductive network. After deoxidization, the deoxidized 3DCF (3DCF-
DO) exhibits a record low IR drop of 0.064 V at 100 A g−1 and ultrafast 
charge/discharge rate up to 10 V s−1. The related device can be charged 
up to 77.4% of its maximum capacitance in 0.65 s at 100 A g−1 in 6 M 
KOH. It has been found that the 3DCF-DO has a great affinity to  EMIMBF4, resulting in a high specific capacitance of 174 F g−1 at 1 A g−1, 
and a high energy density of 34 Wh kg−1 at an ultrahigh power density of 150 kW kg−1 at 4 V after a fast charge in 1.11 s. This work provides 
a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.
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1 Introduction

Due to the high power density and long cycle life, carbon-
based supercapacitors (SCs) have many applications in 
energy storage fields, e.g., power grid, portable devices and 
electric vehicles [1]. Carbon electrode materials are one of 
the most important factors that govern the performance of 
SCs. Up to now, considerable efforts have been made aiming 
at developing advanced carbon materials for SCs with high 
energy density. 0D Carbon dots [2], 1D carbon nanotubes 
[3], and 2D graphenes [4] were all explored as electrodes 
for high performance SCs. In particular, 3D carbon frame-
works with high specific surface area, hierarchical porosity 
and large conductive network are considered as promising 
electrodes for SCs [5–9]. Carbon nanocages with accessi-
ble active sites, thin carbon walls and small hollow spaces 
can provide high specific capacitance, shorten the transport 
length for ions and buffer the stress from the expansion and 
shrinkage during the charge/discharge process [10–14]. 
However, the isolated carbon nanocages without continuous 
networks may reduce the electric conductivity as electrodes, 
leading to slow charge transfer. Therefore, the construction 
of 3D carbon frameworks with large and continuous con-
ductive network made of carbon nanocages still remains a 
challenge.

For carbon materials, the surface properties also have 
a remarkable impact on their capacitive performance [7, 
15–21]. It has been demonstrated that surface oxygen func-
tional groups are beneficial to the wettability of carbon 
electrode surface and provide additional pseudocapacitance 
in aqueous electrolyte [22]. However, high surface oxygen 
content will decrease the electric conductivity of carbon 
electrodes, cause rapid capacity loss at high current density 
and generate polarization reaction at high voltage during the 
charge/discharge process, which should be avoided [23]. All 
in all, the understanding of the relationship between surface 
properties of carbon electrodes and electrochemical perfor-
mance is critical for the development of SCs [24–26].

To date, there is an urgent need for developing SCs 
with high energy density because the low energy den-
sity (5–10 Wh kg−1) of SCs cannot meet the ever grow-
ing demands of energy storage [27–29]. According to the 
equation E =1/2  CV2, the energy density (E) of SCs can be 
improved by increasing the specific capacitance (C) and/

or operation voltage (V) [30]. Major strategies to improve 
C are realized by exploring redox-active materials (such 
as conducting polymers [31–33], transition metal oxides 
[34–36], hydroxides [37–39]) to contribute additional pseu-
docapacitance or designing hybrid supercapacitors (HSCs) 
[40–42] and asymmetric supercapacitors (ASCs) [42–44]. 
But these strategies cause the sabotaging of the rate perfor-
mance and cycling stability of SCs inevitably. On the other 
hand, enlarging V is considered as a more effective tactic for 
improving the energy density of carbon-based SCs. The volt-
age window of SCs can be easily widened by using organic 
and ion liquids (ILs) electrolytes (3–4.4 V) [45–49]. How-
ever, ILs are seriously plagued by their intrinsic large ion 
size, high viscosity and sluggish diffusion kinetics that will 
decrease the power density of SCs. The suitable pore size 
distribution, ideal surface properties and excellent electric 
conductivity of carbon electrode materials can improve the 
ion transport and electron transfer to ameliorate sluggish 
diffusion kinetics of ILs, which can provide a high energy 
density without sacrificing the rapid energy storage rate for 
SCs [50].

Herein, we have proposed a simple strategy involving one-
step gas foaming and in situ activation to fabricate 3D car-
bon framework constructed by continuous nanocages with 
high specific surface area, hierarchical porosity and large 
conductive networks. After deoxidization, the deoxidized 
3DCF showed an ultrafast charge/discharge rate in both 
aqueous and ILs electrolytes and high energy density while 
maintaining high power density in ILs electrolyte, suggest-
ing a promising electrode for high-performance SCs.

2  Experimental

2.1  Synthesis of 3DCF Materials

Polyvinylpyrrolidone (10 g, PVP k30) was dispersed into 
deionized water at room temperature, followed by adding 
7.5 g  KNO3 under stirring to form clear solution without 
any suspended solid. After that, the solution was transferred 
into a container and placed into a refrigerator at − 20 °C 
for 24 h until fully frozen. Then the ice cake was put in 
a lyophilizer at − 80 °C at 1.0 Pa for 3 days, yielding dry 
white powders. Next, the precursor was put into a corundum 
boat and heated at a rate of 10 °C min−1 in pure Ar with a 
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flow rate of 200 mL min−1 and kept at different tempera-
tures (700, 800, and 900 °C) for 1 h, yielding black products 
that were then washed by deionized water and 1 M HCl 
solution until pH = 7. Finally, the materials were dried in 
oven at 120 °C for 12 h, named as 3DCF-X (X refers to the 
final temperature of the annealing process). The deoxidized 
3DCFs (3DCF-DO) were obtained by further annealing 
3DCF-900 at 900 °C for 1 h in mixed  H2/Ar atmosphere 
(5%  H2, in volume ratio) to eliminate most surface oxygen 
functional groups.

2.2  Characterization

Thermogravimetric analysis (TG) was performed on a ther-
mal analyzer (TA-Q50) to explore temperature of chemical 
blowing and in situ activation process. The surface morphol-
ogy and internal structure of samples were examined by the 
scanning electron microscopy (FESEM) and transmission 
electron microscopy (TEM), respectively. X-ray diffrac-
tion (XRD) and Raman analysis were carried out to analyze 
the crystallinity and graphitic nature of the materials. The 
porous texture of the obtained materials was analyzed by a 
nitrogen adsorption/desorption technique. XPS analysis was 
carried out to analyze the elements of the materials. Please 
refer to the Supplementary File for details.

2.3  Electrochemical Test of 3DCF Electrodes

All electrodes were prepared by a mixture of 5 wt.% of 
PVDF, 10 wt.% of acetylene black and 85 wt.% of as-
obtained materials. The mixture was pressed on the Ni 
foam at 10.0 MPa. The two-electrode symmetric devices 
were fabricated in 6 M KOH and  EMIMBF4, respectively. 
All ILs-based two-electrode cells were assembled in an 
Ar-filled dry glove-box (MIKROUNA, with < 1 ppm of 
 O2 and  H2O). Two electrodes slices with similar mass 
loadings (~ 2, 5, and 10 mg) were directly placed inside 
the CR2026 coin-type cells and separated. Galvanostatic 
charge/discharge curve (GCD), cyclic voltammetry (CV) 
and electrochemical impedance spectroscopy (EIS) were 
carried out on the electrochemical workstation (Bio-Logic, 
VP3, France).

3  Results and Discussion

3.1  Structure Characterization

The surface morphology and nanostructures of 3DCF 
materials were characterized by scanning electron micros-
copy (SEM) and transmission electron microscopy (TEM) 
(Fig. 1). It can be seen that the direct carbonization of pure 
PVP has yielded a bulk and compact materials (Fig. 1a), 
while the pyrolysis of PVP/KNO3 resulted in porous and 
loose materials (Fig. 1b, c). As shown by the TEM images 
(Fig. 1d, e), the 3DCF materials are made of continuous 
nanocages (10-20 nm) with ultrathin walls (ca. 2 nm). The 
HR-TEM observation has clearly revealed that the inter-
connected nanocages have micro-/mesopores on their 
walls (Fig. 1f). The morphologies and formation mecha-
nism of 3DCFs fabricated by traditional KOH activation 
and in situ activation are shown and compared (Figs. S6, 
S7). The traditional KOH activation destroys the con-
tinuous frameworks irreversibly, while the present in situ 
activation (inside-out activation) creates homogeneous 
micropores on the walls of adjacent nanocages. In other 
words,  KNO3 results in both gas foaming and in situ acti-
vation, forming continuous nanocages and a large number 
of micro-/mesopores.

The formation of 3DCFs with continuous nanocages 
includes a series of processes: thermal melting, pyrogenic 
decomposition, in situ activation and deoxidization. The 
synthetic protocol (Scheme 1) is strongly evidenced by 
TG-MS analysis (Fig. S1). It can be seen from Fig. S1a 
that the pyrolysis temperature of PVP,  KNO3, and PVP/
KNO3 is 450, 600, and 375 °C, respectively. The lower 
pyrolysis temperature (375 °C) of PVP/KNO3 compared 
with pure PVP demonstrates that  KNO3 effectively pro-
motes the pyrolysis of PVP, indicating the strong interac-
tion between PVP and  KNO3. According to the TG-MS 
analysis, the rapid mass loss and a large amount of gases 
release (NO, CO,  CO2) have simultaneously taken place 
at about 375 °C, ascribed to the gas foaming process. 
Subsequently, the foamed polymer is converted to carbon 
materials at the elevated pyrolysis temperature, indicated 
by the mass loss peak at about 450 °C (Fig. S1b). It should 
be noted that another mass loss peak (Fig. S1a) and CO 
emission peak (Fig. S1c) appeared at about 700 °C, which 
can be attributed to the activation of carbon by  K+ derived 
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from  KNO3. As a result, abundant micro-/mesopores were 
created during the in situ activation process. The univer-
sality of this strategy was confirmed by using other alkali 
metal nitrates, such as  NaNO3 and  LiNO3 (Figs. S2, S3), 
3DCF materials were also obtained with these alkali metal 

nitrates (Figs. S4, S5). Finally, the oxygen functional 
groups on the surface of as-obtained 3DCFs were removed 
in  H2/Ar mixed atmosphere (5%  H2) at 900 °C.

The porous structure of the obtained 3DCF materials 
was studied by  N2 adsorption–desorption isotherm meas-
urements. As shown in Fig. 2a, all these materials showed 
a type IV adsorption–desorption isotherm with a hysteresis 
loop at the relative pressure from 0.4 to 1.0 in the des-
orption branch, indicating multiple scale pores of 3DCFs. 
The 3DCF-450 exhibited the Brunauer–Emmett–Teller 
(BET) surface area of 1502 m2 g−1 mainly resulting from 
the foaming process. With the rise in temperature, the 
SSA of 3DCF-700, 3DCF-800, and 3DCF-900 increases 
from 2098 to 2592, 2602 m2 g−1, respectively. The higher 
SSA is due to the activated etching of the carbon frame-
works by  K+ formed from the pyrolysis of  KNO3. In 
addition, the Vmeso/Vmicro ratio of 3DCF-700, 3DCF-800 
and 3DCF-900 increases gradually from 1.2 to 1.4 and 
2.2 (Table S1), respectively, indicating that micropores 
(0.5–1 nm) in 3DCFs were extended to mesopores with 
increasing temperature. The pore size distribution (PSD) 

(a) (b) (c)

(d) (e) (f)

1 µm 10 µm 1 µm

50 nm 20 nm 10 nm

Fig. 1  SEM images of a pure PVP-derived carbon and b, c 3DCFs. TEM images of d pure PVP-derived carbon and e 3DCFs. f High-resolution 
TEM image of 3DCFs consisting of continuous nanocages (10–20 nm) with ultrathin walls (ca. 2 nm)
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Scheme 1  Schematic illustration of the synthesis of 3DCF materials 
via (I) thermal melting, (II) gas foaming, (III) in  situ activation and 
(IV) deoxidization processes
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of 3DCF materials is mainly centered at 1–2, 2–5, and 
8–20 nm (Fig. 2b). The numerous micropores are formed 
by the in situ activation of  K+, and mesopores are further 
expanded from micropores due to the etching effect of 
 CO2. The mesopores of 3DCF-DO can provide accessible 
space for rapid ion buffer and energy storage; this is espe-
cially the case with  EMI+ ions (~ 0.7 nm) as electrolyte. 
Overall, the hierarchical porosity of 3DCFs is not only 
beneficial to energy storage and rapid ion transfer, but also 
shortening path of ion diffusion [47]. After deoxidization 
of 3DCF-900 at 900 °C in  H2/Ar mixed atmosphere, the 
as-formed 3DCF-DO is very similar to 3DCF-900 in terms 
of SSA and micropores, suggesting the robust structure at 
high temperature. The crystallinity and graphitic nature 
of 3DCFs are examined by X-ray diffraction and Raman 
analysis, of which the results are shown in Fig. 2c, d. The 
XRD patterns of the materials show two typical diffrac-
tion peaks at 2θ = 22°–24° and 42°–44°, corresponding 
to (002) and (100) planes of graphite, respectively. All 
patterns exhibit broad (002) diffraction peak, suggesting 
the amorphous structure of 3DCF materials. The (002) 
peak of 3DCF-DO is higher than other 3DCFs, indicating 

that the crystallization is enhanced during the deoxidiza-
tion process. According to the Bragg equation [51], the 
interlayer spacing of 3DCF-DO is calculated to be about 
0.43 nm for (002) plane, which is larger than 0.335 nm of 
the typical graphite layer [52]. Raman analysis of 3DCF 
materials shows two typical Raman peaks at 1350 cm−1 (D 
band) and 1580 cm−1 (G band). The IG/ID ratio of 3DCF-
DO (1.08) is the highest among these materials, which is 
consistent with the XRD results mentioned above.

The content and chemical state of C, N, and O in 3DCF 
materials were analyzed by XPS, as shown in Fig. 2e. For 
3DCFs prepared at different annealing temperature of 450, 
700, 800, and 900 °C, the oxygen content is 11.33, 8.63, 
7.90, and 5.80  at.%, respectively (Table  S2). After the 
deoxidization process, the surface oxygen content of 3DCF-
DO further dropped to 1.69 at.%, indicating that most of 
oxygen on the surface of 3DCF-900 has been eliminated 
effectively by annealing at high temperature in  H2/Ar mixed 
atmosphere. The XPS survey spectrum of 3DCFs in Fig. 2e 
reveals the peaks of C 1s, O 1s, and N 1s, indicative of the 
self-doping of O, N in the materials. The C 1s spectrum 
of 3DCF materials is deconvolved into five peaks at 284.5, 

1600

1200

800

400

0

0.16

0.12

0.08

0.04

0.00A
ds

or
pe

d 
vo

lu
m

e 
(c

m
3  

g−
1 ,

 S
TP

)

In
cr

em
en

ta
l p

or
e 

vo
lu

m
e 

(c
m

3  
g−

1 )

3DCF-450
(a)

(c)

(e) (f)

O 1s
N 1s

C 1s
(d)

(b)

3DCF-700
3DCF-800
3DCF-900

3DCF-700
3DCF-800
3DCF-900
3DCF-DO

3DCF-700
3DCF-450

3DCF-450

3DCF-700

3DCF-800

3DCF-900

3DCF-DO

3DCF-800
3DCF-900
3DCF-DO

3DCF-700
3DCF-800
3DCF-900
3DCF-DO

(100)

(002)

3DCF-DO

3DCF-450
3DCF-700
3DCF-800
3DCF-900
3DCF-DO

0.0 0.2

In
te

ns
ity

 (a
.u

.)

In
te

ns
ity

 (a
.u

.)

In
te

ns
ity

 (a
.u

.)

0.4 0.6 0.8 1.0 0 4 8

0 1 2 3 4 5
Pore width (nm)

12 16
Pore width (nm)

20
Relative pressure P/P0

1000 1200 1400 1600 1800 2000

10 20

C=C C-OH C-O-C
COOHC=O

80

60

40

20

030 40 50 60
2θ (°)

600 500 400 300 200 100
Binding energy (eV)

0

Raman shift (cm−1)

P
er

ce
nt

ag
e 

(%
)

Fig. 2  a  N2 adsorption and desorption isotherms, b corresponding pore size distributions, c Raman spectra, d powder XRD patterns, e survey 
spectra and f C 1s deconvoluted spectra of 3DCF materials



 Nano-Micro Lett. (2021) 13:88 Page 6 of 11

https://doi.org/10.1007/s40820-020-00535-w© The authors

285.4, 286.8, 287.3, and 288.8 eV (Fig. S9), corresponding 
to C=C, C–OH, C–O–C, C=O, and O=C–OH, respectively. 
As shown in Fig. 2f, the C–OH content sharply decreases 
from 23.8 to 15.4% with temperature rise. Meanwhile, other 
O species, such as C–O–C (8.6–6.5%), O=C–OH (5.2–3.5%) 
and C=O (4.9–4.5%), are also reduced. It can be attributed 
to the easier removal of O=C–OH and C–OH distributed in 
edges of materials than those C–O–C and C=O within car-
bon planes [7] (Table S3). Generally, the O doping of carbon 
electrodes is regarded as desirable in aqueous electrolytes for 
additional reversible pseudocapacitance. However, excess 
oxygen in the carbon electrode can cause serious problems 
such as gas evolution (CO,  CO2) and polarization during the 
charge/discharge process in organic or ILs electrolyte [7]. 
Therefore, the elimination of surface O functional groups is 
necessary for carbon materials working under high working 
potential windows (> 3 V) [23]. N doping is known to affect 
the electrochemical performance of carbon materials [52]. 
In our case, after deoxidization, the content of N in 3DCFs 
is slightly reduced from 1.11 to 0.86%, which is assumed to 

have slight impact on the electrochemical performance of 
3DCF electrodes (Fig. S10).

3.2  Electrochemical Performance

The electrochemical performance of 3DCFs//3DCFs sym-
metric supercapacitors was tested in 6 M KOH. All GCD 
curves showed highly symmetric triangle profiles (Fig. 3a). 
The specific capacitance of 3DCF-DO is 168 F g−1, with 
78% capacitance retention at a high current density of 
100 A g−1, in comparison with 70% for 3DCF-900. As 
shown in Fig. 3d, the voltage drop (IR drop) obtained from 
the GCD curves of the 3DCF-DO varies linearly with the 
current density. At the current density of 100 A g−1, the IR 
drop of the 3DCF-DO is as low as 0.064 V, much lower than 
the values reported previously. Furthermore, the structure-
performance relationship of carbon materials is explored by 
electrochemical impedance spectroscopy (EIS) (Fig. 3e). 
Compared with 3DCF-900, the Nyquist plot of 3DCF-DO 
displays a smaller semicircle in the high-frequency region 
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and almost vertical line in the low-frequency region, sug-
gesting smaller Rs, Rct and more ideal capacitive behavior.

The Bode phase diagram of 3DCF-DO exhibits a charac-
teristic frequency (f0) at the phase angle of − 45° of 5.4 Hz, 
corresponding to a characteristic time constant (τ0 = 1/f0) 
of 0.19 s (inset in Fig. 3e). The rapid frequency response 
is consistent with the high rate performance of 3DCF-DO. 
Furthermore, the 3DCF-DO shows an ultrafast charge time 
of 0.65 s at 100 A g−1 and a capacitance retention of 77.4% 
at the current density of 1 A g−1. 3DCF-DO//3DCF-DO 
symmetric SCs show a satisfactory cycle stability, retain-
ing 100% initial specific capacitance after 10,000 cycles at 
1 V s−1 in 6 M KOH (Fig. 3f). The CV of 3DCF-DO was 
measured in 6 M KOH ranging from 10 mV s−1 to 10 V s−1, 
and the typical EDLC-type curves with ideal rectangular 
shape were obtained without distortion even at an ultrafast 
scan rate of 10 V s−1 (Fig. S11). It can be seen that the 
3DCF-DO shows a specific capacitance of 240, 138, and 
132 F g−1 at 10 mV s−1, 5 V s−1, and 10 V s−1, respec-
tively. The good linear dependence of the discharge current 
on the scan rate up to 10 V s−1 (R2 = 0.9996) demonstrates 

an ultrahigh rate performance for the 3DCF-DO electrode. 
The CV curves of the 3DCF-DO at the scan rate of 1, 2, and 
5 V s−1 show almost rectangular shapes (Fig. S11d-f). The 
above results have suggested the ultrafast charge/discharge 
rate and high power capability of the 3DCF-DO as electrode 
for aqueous SCs. The electric conductivity of the materials 
can affect the charge transfer to some extent. In this regard, 
the slope of 3DCF-DO is bigger than that of the other sam-
ples based on the linear sweep voltammetry (LSV) curves 
(Fig. S13a), implying its highest electric conductivity from 
the large conductive networks. The 3DCF-DO electrode 
keeps a great rate performance even at the mass loading of 
10 mg cm−2 with a specific capacitance of 142 F g−1 at the 
current density 1 A g−1 (85% capacitance retention with the 
mass loading of 2 mg cm−2, Fig. S13b). The results further 
prove that the thick electrodes of 3DCF-DO have high spe-
cific capacitance, outstanding rate performance, and robust 
electrochemical kinetics, which is required for practical 
applications.

3DCFs//3DCFs symmetric two-electrode cells using 
 EMIMBF4 as electrolyte were tested at a high voltage of 4 V, 
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Fig. 4  Electrochemical performance of 3DCF-900 and 3DCF-DO as electrodes of symmetric two-electrode coin cells in EMIMBF4 electrolyte 
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as shown in Fig. 4. The relationship between surface deoxi-
dization and electrochemical performance of 3DCF elec-
trodes is more significant in EMIMBF4 ILs. The capacitive 
performance of 3DCF-DO is demonstrated from the GCD 
curves in Fig. 4a, b. Accordingly, the calculated specific 
capacitance of 3DCF-DO is 174, 141, 98, and 83 F g−1 at 
the current densities of 1, 10, 100, and 150 A g−1, respec-
tively (Fig. 4c). An ultrafast discharge time of 1.96 s at 
100 A g−1 and a capacitance retention of 56% at the cur-
rent density of 1 A g−1 indicate the superb rate capability 
of 3DCF-DO, while the capacity retention of 3DCF-900 
is only 20%. The capacitive performance of 3DCF-700, 
3DCF-800, and 3DCF-900 as electrodes is investigated and 
compared in ILs electrolyte (Fig. S14). The electrochemi-
cal properties of these 3DCFs are improved with the tem-
perature rise. Compared with 3DCFs without deoxidization, 
the 3DCF-DO has shown the highest rate performance and 
the smallest IR drop at 100 A g−1 (Fig. S15). In addition, 
3DCF-DO as electrode for SC is tested in  EMIMBF4 at dif-
ferent potential windows, the charge curves of GCD at 3, 
3.5, and 4 V overlap each other fully (Fig. S16). These excel-
lent electrochemical properties can be attributed to the low 
oxygen content of 3DCF-DO, which limits gas evolution 
and polarization to ensure the high rate capability and cycle 
stability at 4.0 V. The 3DCF-DO exhibits the smaller Rs, Rct, 
and ESR than the 3DCF-900 in Fig. 4d. The Nyquist plots 
of 3DCF-DO reveal a vertical low-frequency line, a high-
frequency semicircle region and 45°-slop mid-frequency 
Warburg region with the knee f0 of 1.12 Hz corresponding 
to a characteristic time constant τ0 of 0.89 s. The charge 
transfer resistance (Rct) and total internal resistance (Rs) of 
3DCF-DO are 0.18 and 0.80 Ω, respectively, which proves 
the rapid diffusion kinetics and high electric conductivity 
of the 3DCF-DO electrode in  EMIMBF4 ILs electrolyte 
(Tables S4, S5). In Fig. 4e, the energy densities of 3DCF-
900 and 3DCF-DO are acquired in Ragone plots in the range 
of power density from 1 to 150 kW kg−1. The 3DCF-900 
shows an energy density of 100 Wh kg−1 at 1 kW kg−1 but 
only preserved 1.46 Wh kg−1 at 150 kW kg−1. However, the 
3DCF-DO shows 97 Wh kg−1 at 1 kW kg−1 and still remains 
a high energy-power density of 34 Wh kg−1 at 150 kW kg−1 
(~ boosted 23-fold in performance after deoxidization) for 
4 V  EMIMBF4-based SC. A capacitance retention of 93.2%, 
only 0.068% decay per cycle, at a scan rate of 1 V s−1 for 
10,000 cycles is obtained for 3DCF-DO//3DCF-DO sym-
metric SCs in  EMIMBF4 at 4 V (Fig. 4f). These results 

have indicated that the 3DCF-DO is a promising electrode 
to deliver ultrafast charge/discharge rate and high energy 
density at ultrahigh power density in  EMIMBF4 electrolyte. 
The Ragone plots of 3DCF-DO//3DCF-DO symmetric SCs 
are compared with reported symmetric SCs in the literature. 
Obviously, the electrochemical properties of 3DCF-DO have 
exceeded most of the carbon-based electrodes for SCs in 
aqueous and ILs electrolytes (Tables S6, S7).

The excellent electrochemical properties of 3DCF-DO are 
not only attributed to the 3D carbon framework with con-
tinuous nanocages to provide large conductive networks for 
rapid charge transfer, but also the elimination of surface oxy-
gen groups, which results in the following benefits: (a) the 
removal of surface O groups on the pore openings makes the 
easy entrance of electrolyte ions and thus improve the ion 
diffusion kinetics during the charge/discharge process; (b) 
the reduction of surface O groups improves the electric con-
ductivity of materials and boosts the rapid electron transfer; 
(c) the removal of surface O groups limits gas evolution and 
various side reactions to keep material’s stability as elec-
trode especially working at 4.0 V high potential windows.

4  Conclusions

In summary, the 3D carbon frameworks with continuous 
nanocages have been fabricated via a combined process of 
gas foaming, in situ activation and deoxidization. The deoxi-
dized 3DCF shows high specific surface area, continuous 
conductive network with multiple scale pores, and ultralow 
surface O content. As electrode for aqueous SCs, the deoxi-
dized 3DCFs show an ultrafast charge/discharge rate, which 
can be charged up to 77.4% of its maximum capacitance in 
0.65 s at 100 A g−1. The deoxidized 3DCFs can deliver a 
high energy density of 34 Wh kg−1 at an ultrahigh power 
density of 150 kW kg−1 in 1.11 s in  EMIMBF4 electrolyte 
at 4 V. Our strategy provides a pathway to the preparation of 
novel 3D carbon frameworks for ultrafast charge/discharge 
rate SCs with high energy-power density.
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