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HIGHLIGHTS

• Bifunctional electrode and electrolytic cell configuration for electrochemical water splitting are reviewed.

• The different green energy systems powered water splitting are summarized and discussed.

• An outlook of future research prospects for the development of green energy system powered water splitting in practical application 
process is proposed.

ABSTRACT Hydrogen  (H2) production is a latent feasibility of renewable clean energy. 
The industrial  H2 production is obtained from reforming of natural gas, which consumes 
a large amount of nonrenewable energy and simultaneously produces greenhouse gas 
carbon dioxide. Electrochemical water splitting is a promising approach for the  H2 pro-
duction, which is sustainable and pollution-free. Therefore, developing efficient and 
economic technologies for electrochemical water splitting has been an important goal for 
researchers around the world. The utilization of green energy systems to reduce overall 
energy consumption is more important for  H2 production. Harvesting and converting 
energy from the environment by different green energy systems for water splitting can 
efficiently decrease the external power consumption. A variety of green energy sys-
tems for efficient producing  H2, such as two-electrode electrolysis of water, water split-
ting driven by photoelectrode devices, solar cells, thermoelectric devices, triboelectric 
nanogenerator, pyroelectric device or electrochemical water–gas shift device, have been 
developed recently. In this review, some notable progress made in the different green energy cells for water splitting is discussed in detail. 
We hoped this review can guide people to pay more attention to the development of green energy system to generate pollution-free  H2 
energy, which will realize the whole process of  H2 production with low cost, pollution-free and energy sustainability conversion.
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1 Introduction

With the gradual intensity of global energy crisis, hydrogen 
 (H2) is one of the most sustainable and clean energies for 
replacing fossil fuel energy [1, 2]. Reforming natural gas 
to produce  H2 not only consumes a large amount of natural 
resources but also produces undesired carbon dioxide, which 
causes greenhouse effect [3–5]. Splitting water into  H2 and 
oxygen  (O2) was from more than 200 years ago. It is very 
important to develop an environmental-friendly and low-cost 
technology for large-scale production of  H2 [6]. As a mature 
energy conversion technology, electrolysis of water provides 
a simple, efficient and promising method for the hydrogen 
evolution reaction (HER) [7–10]. However, an external 
power supply to deliver oxidation or reduction reactions of 
 H2O is necessary for electrolysis, leading to economically 
inefficient application of energy. Alternatively, harvesting, 
storing and converting energy from the environment (such 
as wind, thermal, sunlight, tidal and self-powdered energy) 
[11, 12] can be directly utilized for electrolysis with using a 
lower or no external power supply.

Sunlight is an inexhaustible renewable energy source 
that can meet humanity’s needs. Effective utilization of 
solar energy can reduce the overall energy consumption of 
water splitting [13, 14]. For example, constructing a photo-
electrode to absorb sunlight can provide a photovoltage to 
effectively reduce the external energy supply for electrolysis 
of water [15, 16]. In addition, solar cell is also an effective 
technology of solar energy conversion, which can directly 
absorb sunlight to transform output voltage instead of exter-
nal electric energy, thus effectively realizing the minimum of 
external energy consumption. The utilization of heat energy 
from sunlight in nature for thermoelectric (TE) device can 
generate power to provide the voltage of water splitting 
[17]. There are also vast amount of wind and tidal energy in 
nature, which can be captured by triboelectric nanogenerator 
(TENG) to generate electricity, which can also effectively 
reduce the input of external energy. Therefore, it is of great 
significance to establish a suitable externally driven sys-
tem of water splitting to reduce external consumption and 
improve  H2 production capacity.

For the past few years, many researchers have devel-
oped a variety of green energy system for efficient produc-
ing  H2, such as two-electrode electrolysis of water, water 
splitting driven by a photoelectrode device, solar cells, TE 

device, TENG and other devices including pyroelectric and 
water–gas shift (WGS) reaction and so on (Fig. 1). These 
green energy systems can efficient drive water splitting for 
 H2 production. Some notable matters and challenge in the 
different green energy system for water splitting are dis-
cussed in detail in this review.

2  Two‑Electrode Electrolysis of Water

Electrochemical water splitting is a prospective method to 
produce environmentally friendly hydrogen fuel [18]. Elec-
trochemical water splitting requires a voltage of 1.23 V in 
theory; however, over 1.8 V is needed in practice to over-
come the activation barrier of the reaction [19]. The large 
overpotential is from the slow four-electron transfer kinetics 
of the anodic oxidation reaction and the easy two-electron 
transfer kinetics of the cathode reduction reaction [20, 21]. 
In addition, it is difficult to establish a water splitting system 
of different cathode and anode because different catalysts are 
active and stable in different pH ranges. Moreover, the use of 
different catalysts in the same system often needs different 
equipment and methods, which increases the complicacy and 
cost of the system. And also, the wettability of the electro-
catalyst with electrolyte and the rapid desorption of bubbles 
generated on the electrodes are very important in the process 
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Fig. 1  Water splitting driven by different green energy systems
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of water splitting [22–24]. If the generated gas bubbles are 
difficult to break away from the surface of electrode, the 
active site of electrocatalyst will be covered as well as the 
electrolyte will be difficult to diffuse to access the interface 
of catalyst/electrolyte [25]. Therefore, the hydrophilicity and 
aerophobicity of the electrode is very significant to promote 
the efficiency and stability of the water splitting process [26, 
27]. Hence, the development of a high active, stable and 
low-cost bifunctional electrocatalyst for water splitting is 
imperative [28].

2.1  Electrocatalysts for Overall Water Splitting

For overall water splitting, an ideal bifunctional electro-
catalyst should be a low-cost, highly active and economical 
preparation method, which can provide long-term stability 
for both HER and oxygen evolution reaction (OER) in the 
electrolyte [29]. The employment of suitable catalyst will 
be critical to develop electrolysis of water. Hence, it is an 
urgent desire for researchers to develop many different kinds 
of bifunctional electrocatalysts with different performance 
to promote the development of  H2 fuels [30].

Transition metal oxide [31, 32], transition metal sulfides 
[33–39] and selenides [40–43], transition metal phosphides 
[44–49], transition metal nitrides [50–52] become poten-
tial candidates as non-noble metal electrocatalysts for elec-
trolysis of water. The  Ni3S2/MnS–O nanosheets on Ni foam 
(NF/T(Ni3S2/MnS–O)) were employed as anode and cathode 
for overall water splitting (Fig. 2a), which was required a 
voltage of 1.54 V at a current density of 10 mA cm−2 [33]. 
Dai and Liu et al. prepared NiCo-nitrides/NiCo2O4/GF as 

both anode and cathode in two-electrode system; the whole 
voltage for electrochemical water splitting was 1.68 V to 
achieve 20 mA cm−2 in 1.0 M KOH (Fig. 2b) [53]. He and 
Sun et al. synthesized a bifunctional catalyst for electrolysis 
of water based on three-dimensional (3D) self-supported Fe-
doped  Ni2P nanosheets on NF. An two-electrode electrolyzer 
composed of the  (Ni0.33Fe0.67)2P||(Ni0.33Fe0.67)2P electrodes 
required a low cell voltage of 1.49 V to achieve 10 mA cm−2 
in 1.0 M KOH [45]. Wang et al. reported that the nanostruc-
tured porous  Ni3FeN nanosheet was obtained by annealing 
process the  Ni3Fe LDHs precursor in  NH3 atmosphere. The 
porous  Ni3FeN used as both anode and cathode in two-
electrode system for overall water splitting in 1.0 M KOH 
required a voltage of 1.495 V at 10 mA cm−2, which could be 
driven by a battery with rated voltage of 1.5 V [50]. Metal-
free electrocatalysts also show high activity, good stability 
and low cost to replace metal-based electrocatalysts for long-
term water splitting [54, 55]. Yu, Chen, Dai et al. reported 
a novel metal-free bifunctional electrocatalyst with the 
ultrathin exfoliated black phosphorus (EBP) nanosheets on 
N-doped graphene (EBP@NG). EBP@NG possessed excel-
lent performance of HER and OER in 1.0 M KOH. The volt-
age of an optimized two-electrode cell with EBP@NG used 
as anode and cathode was 1.54 V to achieve 10 mA cm−2 
[54]. The voltage of most reported bifunctional non-noble 
metal electrocatalysts is lower than that of benchmarking 
 IrO2||Pt electrodes (1.57 V at 10 mA cm−2) and standard 
coupled Ni and stainless steel (1.73 V at 10 mA cm−2) in 
the industrial application [56]. A detailed comparison of the 
HER and OER activities of recently reported electrocatalysts 
for overall water splitting are listed in Table 1.

(a)
HER e−

H2 O2
H2 O2

− +
e− OER

(b)

HER OER
HER OER

Fig. 2  a Schematic diagram of two-electrode configuration for overall water splitting with NF/T(Ni3S2/MnS–O) as anode and cathode. Repro-
duced with permission from Ref. [33]. Copyright 2019 Elsevier Inc., b photographs showing the NiCo-nitrides/NiCo2O4/GF||NiCo-nitrides/
NiCo2O4/GF couple electrolyzer. Reproduced with permission from Ref. [53]. Copyright 2019 John Wiley and Sons
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2.2  Electrolytic Cell

Conventional water electrolysis usually utilizes transition 
metal catalysts and diaphragms in alkaline electrolytes (alka-
line water electrolysis, AWE) or noble metal catalysts and 
a proton exchange membrane in acidic media (PEM water 
electrolysis) [57, 58].

2.2.1  Alkaline Water Electrolysis

Since Troostwijk and Diemann first found the phenomenon 
of electrolysis of water in 1789, alkaline water electroly-
sis has been an established technique for  H2 production. 
Therefore, alkaline electrocatalysis is the most widely used 
electrolysis technology on a business level in the world 

[59–64]. In the AWE, the electrolyte is made up of a caustic 
potassium solution with a concentration of 20–30% KOH 
[65–67]. The configurations of alkaline electrolyzer con-
tain the conventional alkaline electrolyzer, the “zero-gap” 
alkaline electrolyzer and the membraneless or decoupled 
alkaline electrolyzer.

In conventional alkaline electrolyzer, the anode and cath-
ode immersed in the electrolyte are located on either side 
of the flat current collector to facilitate a serial connection 
between cells [68].  H2 and  O2 bubbles are formed in two 
electrolyte chambers; meanwhile, a membrane avoids the 
mixture of them (Fig. 3a). This method is easy to scale up to 
the massive volume production of  H2. However, the result-
ing bubbles decrease the effective area of the electrodes 
and improve the resistance of the electrolytes, leading to 
low current densities. Another issue of AWE of Ni-based 

Table 1  Summary of the HER and OER activities of recently reported electrocatalysts for overall water splitting

Catalysis Electrolytes ƞ for HER 
at j (mV@
mA cm−2)

ƞ for OER 
at j (mV@
mA cm−2)

Tafel slope 
for HER (mV 
 dec−1)

Tafel slope 
for OER (mV 
 dec−1)

Overall volt-
age at j (V@
mA cm−2)

References

Co3O4@C@NF 1.0 M KOH 42@10 96@10 56 89 1.40@10 Ha et al. [31]
NF/H–CoMoO4 1.0 M KOH 295@10 – 91 – 1.56@10 Chi et al. [32]
NF/T(Ni3S2/MnS–O) 1.0 M KOH 116@10 228@10 41 46 1.54@10 Zhang et al. [33]
N–CoS2/NF 1.0 M KOH 28@10 200@20 42.6 55 1.50@10 Yao et al. [34]
MoS2/NiS 1.0 M KOH 244@10 370@11 97 108 1.64@10 Qin et al. [35]
MoS2–Ni3S2 HNRs/

NF
1.0 M KOH 98@10 314@10 61 57 1.50@10 Yang et al. [36]

Ni3S2/NF 1.0 M KOH 189@10 296@10 89.3 65.1 1.55@10 Li et al. [37]
MoS2/NiS2 1.0 M KOH 62@10 278@10 50.1 91.7 1.59@10 Lin et al. [38]
Ni3Se4@NiFe LDH/

CFC
1.0 M KOH 85@10 223@10 98.6 55.5 1.54@10 Zhang et al. [40]

CoSe@NiFe LDH/
NF

1.0 M KOH 98@10 201@10 89 39 1.53@10 Sun et al. [41]

Co–Ni–Se/C/NF 1.0 M KOH 90@10 275@30 81 63 1.6@10 Ming et al. [42]
MoSe2/MXene 1.0 M KOH 95@10 340@10 91 90 1.64@10 Li et al. [43]
CoP2/RGO 1.0 M KOH 88@10 300@10 50 96 1.56@10 Wang et al. [44]
(Ni0.33Fe0.67)2P 1.0 M KOH 214@50 230@50 – 55.9 1.49@10 Li et al. [45]
NF@Fe2–Ni2P/C 1.0 M KOH 39@10 205@10 30 52 1.57@100 Sun et al. [46]
NiCoP@NC NA/NF 1.0 M KOH 37@10 305@50 53.9 70.5 1.56@20 Cao et al [47]
CoFeP TPAs/Ni 1.0 M KOH 43@10 198@10 65.3 42 1.47@10 Zhang et al. [48]
Mo–NiCoP 1.0 M KOH 76@10 269@10 60 76.7 1.61@10 Lin et al. [49]
Ni3FeN 1.0 M KOH 45@10 223@10 75 40 1.495@10 Wang et al. [50]
Ni3N–NiMoN 1.0 M KOH 31@10 277@10 64 118 1.54@10 Wu et al. [51]
CoAl–Fe2N/Fe3N 1.0 M KOH 145@10 307@10 54 69 1.67@10 Hu et al. [52]
NiCo-nitrides/

NiCo2O4

1.0 M KOH 71@10 183@10 41 54 1.68@20 Liu et al. [53]

EBP@NG 1.0 M KOH 125@10 265@10 76 89 1.54@10 Yuan et al. [54]
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electrodes is the sustaining attenuation of the activity for 
HER and OER. The deposition of metal cations mainly from 
electrolyte impurities can generate a surface coating with 
low catalytic activity, leading to reducing the activity for 
HER. Therefore, Schuhmann and Ventosa et al. creatively 
brought forward a method based on in situ self-assembly 
of catalyst particles in the electrolytic process to obtain 
exceptionally stable catalytic films with the capability of 
self-healing (Fig. 3b, c). They showed that the passivation 
of cathode by zinc impurities from the electrolyte could be 
surmounted by immobilizing catalyst with self-assembly and 
self-healing films. In the electrolytic process, zinc impurities 
deposited on the cathode electrode in the form of a dendritic 
film increased the HER overpotential, but the continued self-
assembling and self-healing of the catalyst films following 
obscured the zinc dendrites that restored the favorable over-
potential of the HER [69].

In the “zero-gap” configuration, a thin cellulose felt 
occupied the intra-electrode space can absorb the electro-
lyte, which is confined and clamped between two hydro-
philic separators that are tightly pressed on the anode and 
cathode. The anode and cathode ought to be polyporous to 
permeate the liquid electrolyte. Therefore, the bubbles from 
the inner space of the electrode can be efficiently excluded 
[68]. For instance, Dunnill et al. reported that employing 

a zero-gap cell configuration could reduce 30% in ohmic 
resistance in comparison with the traditional a 2-mm gap 
in alkaline electrolyte (Fig. 4a, b). At all current densities, 
especially over 500 mA cm−2, the performance of zero-gap 
configuration cell was better than the standard cell. In addi-
tion, the foam electrodes with high surface area allowed for 
a low ohmic resistance compared to the coarse mesh elec-
trodes. Therefore, the zero-gap configuration will permit 
low cost and high-efficiency alkaline electrolysis [70]. The 
anode and cathode also can be fabricated on the separators 
to further decrease the distance of the gap [71]. For instance, 
Tour et al. used the laser-induced graphene (LIG) to form 
HER and OER catalysts on each side of a polyimide (PI) 
film to assemble high-efficiency electrodes for electrolysis 
of water. In this alkaline electrolyzer, LIG was patterned on 
each side of a PI film and subsequently assembled LIG-Co–P 
and LIG-NiFe on opposite sides by electrochemical deposi-
tion (Fig. 4c, d). The hydroxide ions could migrate through 
a small pinhole at the end of the film that may be covered 
by ion exchange membranes for large-scale applications. As 
expected, the device of LIG-Co–P and LIG-NiFe for water 
splitting required 1.66 V to achieve a current density of 
10 mA cm−2 in 1.0 M KOH [72].

In alkaline water electrolysis, the conductivity of liquid 
electrolyte is much higher than that of the ion exchange 

(a) (b)
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Fig. 3  a Schematic diagram of conventional alkaline electrolyzer. Reproduced with permission from Ref. [68]. Copyright 2012 Elsevier Inc., 
b schematic diagram of the formation of the catalyst film, c schematic diagram of cathode deactivation caused by the deposition of trace metal 
impurities and the change of the overall voltage in the electrolytic cell. Reproduced with permission from Ref. [69]. Copyright 2018 Elsevier Inc
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membrane leading to significant ohmic losses [73, 74]. 
Therefore, Gillespie and Kriek constructed a membraneless 
DEFT alkaline electrolyzer for the gainful production of  H2. 
The electrolyzer could overcome the limitation of current 
density threshold in the existing technology and was an ideal 
choice for  H2 generation (Fig. 5a). The scale-up of the tech-
nology represented a difference from the design of original 
tested stack, which encapsulated many slender electrodes 
in a pressure filter assembly (Fig. 5b, c). The operation 
parameters of the pilot plant were limited to low flow rate, 
and the electrode gap was 2.5 mm. The performance of the 
pilot plant is consistent with the previous acquired results. 
The geometric area of mesh electrodes used for the perfor-
mance test of plant was 344.32 cm2. Under the conditions of 
0.04 m s−1, 30% KOH, 2 V direct current (VDC) and 80 °C, 
the best performance of the NiO anode and Ni cathode com-
bination reached to 508 mA cm−2. Unfortunately, due to the 
nature of the gas–liquid separation system, the gas mass was 
insufficient in comparison with previous results [75].

To further promote the purities of the produced gas in 
the DEFT electrolyzer, Gillespie and Kriek developed an 
extensible and simple mono-circular filter press (MCFP) 
reactor for the DEFT alkaline electrolysis (Fig. 5d). Under 
the condition of the flow rate (0.075 m s−1) and electrode 
gap (2.5 mm), the utilized gas/liquid separation methodol-
ogy improves the gas purities of  H2 to 99.81 vol% and  O2 to 
99.50 vol%. Each round mesh electrode pair of 30 mm has 
independent pressurized chamber and indirect injection of 
the electrolyte. By incorporating a gas purge, the high gas 
purity could be kept for a long running time. Using a Ni/Ni 
catalyst, the current density was 1.14 A cm−2 (2.5 VDC) 
at a flow rate of 0.075 m s−1, 60 °C and 2.5-mm electrode 
gap. Under the same condition except the utilization of a 
double-layer mesh electrode, a current density reached to 
1.91 A cm−2 at 2.5 VDC was realized, confirming that the 
multilayer microporous electrodes for the DEFT principle 
were available [76].

(a)

(c) (d) For HER For OER

Device

Clip

e−

H2O OH−

H2 O2

LIG-Co-P LIG-NiFe

pinhole

(b)
Porous electrodes

Electrolyte

Gas out

Electrolyte In

Gas Separator
Interelactrode Gap

+−

Zero Gap Cell

Fig. 4  a Schematic diagram for reducing the gap between electrodes by using a zero-gap cell, b components for the zero-gap cell, including the 
machined flow field plates, silicone gaskets, mesh electrodes and Zirfon gas separator. Reproduced with permission from Ref. [70]. Copyright 
2017 Elsevier Inc., c schematic diagram and d a photograph of an integrated LIG electrolyzer. Reproduced with permission from Ref. [72]. 
Copyright 2017 American Chemical Society
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Utilizing decoupled the two half-reactions of water split-
ting by redox mediators can completely avoid the mixture of 
produced  H2 and  O2, which is promising for large-scale prac-
tical application [77–82]. Grader et al. proposed a two-step 
electrochemical-thermally activated chemical (E-TAC) cycle 
for overall water splitting.  H2 was produced by a HER at the 
cathode. The traditional OER was replaced by two steps. In 
the first step, the Ni(OH)2 anode was oxidized to NiOOH 
by four one-electron oxidation reactions. In the second step, 
the oxidized NiOOH could be spontaneously reduced to 
Ni(OH)2 in an exergonic chemical reaction to simultane-
ously achieve  O2 production and anode regeneration. As 
shown in Fig. 5e, they also assumed a multicell system with 
fixed anodes and cathodes in each cell for practical appli-
cation to produce pure  H2 and  O2 gas. A low-temperature 
electrolyte flew through cell A, driving the produced  H2 to 
the  H2 separator. Meanwhile, a high-temperature electrolyte 
flew through cell B to regenerate the anode, driving the gen-
erated  O2 to the  O2 separator. In this multicell system, only 
hot and cold electrolyte moved in the operation process [83].

2.2.2  PEM Water Electrolysis

In 1960s, General Electric firstly proposed a concept of 
solid polymer electrolyte (SPE) concept for water elec-
trolyzer, which predicted to conquer the disadvantages of 
alkaline electrolyzers. Grubb idealized the above concept 
by using solid sulfonated polystyrene membranes as the 
electrolytes, also known as PEM water electrolysis, rarely 
called SPE water electrolysis [84, 85]. The polymer elec-
trolyte membrane could provide higher proton conductiv-
ity, lower gas exchange, the compact design of system and 
operate under high pressure [86–90]. The advantages of 
solid polymer electrolyte were lower membrane thickness 
(~ 20–300 μm thick).

First of all, the catalyst layer was coated on a glossy 
polytetrafluoroethylene (PTFE) sheet; then, the coating 
consisted of catalyst and Nafion ionomer on the surface 
of a Nafion 117 membrane was flat when the PTFE sheet 
was removed after being pressed against the membrane. 
The edge between the catalyst coating and membrane was 

(a) (b) (d)
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Fig. 5  a Schematic diagram of filtration mesh electrode encapsulated in a single injection assembly, b a photograph of the horizontal filter press 
DEFT electrolyzer stack, and c a diagram of a cross section of the electrolyzer stack assembly. Reproduced with permission from Ref. [75]. 
Copyright 2017 Elsevier Inc., d cross section of the DEFT electrolyzer stack in a MCFP configuration. Reproduced with permission from Ref. 
[76]. Copyright 2018 Elsevier Inc., e schematic diagram of the multicell system by the E-TAC process. Reproduced with permission from Ref. 
[83]. Copyright 2019 Springer Nature
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obvious on the surface of membrane. The thickness of the 
coating could change by adjusting the amount of catalyst 
ink [91]. In commercial PEM water electrolyzer, a layer 
consisted of Pt/C and Nafion ionomer, similarly a layer of 
made up of  IrO2 or  RuO2 catalyst and Nafion ionomer, was 
coated on the opposite side of a Nafion 117 membrane, 
respectively (Fig. 6a).

The anode side of the PEM water electrolyzer was filled 
with water. Water successively passed through the sep-
arator plates and current collectors. When water got to 
the surface of catalyst layer, the molecules of water were 
broken up into protons, electrons and diatomic oxygen. 
Subsequently, the generated protons left the anode through 
the ionomer and the membrane, passing through the side 
of the cathode, where they coupled with electrons to form 
 H2 after they arrived the catalytic layer. Then the  H2 must 
flow through the cathode collector and the barrier, away 
from the cell. At the same time, the electrons left the cath-
ode catalytic layer via the current collector, the separator 
plates, then departured to the side of the cathode.  O2 must 
flow back via the catalyst layer and current collector to 
the separator plates then go out of the cell (Fig. 6b) [65].

The PEM electrolyzers could work at high current densi-
ties of over 2 A cm−2, reducing the operating cost and the 
potential total cost of water electrolysis. The ohmic losses 
confined the maximum value of current densities. The thin 
membrane capable of providing good proton conductivity 
and high current densities could be achieved. The low gas 

crossover rate of the polymer electrolyte membrane allowed 
for the PEM electrolyzer to operate at a wide range of power 
input.

The phenomenon of cross-permeation enlarged along 
with high operational pressure in PEM electrolysis [92]. 
High pressures (over 100 bar) required thicker membranes 
to reduce the mixture of  H2 and  O2, which kept the marginal 
concentrations below the safety threshold (4 vol%  H2 in  O2) 
[92]. The corrosive acidic regime in the PEM electrolysis 
required distinct materials, which needed the resistance to 
severe corrosive low pH corrosion (pH ~ 2) and kept at high 
overvoltage (~ 2 V).

2.2.3  Seawater Electrolysis

Water electrolysis systems usually consist of two half-reac-
tions: HER at the cathode and OER at the anode. Compared 
to the limited pure water, seawater is the most abundant 
aqueous electrolyte on earth for the utilization in the process 
of water electrolysis. Seawater electrolysis was investigated 
by Bennett [93], which was composed of HER at the cathode 
and chlorine evolution reaction (ClER) at the anode [66]. 
ClER is a two-electron process, and chlorine or hypochlorite 
is the value-added product [94]. Four years later, Trasatti 
used different anodes for seawater electrolysis to investigate 
the selectivity for anodic process [95]. In 2016, Dionigi et al. 
proposed the chemical limitations of seawater electrodes and 
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presented the design criterion for selective seawater splitting 
catalysts [96].

In the seawater electrolysis system, the membrane (such 
as Zirfon) should be physically robust and insusceptible 
to blockages, because largely block either anions or cati-
ons (such as  H+,  Na+,  OH− and  Cl− and so on) are able 
to migrate through the membrane [66]. A commercial 
ruthenium oxide-coated titanium electrode  (RuO2/Ti) and 
Pt electrode were served as the working electrode and the 
counter electrode, respectively, to achieve ClER at the anode 
and HER at the cathode (Fig. 7a). The FE of hypochlorite 
increased linearly with the applied potential on the anode, 
which could achieve 99% at the applied potential of 1.5 V 
vs. RHE on the  RuO2/Ti electrode (Fig. 7b) [97].

3  Water Splitting Driven by a Photoelectrode 
Device

Electrolyzed water can effectively generate  H2 through a 
two-electrode system. However, it takes a large amount of 
electrical energy to conquer the thermodynamic barrier 
in the electrolysis of water. In the photoelectrochemical 
(PEC) electrolysis cell [98, 99], the photoanode absorbs 
the solar energy to generate the photovoltage to effectively 
drive water splitting, which can effectively decrease the 
external energy consumption [100–102]. To minimized 
utilization of the external energy consumption and realize 
unassisted overall light-induced water splitting, a possible 

way is using a tandem structure to generate a total photo-
voltage through complementary light absorption between 
different semiconductor electrodes [103–113].

Mathews et al. constructed that a  Fe2O3 photoanode in 
tandem with an organic–inorganic  CH3NH3PbI3 perovskite 
solar cell (PSC) (Fig. 8a) could achieve overall unassisted 
water splitting at air mass 1.5 global (AM 1.5G) irradia-
tion with a solar-to-hydrogen (STH) conversion efficiency 
of 2.4%. The total potential produced by this tandem sys-
tem reached to 1.87 V, which was surpassed the required 
thermodynamic and kinetic potential of 1.6 V, deliver-
ing water splitting with no external energy consumption 
[114]. Jun and Lee et al. reported that cobalt carbonate-
catalyzed, H and 3 at% Mo dual-doped  BiVO4 (Co–Ci/H, 
3% Mo:BiVO4) device in series with  CH3NH3PbI3 single-
junction PSC could realize wireless solar water splitting 
under AM 1.5G without external energy supply (Fig. 8b). 
The STH efficiency of the device exhibited STH effi-
ciency was 3.0%, which could be even higher along with 
the improvement of the photoanode performance [115]. 
Luo et al. reported that a semilucent  CH3NH3PbBr3 PSC 
as the top absorber pairing with a  CuInxGa1−xSe2 (CIGS) 
multilayer photocathode as the bottom absorber could 
panchromatic harvest of the solar spectrum for effective 
overall water splitting (Fig. 8c). For this PV-PEC system 
employing a single-junction PSC as the bias source at AM 
1.5G irradiation, a STH efficiency was reached to over 6%. 
Moreover, the efficiency could attain over 20% by further 
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optimizing the performance of the perovskite top absorber 
[116]. Qiu et al. constructed a single PSC in tandem with 
nanoporous Mo-doped  BiVO4 (Mo:BiVO4) photoan-
ode PEC cell device by using a beam splitter to divide a 
standard sunlight beam into two light beams (Fig. 8d). The 
PSC-PEC serial system achieved unassisted water splitting 
with a STH efficiency of 6.2% and long-term stability over 
10 h (only 5.8% decay) [117].

Owing to the energy supply is efficient and the materi-
als (e.g.,  TiO2) are cheap, abundant and environmentally 
friendly, dye-sensitized solar cell (DSSC) in tandem with 
photoelectrodes are prospective system for unassisted water 
splitting [118]. Herein, Sivula et al. constructed a device 
based on an oxide  (WO3 or  Fe2O3) photoanode in series 
with a DSSC for unassisted water splitting. In this device, 
the light was incident on the photoanode before the under-
lying DSSC. The  WO3/DSSC serial system reached a STH 
conversion efficiency of 3.10%, while that of 1.17% in the 
 Fe2O3/DSSC tandem device. For the two tandem cells, the 
optical transmittances and spectral responses matched with 
the bandgaps of oxide, determining the photocurrent and 
performance of devices. The performance of  Fe2O3/DSSC 

PEC tandem cells was retained 80% after more than 8 h, 
which attributed to the degradation of DSSC. Therefore, the 
layout relied on chosen redox mediators and catalysts for the 
DSSC and photoanodes, respectively [119]. Wang and Park 
et al. demonstrated a 5.7% STH without any external bias 
unassisted monolithic tandem system, which was combined 
the high transparency of  BiVO4-sensitized mesoporous  WO3 
films/Pt with a single DSSC (Fig. 8e). On one hand, the 
 BiVO4 coating on the porous  WO3 films maintained the high 
transparency, allowing enough photons to enter the dye-sen-
sitized photoanode. On the other hand, the porphyrin-dye-
sensitized photoanode with a cobalt electrolyte produced 
enough potential to achieve wireless solar water splitting 
in the tandem system [120]. Mora-Sero and Gimenez et al. 
established a tandem device combined a CdS quantum dots 
modified  TiO2 photoanode connected with a DSSC for 
water splitting with no external bias (Fig. 8f). This device 
showed a STH conversion efficiency of around 0.78% and 
high stability. Designing hybrid photoanodes with different 
light absorbers was important for developing efficient water 
splitting devices [121].
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4  Water Splitting Driven by Solar Cells

As energy storage systems, solar cells, including Si solar 
cells, CIGS solar cells, PSCs, organic solar cells (OSCs) and 
DSSCs [104, 122–124], are able to transform surplus solar 
energy into storable and distributable energy carriers. The 
photovoltage of series connected solar cells can drive water 
electrolysis [125].

4.1  By Conventional Solar Cells

For photovoltaic (PV)-driven water splitting, several con-
nected crystalline conventional solar cells (such as Si and 
CIGS solar cells) are prospective because of the high STH 
efficiency and solar-driven durability for  H2 production [60, 
104, 126].

Gan and Zhang et al. proposed a bimetallic compound 
NiFeSP on the commercial NF (NiFeSP/NF) in series with 
a Si solar cell to implement overall water splitting (Fig. 9a). 
The voltage of combination of the Si solar cell and the 
bifunctional NiFeSP/NF electrodes for water splitting in 
the tandem system was 1.58 V to reach a current density 

of 10 mA cm−2, corresponding to a STH conversion effi-
ciency of ~ 9.2% [127]. Shen et al. also reported that three 
Si solar cells in series (entire area of 3 cm2) were combined 
with the double-layer Ni–Co–S/Ni–Co–P electrocatalyst on 
NF (NCS/NCP/NF) electrodes for unassisted water splitting 
(Fig. 9b). When using NCS/NCP/NF as a bifunctional cata-
lyst for water splitting, the current density of 10 mA cm−2 
can be obtained with only 1.49 V. Finally, the whole solar 
water splitting was realized with the efficiency of STH 
reached to 10.8% [122]. Oh, Ryu and Kim et al. combined 
four Si heterojunction solar cells in series with a bifunc-
tional NiFe nanostructures electrocatalyst to realize water 
splitting (Fig. 9c). The overpotential of NiFe inverse opal 
electrolyzer for water splitting was ~ 160 mV, achieving a 
STH conversion efficiency of 9.54% more than 24 h with no 
bias condition [128].

Compared to Si solar cell, the outstanding advantage 
of CIGS is that the band gap energy can be modulated to 
effectively absorb the solar spectrum, so it is also widely 
used to achieve water splitting [129–131]. For purpose of 
overcoming the problem of low energy to drive overall water 
splitting, connected series into a monolithic device can be 
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adopted to supply enough to drive the whole reaction. For 
example, Jacobsson et al. reported that three series-inter-
connected compound semiconductor CIGS PV electrolysis 
could efficiently realize solar water splitting at AM 1.5G 
irradiation (Fig. 9d). The current density was centered at 
8.5 mA cm−2 and a STH conversion efficiency reached to 
10.5% [132]. Jacobsson et al. demonstrated CIGS solar cell 
could be applied to water splitting into  H2. They used a p–n 
junction for separating the charge and a catalyst deposited 
on the surface to significantly improve the performance in 
the configuration of a PEC cell (Fig. 9e). In this device, 
the efficient charge separation production from the cataly-
sis improved the durability of CIGS in the light irradiation. 
Furthermore, photocurrents in this device could reach to 
over 20 mA cm−2. The full potential of CIGS as a highly 

efficient absorbent material for water cracking was dem-
onstrated. They confirmed the full potential of CIGS as a 
highly effective absorbent material could be used for water 
splitting [133].

4.2  By Perovskite Solar Cells

In the above tandem system for water splitting in Sect. 4.1, 
owing to the low open-circuit voltages of Si solar cells, at 
least three to four connected cells in series must be utilized 
to achieve reasonable efficiency. In contrast, PSCs have 
achieved open-circuit voltages at 0.9 V and up to 1.5 V 
[134–139], which is sufficient for efficient water splitting 
by connecting just two in series [123]. Grätzel reported 
that the tandem PSC could be used to drive electrolytic 
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splitting of water. The configuration was a water splitting 
system combing with a solution-processed tandem PSC and 
NiFe LDH used as anode and cathode electrodes in alka-
line electrolyte (Fig. 10a, b). A photocurrent density of the 
tandem two-electrode system was around 10 mA cm−2, cor-
responding to a STH efficiency of 12.3% [140]. Bhattachar-
yya et al. developed NiFe-alloy nanoparticles supported by 
N, S-doped mesoporous carbon matrix from duckweed as 
efficient electrocatalysts (Fig. 10c). For overall water split-
ting, only 1.61 V was required to attain a current density of 
10 mA cm−2 for over 200 h. Combining with PSCs, the elec-
trolyzer for overall water splitting showed a STH efficiency 
of 9.7%, which is completely powered by solar energy [141]. 
Jin et al. reported that bifunctional bimetallic phosphide 
 (Ni0.5Co0.5P/CP) in tandem with all-inorganic PSCs (based 
on a  CsPb0.9Sn0.1IBr2 light absorber and a nanocarbon elec-
trode Fig. 10d) realized efficient overall water splitting. The 
water splitting electrolyzer could achieve a current density 
of 10 mA cm−2 at only 1.61 V. Driven by stabilized all-
inorganic PSCs, the electrolyzer delivered a STH conversion 
efficiency of 3.12% and good durability [123].

5  Water Splitting Driven by Thermoelectric 
Device

Water splitting driven by solar cell is a common energy-
driven water splitting strategy. However, the utilization effi-
ciency of sunlight by the solar cell is relatively low because 
solar cells are chiefly effective in the range of ultraviolet 
and visible light. Conventional semiconductor solar energy 
conversion technology cannot efficiently utilize the infrared 
light, which occupies nearly half of the sunlight. The com-
bination of TE device and infrared-active materials supplies 
a particular approach to transform infrared sunlight to the 
electricity, which improves the solar energy utilization effi-
ciency [142–147]. Thus, the study of water splitting driven 
by TE device is extensively performed.

5.1  By Surface‑Modified Thermoelectric Device

The infrared light usually delivers the energy in the form of 
heat through photothermal effect [148, 149]. Transforming 
the released heat into available energy (e.g., electricity) is a 
distinct method to utilize the infrared light. This conversion 
can be probable realized by TE device [150–152]. It is a pity 

that the surface of commercial TE device is unserviceable to 
absorb the infrared light. In order to improve the efficiency 
of TE devices, it is necessary to expand the absorption of 
infrared light by TE devices [151]. This requirement enlight-
ened us to develop the probability of integrating photother-
mal materials on the TE device to promote the efficiency of 
photo-thermoelectric conversion [153]. Generally, materials 
with higher photothermal conversion efficiency include the 
Group VIII metal materials, graphene oxide (GO) [154], 
carbon nanomaterials, transition metal oxides (e.g.,  MoO2, 
 WO3,  Fe2O3) and chalcogenides (e.g.,  Cu2S) [155]. In 2014, 
the photothermal effect of GO had been demonstrated for the 
first time for TE devices [153]. The GO drop-coated on the 
surface of the TE device could transform the infrared light 
to the electricity, which was directly utilized to carry out 
photoelectrocatalytic process in the case of no applied volt-
age. As could be seen from the infrared thermal image, the 
conclusion that the surface coating of GO could significantly 
increase the response of TE devices can be drawn. Our group 
employed carbon nanoparticles (CNP) light absorbent layer 
on the top to increase the absorption efficiency of STEGs. A 
very easy candle flame preparation method was employed to 
synthesize the black CNP layer on the hot end of the com-
mercial TE device (CNP generator). The synthesized CNP 
layer had a 3D porous structure which was conducive to 
capture light, and the power produced by this STEG device 
could drive an electrolyzer for splitting water to produce 
 H2 (Fig. 11a, b). In this water splitting system driven by 
TE device, 6 sets of CNP coated thermoelectric generator 
devices were series connection to supply adequate voltage 
for electrolysis of water. After connecting the TE generator 
with the electrochemical cell, the cathode and anode imme-
diately generated plenty of bubbles under the sunlight irra-
diation. The production of  H2 and  O2 was at an average rate 
of 20 and 10 μmol h−1, respectively, and the rate at the time 
between 11:40 and 12:40 was highest on account of the max-
imum sunlight intensity (Fig. 11c). This study demonstrated 
that the output voltage of TE device was able to drive the 
 H2 production from water splitting by coating nanomaterials 
with photoabsorbing and photo-to-heat conversion proper-
ties on the hot end of TE devices [156]. Inspired by the dual 
model effects of surface plasmon resonance (SPR) photo-
thermal conversion and efficient electrocatalytic activity for 
group VIII metals, our group then proposed Ni nanosheets 
array grown on the surface of TE device for electroly-
sis of water. In the integrated device, Ni nanosheets array 
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was served as electrocatalysts and light absorption layer. 
Replacing the conventional power supply, the output volt-
age of this integrated system could be immediately applied 
for electrolysis of water. It was demonstrated that the Ni 
nanosheets array was utilized as an effective photothermal 
conversion layer to generate temperature difference (ΔT) for 
TE, and as an efficient electrocatalysts for HER (Fig. 11d, 
e). The electrolyzer-TE complex devices were constructed 
for overall water splitting in a two-electrode system, with 
a  H2 and  O2 production rate of 1.818 and 0.912 mmol h−1, 
respectively (Fig. 11f). The integrated TE device provided 
great advantages for constructing the water splitting system, 
which were conducive to utilize the solar thermal energy and 
the waste heat in the prospective applications [157].

5.2  By Integrated Photoelectrochemical‑Thermoelectric 
Device

The parameters that effect TE conversion efficiency are 
the Seebeck coefficient (or thermopower), the electrical 

conductivity and the thermal conductivity [158]. Consid-
ering these factors, the energy conversion efficiency of 
TE device (5–10%) is low, compared to PVs (up to 46%) 
[159]. Therefore, several researches have demonstrated 
that by combing TE and PEC reaction, the utilization 
efficiency for both solar energy harvest and water split-
ting can reach a high content [160]. The first proposed the 
combination of PEC and photothermal-electrochemical 
cycles for  H2 production by solar energy was by Nikola 
Getoff in 1984 [161], which was in acid aqueous solution 
using  I2 and  I3

− acting as a sensitizer with the existence of 
ferrous ions. With the introduction of the TE device, the 
unabsorbed light was collected to provide heat for partly 
converting into electricity by the TE device. Hence, the 
efficiency of  H2 production increased of 30% compared 
with that of single PEC cycle. However, no research for 
photothermal-electrochemical water splitting was con-
ducted for a long time since then, until 2015, Lee’s group 
[126, 162] continuously published two articles to study 
the integrated PEC-TE device for water splitting by using 
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solar energy and waste heat energy to generate storable 
and transportable  H2 fuel. By using the hybrid water split-
ting device water splitting system, the power generation 
for  H2 evolution of 55 mW cm−2 was achieved, which was 
almost 4 times higher than that of a sole PEC cell. Accord-
ing to the total charge transferred, the measured volume 
of  H2 was well consistent with the theoretical value of 
100% Faraday efficiency (FE), indicating that the gener-
ated charge was completely involved in promoting  H2 evo-
lution. Furthermore, this hybrid operation did not need to 
use noble metals (e.g., platinum or iridium) because the 
thermovoltage sole could counteract the kinetic overpoten-
tial [126]. Meanwhile, the author explained the enhance-
ment of water splitting in terms of adjusting the Fermi 
level of the counter electrode with ΔT (Fig. 12a–c). As we 
all known, band edge potentials of semiconductors must 
straddle the redox potentials of  H2 and  O2 for full PEC 
operation without external bias. However, since the mini-
mum valence band of silicon was not enough positive to 
oxidize water, silicon was not suitable as a semiconductor 
material for spontaneous water splitting (Fig. 12b) [162]. 
Thus, since a TE device was concatenated to a PEC cell, 

the Fermi level of counter electrode could be adjusted 
by the applied  VTE. When the working electrode (p-Si) 
and counter electrode (Pt) were linked to the positive and 
negative terminal of the TE device, respectively, electrons 
injected from the Pt counter electrode flew through the 
wire to the anode of the TE device. It was worth noting 
that the Fermi energy level moved downward to a more 
positive potential until the Fermi energy level of Pt was 
in alignment with that of the TE device (Fig. 12c). Since 
the Fermi level of the metal was lower than the oxida-
tion potential of the water, the water would spontane-
ously oxidize under the action of the VTE [162]. Wang 
et al. proposed a novel PV-TE hybrid device consisted of 
a serial DSSC, a solar selective absorber (SSA) and a TE 
generator, providing some inspiration for the development 
of high-performance PV-TE hybrid devices. The author 
proposed that the sunlight could be separated into two 
beams, and UV–visible light was absorbed by a solar cell 
and infrared light was absorbed by a TE generator to con-
vert into electricity in this hybrid device, which improve 
the overall conversion efficiency greater than 13%. And 
thereafter, water splitting driven by TE device integrated 

(a) Photoelectrochemical Cell

Thermoelectric generator

Eg=1.12 eV

p-type Si

p-type Si

Thermoelectric
device

0.4

0.3

0.2

0.1

0.0

Experiment data
Fitting

Photoelectrochemical cell

p-type n-type

m
etal

water
water

E0(H+/H2)
E0(H+/H2)

E0(H2O/O2)

E0(H2O/O2)

qVTE
ΔG0

=1.23 eV

metal metal

(b) (c)

(d)

TENG
Cu

Cu
Cathode

H2
collection
tube

Li-ion
battery

Water Solution

3

Hybrid energy cell

2

1

Anode

PA
PFA

Thermoelectric Cell

(e) (f)

H2

O2

Vo
lu

m
e 

(m
L)

0 200 400
Time (s)

600 800 1000

Fig. 12  a Schematic diagram of a PEC-TE hybrid device. Energy band diagrams of b sole PEC and c a PEC-TE hybrid circuit under illumina-
tion depicting the influence of qVTE. Reproduced with permission from Ref. [162]. Copyright 2015 Elsevier Inc., d schematic diagram of the 
fabricated TENG-TE hybrid energy cell, e schematic diagram of the self-powered system for water splitting to produce  H2, f produced volume of 
 H2 at different working times. Reproduced with permission from Ref. [164]. Copyright 2013 Royal Society of Chemistry



 Nano-Micro Lett. (2020) 12:131131 Page 16 of 29

https://doi.org/10.1007/s40820-020-00469-3© The authors

PV cell or other electric generation system was widely 
studied by researchers [163]. Wang’s group manufactured 
a hybrid energy cell integrated by a TENG, a solar cell and 
a TE device, which could be utilized for concurrently/sep-
arately harvesting mechanical, solar and/or thermal ener-
gies. The output power of the hybrid energy cell could be 
immediately utilized to split water with no external power 
supply (Fig. 12d–f). The volume of the  H2 production 
was linearly related to the splitting time at a generating 
rate of 4 × 10−4 mL s−1 (Fig. 12f). As shown in Fig. 12e, 
there were two ways to water splitting. After the point “1” 
was concatenated to the point “3,” this hybrid energy cell 
could be immediately utilized for water splitting, in which 
the solar cell is in parallel with the rectified TENG. For 
another way, after the point “1” connecting to the point 
“2,” the generated energy could be stored in the Li-ion 
battery and then utilized for electrolysis of water [164].

Intensive research has been conducted to combine PEC 
cell and TE device for improved solar  H2 production. How-
ever, all of these studies adopt the strategy of connecting PV 
cells, TE devices and water splitting electrodes together in 
series. The resulting structure is very complex and not inte-
grated. Therefore, it is a qualitative leap to study how to real-
ize the integration of photodriving components and water 
splitting components, no matter for effective use of solar 
energy or for water splitting. The research for integrated 
device will offer enormous advantages in the aspect of 
designing the overall water splitting system with integrated 
structure which are conducive to the practical applications. 
In addition, the development of an excellent hybrid device 
which can realize long-term durability of solar water split-
ting will also become a top priority in the further studies.

6  Water Splitting Driven by a Triboelectric 
Nanogenerator

As depicted in Sects. 4 and 5, water splitting driven by a 
hybrid energy cell including a PV cell or a TE cell (Fig. 12) 
paves the way for water splitting driven by other energy 
devices. Ever since the discovery of TENG by Wang’s group 
in 2012, TENG had been utilized as an external power sup-
ply for water splitting [165, 166]. In terms of energy con-
version of TENG, the transfer of contact-induced charges 
between two triboelectric materials with opposite polarity 
produced a potential difference during the separation of them 

[167–171]. Then the produced potential difference would 
prompt the flow of electrons/ions in the external circuit; 
hence, it could be utilized as power source [168, 172–178]. 
In 2014, Tang et al. [172] developed a self-powered hybrid 
system by combining a water-driven TENG with a water 
splitting cell (Fig. 13a). The circuit diagram of the split-
ting system and the structure of disk TENG are shown in 
Fig. 13b. When the rotated speed of the assembled TENG 
was 600 rpm, the formation rate of  H2 in the system reached 
to 6.25 × 10−3 mL min−1 in the 30 wt% KOH solution. This 
research provided a strategy of TENG-driven water splitting 
for  H2 generation without external power source. In 2017, 
the same group prepared a connected TENG-PEC hybrid 
cell based on a  TiO2 photoanode, utilizing a flexible TENG 
to collect environmental dynamic energy, and then charging 
the Li-ion battery to drive water splitting (Fig. 13c, d) [173]. 
In the meanwhile, this research proved that the electric field 
provided by TENG-charged battery played an important role 
in electrolysis, as well as improved the utilization efficiency 
of solar energy by boosting the photocurrent (Fig. 13e). 
Therefore, the TENG-PEC hybrid cell provided an easy and 
effective method to synergistically transform mechanical and 
solar energy into chemical energy. Coincidentally, Zhong 
et al. also developed a self-powered PEC water decomposi-
tion system that was combined with a rotatory disk-shaped 
TENG (RD-TENG), while a titanium modified hematite 
(Ti–Fe2O3) was used as the photoanode [168]. It is noted 
that different rotation speed of TENG had different effects 
on the output peak current change under illumination and in 
dark. When at a low rotation speed, the peak current under 
illumination prominently increased in comparison with that 
in the dark, while no significant variety at a high rotation 
speed, indicating the direct electrolysis of water at a high 
speed.

Besides the water-driven TENG, wind-driven TENG 
was also widely investigated [179–183]. For example, Fan 
et al. demonstrated a coaxial rotatory freestanding TENG 
(CRF-TENG) for collecting wind energy using electrospin-
ning polyvinylidene fluoride (PVDF) nanofiber membrane 
as triboelectric material (Fig. 14a–c) [12]. And on this 
basis, a fully self-powered system based on CRF-TENG 
for water splitting to produce  H2 was proposed. When the 
wind speed was 10 m s−1, the  H2 production rate reached 
6.9685 μL min−1 in 1.0 M KOH solution (Fig. 14d, e).
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7  Water Splitting Driven by Other Devices

Recently, water splitting driven by pyroelectric element 
attracts much attention for it provides an alternative 
approach to generate  H2 from instantaneous low-grade 
waste heat or natural temperature variations [184–188]. 
For instance, Xie and Brown et al. proposed to apply pyro-
electric effect to produce a large enough electric potential 
between two electrodes for water splitting into  H2 and  O2 
gas. The materials utilized in the pyroelectric water split-
ting system were lead zirconate titanate (PZT-5H) and 
PVDF thin film [184]. Zhang et al. proposed a pyroelec-
tric water splitting system by utilizing bulk lead PZT as 
an external charge supply that underwent hot–cold thermal 

cycles. The schematic diagram of the device was utilized 
to realize the water splitting with the externally positioned 
pyroelectric materials (Fig. 15a). As known, the change of 
ferroelectric polarization with time during thermal cycling 
was the driving force for the generation of pyroelectric 
charge during hot–cold fluctuations. Thus, the influences 
of the electrolyte concentration and heating–cooling fre-
quency on the performance of pyroelectric  H2 generation 
were studied (Fig. 15b–d). As demonstrated, the thickness 
and the area of PZT sheet played an important role in driv-
ing water splitting, where the thickness could be used to 
guarantee an enough potential to initiate water splitting 
and the area should be maximized to collect the maximal 
amount of available surface charge [185]. Therefore, future 
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work could concentrate on the formation of pyroelectric 
nanostructures to enlarge the surface area of the pyroelec-
tric element or exploring the high heat transfer rates of 
other pyroelectric materials to increase the magnitude and 
speed of temperature changes [189–192].

WGS reaction was a main way for industrial  H2 pro-
duction [193–199]. For the traditional WGS reaction, 

high temperatures and high pressures were essential, and 
 H2 contamination containing  CO2,  CH4 and residual CO 
was inevitable [200–204]. Herein, Bao et al. reported a 
novel electrochemical water–gas shift (EWGS) process for 
directly producing  H2 with the purity of over 99.99% and 
the FE of approximately 100% under mild conditions. In 
contrast to the electrocatalytic water splitting, this WGS 
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reaction afforded a promising alternative way to produce 
with very low operating voltage, which was realized by the 
rational design of electrolytic cell and electrocatalysts. In 
the WGS reaction process of electrolytic cell, CO was oxi-
dized on the anode and  H2 was produced from  H2O reduc-
tion on the cathode (Fig. 16a). Meanwhile, anion exchange 
membrane was used to separate the cathode and anode, 
maintain the balance of electrolyte ion concentration and 
prevent the cross-contamination of the anodic  (CO2) and 
cathodic  (H2) reaction products in the system. Through 
optimization of the anode structure by the hydrophobic 
PTFE layer on catalyst and design of the anode  Pt3Cu cata-
lyst, the water-free compartments at the interface of PTFE 
and catalyst to facilitate the diffusion of CO and weaken 
interaction between CO and anode catalyst surface by Cu 
were performed (Fig. 16b–d). Finally, directly producing 
 H2 with the purity of over 99.99% and the FE of approxi-
mately 100% under mild conditions by this novel electro-
lytic cell was realized [205].

8  Outlook and Future Challenges

H2 is one of the most sustainable and environmental-friendly 
energies for replacing fossil fuel energy to mitigate the 
growing serious energy crisis. In this review, a variety of 
green energy systems developed for efficient  H2 production 
are summarized. The matured two-electrode electrolysis of 
water system can realize overall water splitting with a high 
performance at a low cell voltage and long-term stabilities, 
due to the massive efforts on designing and developing of 
the bifunctional electrocatalysts with excellent electrocata-
lytic performance. And many green systems containing 
photoelectrodes, solar cells, TE devices, TENG devices, 
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pyroelectric devices, and EWGS devices can efficiently uti-
lize renewable energy for water splitting with lower or even 
no external power source. Therefore, the development of 
green energy system is significant for utilizing the renewable 
energy for water splitting.

Although many important developments have been made 
for green energy systems powered water splitting, this field 
also faces some challenges. Firstly, most non-noble metal 
bifunctional catalysts for water splitting show excellent 
performance only in the alkaline electrolytes, while rare 
low-cost catalysts for water splitting can work well in the 
acidic electrolytes. With the introduction of PEM in acidic 
electrolytes, the utilization of low-cost catalysts for water 
splitting is attractive. Therefore, the development of highly 

active non-noble metal catalysts for HER and OER in PEM 
water electrolyzer is the key thing that needs to be strength-
ened. Secondly, many developed low-cost catalysts for alka-
line water splitting are unable to meet the requirements of 
high current density and long-term stability in industrial 
applications. As a consequence, the development of high 
stability, abundant active sites and large size of electrode 
for HER and OER is crucial for industrial applications. 
Thirdly, utilizing the photovoltaic device/TE devices/pyro-
electric devices/TENG devices to convert solar energy/ther-
mal energy/wind energy/water energy to electrical energy 
for delivering water splitting is a promising way to achieve 
renewable energy driven  H2 production. However, the pho-
tovoltaic device/TE devices/pyroelectric devices/TENG 
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devices in tandem with an electrolyzer will obviously 
increase the cost for  H2 production. Therefore, improving 
the compatibility of devices and the integrity of systems by 
integrated the photovoltaic device/TE devices/pyroelectric 
devices/TENG devices with an electrolyzer into a single 
system will decrease the overall cost for  H2 production in 
future practical application.

During the past few years, the different driven systems 
for water splitting have made great progress and many 
exciting achievements. With the incessant efforts that are 
being devoted to this field, water splitting driven by green 
energy systems will make a significant contribution to 
large-scale practical applications of clean energy systems 
in the near future. We hope this review will encourage 
more efforts into the development of novel green energy 
system for hydrogen energy production to realize the 
whole process with low cost, pollution-free and energy 
sustainability conversion in practical applications.
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