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HIGHLIGHTS

• A superaerophobic heterostructured nanowrinkles of bimetallic selenides is developed.

• The 3D heterostructure exhibits excellent activity and stability towards oxygen evolution reaction (OER) in base.

ABSTRACT Cost-effective and stable electrocatalysts with ultra-high current den-
sities for electrochemical oxygen evolution reaction (OER) are critical to the energy 
crisis and environmental pollution. Herein, we report a superaerophobic three dimen-
sional (3D) heterostructured nanowrinkles of bimetallic selenides consisting of crystal-
line  NiSe2 and  NiFe2Se4 grown on NiFe alloy  (NiSe2/NiFe2Se4@NiFe) prepared by a 
thermal selenization procedure. In this unique 3D heterostructure, numerous nanowrin-
kles of  NiSe2/NiFe2Se4 hybrid with a thickness of ~ 100 nm are grown on NiFe alloy in 
a uniform manner. Profiting by the large active surface area and high electronic conduc-
tivity, the superaerophobic  NiSe2/NiFe2Se4@NiFe heterostructure exhibits excellent 
electrocatalytic activity and durability towards OER in alkaline media, outputting the 
low potentials of 1.53 and 1.54 V to achieve ultra-high current densities of 500 and 
1000 mA cm−2, respectively, which is among the most active Ni/Fe-based selenides, 
and even superior to the benchmark Ir/C catalyst. The in-situ derived FeOOH and 
NiOOH species from  NiSe2/NiFe2Se4@NiFe are deemed to be efficient active sites for OER.
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1 Introduction

With the ever-worsening energy and environmental crises, elec-
trocatalytic water-splitting is believed as a promising method to 
resolve the global tremendous energy needs of future societies 
[1, 2]. However, the sluggish reaction kinetics of four-proton-
coupled electron transfer processes of oxygen evolution reac-
tion (OER) is the bottleneck in the water-splitting process [3, 
4]. Normally, the best known electrocatalysts are Ir/Ru-based 
materials for OER catalysis [5]. However, high cost and limited 
reserves largely prevent their large scale applications. Hence, 
development of low-cost and highly efficient non-noble metal 
OER electrocatalysts has been an active research in recent 
years, such as transition metal (Ni, Fe, or Co, etc.) phosphides 
[6–9], sulfides [10–16], selenides [17–20], carbides [21, 22], 
nitrides [23–25], hydroxides [26], oxides [27], and chalcoge-
nides [28]. Among these reported transition metal compounds, 
transition metal-based selenides are specifically attractive for 
OER, due to their metallic nature with high intrinsic electronic 
conductivity. Compared with single metal-based counterparts, 
bimetallic selenides have been the recent focus in OER electro-
catalysts, thanks to their synergistic electronic effects [29, 30].

Besides, the synergistically united advantages of each 
component to boost water-splitting activity, the synergis-
tic effect of heterostructure of bimetallic selenides can 
efficiently improve the structural stability and promote the 
generation of active phases during the OER process [31]. 
However, bimetallic selenides as efficient OER electrocat-
alysts are still in infancy, and the specific mechanism of 
the synergistic effect between heterogeneous structures has 
not been clearly understood [32]. In addition, their cata-
lytic performances have not yet meet industrial demands 
for electrochemical water-splitting (high current den-
sity > 500 mA cm−2) [33, 34].

Herein, we developed a superaerophobic 3D heterostruc-
ture of bimetallic selenide consisting of crystalline  NiSe2 
and  NiFe2Se4 nanowrinkles on backbones of 3D NiFe alloy, 
synthesized via a simple one-step thermal selenization pro-
cedure. The thickness of  NiSe2/NiFe2Se4 nanowrinkles was 
about 100 nm. On account of the high electronic conduc-
tivity and large active surface area, the  NiSe2/NiFe2Se4@
NiFe heterostructure with high current densities of 500 and 
1000 mA cm−2 could be output at low potentials of 1.53 and 
1.54 V, respectively, which are appreciably superior to almost 
all previously reported Ni/Fe-based selenides, and even better 

than commercial Ir/C catalyst. In-situ electrochemical Raman 
spectroscopy discovered that the formd FeOOH and NiOOH 
species are the real active phases in  NiSe2/NiFe2Se4@NiFe 
for OER catalysis. In addition, a special “superaerophobic” 
feature of  NiSe2/NiFe2Se4@NiFe enabled an outstand-
ing capability to diminish the negative effects and promote 
rapid release of in-situ generated  O2 bubbles during the OER 
process. Furthermore, the  NiSe2/NiFe2Se4@NiFe hetero-
structure as a bifunctional electrocatalyst exhibited superior 
electrocatalytic activity for overall-water-splitting in 10.0 M 
KOH at 60 °C, driven at a low voltage of 2.17 V to achieve 
1000 mA cm−2.

2  Experimental Sections

2.1  Chemicals and Materials

All reagents are analytical grade and used without further puri-
fications. The NiFe alloy, Ni foam (NF), and Fe foam (IF) were 
purchased from Kunshan Longshengbao Electronic material 
store. The Se powder, KOH, commercial  IrO2, ethanol, and 
acetone were obtained from Alfa Aesar.

2.1.1  Synthesis of NiSe2/NiFe2Se4@NiFe

Commercial NiFe alloy was washed in an ultrasonic machine 
with acetone, hydrochloric acid, ethanol, and deionized water 
for 10 min, respectively. After the above treatments, two pieces 
of NiFe alloy (0.25 × 1.5 cm2) were thermally selenized at 
300 °C for 2 h with 60 mg of Se powder in a vacuum quartz 
tube. The mass loading of  NiSe2/NiFe2Se4 on NiFe alloy 
was ~ 5.0 mg cm−2.

2.1.2  Synthesis of Ni0.7Fe0.3–Se and Ni0.5Fe0.5–Se

After the pre-treatments, the  Ni0.7Fe0.3 alloy and  Ni0.5Fe0.5 
alloy were thermally selenized at 300 °C for 2 h with 60 mg 
of Se powder in a vacuum quartz tube, respectively.

2.1.3  Synthesis of NF‑Se

Commercial Ni foam was washed in an ultrasonic machine 
with acetone, hydrochloric acid, ethanol, and deionized 
water for 10 min, respectively. After the above treatments, 
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two pieces of Ni foam were thermally selenized at 300 °C 
for 2 h with 60 mg of Se powder in a vacuum quartz tube. 
The mass loading of NF-Se on Ni foam was ~ 4.7 mg cm−2.

2.1.4  Synthesis of IF‑Se

Commercial Fe foam was washed in an ultrasonic machine 
with acetone, hydrochloric acid, ethanol, and deionized 
water for 10 min, respectively. After the above treatments, 
two pieces of Fe foam were thermally selenized at 300 °C 
for 2 h with 60 mg of Se powder in a vacuum quartz tube. 
The mass loading of IF-Se on Fe foam was ~ 4.0 mg cm−2.

2.2  Characterizations

X-ray diffraction patterns (XRD) were examined on a 
RIGAKU D/MAX 2550/PC (RIGAKU D/MAX 2550/PC). 
Field-emission scanning electron microscopy (FESEM) 
images were investigated on a SU-8010 at an acceleration 
voltage of 5 kV. Transmission electron microscopy (TEM) 
images, high-resolution TEM (HRTEM) images, selected-
area electron diffraction (SAED) patterns were obtained 
on a JEM-2100 electron microscope (HRTEM, JEM-2100, 
200 kV) equipped with an energy dispersive X-ray spec-
trometer, operating at 120 kV. Raman spectra were obtained 
by a Raman scattering spectroscopy system, excited with a 
534 nm diode laser. The surface elemental information was 
obtained by X-ray photoelectron spectroscopy performed on 
the RIGAKU D/MAX 2550/PC (RIGAKU D/MAX 2550/
PC). Contact angles were analyzed via an OCA20 machine 
(Data-Physics, Germany) at room temperature. The atom 
ratio of Fe and Ni were analyzed via X-ray fluorescence 
spectrometry (Rigaku, ZSX Primus II) at room temperature.

2.3  Electrochemical Measurements

All measured potentials in this work were reported versus 
reversible hydrogen electrode (RHE) according to the equa-
tion: ERHE = Eapplied + 0.197 + 0.059 pH, where the Eapplied 
is the applied potential. Linear sweep voltammetry (LSV) 
curves were recorded at a voltage range of 1.2–0 V with a 
scan rate of 5 mV s−1. In OER performance test, all polariza-
tion curves were with iR compensation in this work unless 
otherwise noted. The long-term durability test was per-
formed using a chronopotentionmetry method at a constant 

current density. The Cdl values of the as-prepared working 
electrodes were determined from the cyclic voltammogram 
(CV) in the double layer region (without Faradaic processes) 
at different scan rates.

3  Results and Discussion

3.1  Structural Characterizations of  NiSe2/NiFe2Se4@
NiFe

Figure 1a illustrates a facile thermal selenization process of 
3D  NiSe2/NiFe2Se4@NiFe synthesis. The NiFe alloy was 
annealed at 300 °C for 2 h under a selenium vapor atmos-
phere to obtain the  NiSe2/NiFe2Se4@NiFe. We systemati-
cally investigated the effects of different selenium contents 
and selenization temperatures on OER capacity, and the 
optimal amount of selenium powder was 60 mg and anneal-
ing temperature was 300 °C (Figs. S1-S3). FESEM image 
reveal that the spatial skeleton morphology of the 3D  NiSe2/
NiFe2Se4@NiFe remained after the thermal selenization 
process (Fig. 1b, c) [35]. The  NiSe2/NiFe2Se4@NiFe het-
erostructure was consisted of numerous nanowrinkles with a 
thickness of ~ 100 nm. The corresponding energy-dispersive 
X-ray spectroscopy (EDX) element mapping images showed 
the uniform coverage of Se, Fe, and Ni elements on the sur-
face of 3D NiFe alloy (Fig. 1d). TEM and HRTEM images 
(Fig. 1e and Figs. S4, S5) of  NiSe2/NiFe2Se4@NiFe dis-
played that the characteristic spacings of 0.30 and 0.27 nm 
are attributed to the (200) and (210) planes of  NiSe2, while 
the characteristic distances of 0.34 and 0.23 nm are corre-
sponded to the (011) and (211) planes of  NiFe2Se4, respec-
tively. Further, an obvious boundary of the crystal surface 
between  NiSe2 and  NiFe2Se4 was clearly observed (Fig. S6), 
successfully revealing the formed heterostructure of  NiSe2/
NiFe2Se4@NiFe. SAED pattern showed the well-crystallized 
of  NiSe2 and  NiFe2Se4 in  NiSe2/NiFe2Se4@NiFe (inset of 
Fig. 1e) [36].

XRD of  NiSe2/NiFe2Se4@NiFe (Fig. S7) showed the 
characteristic diffraction peaks of  NiSe2 (JPCDS No. 
11-0552) and  NiFe2Se4 (JPCDS No. 065-2338) [37]. The 
ratio of  NiSe2 and  NiFe2Se4 in the  NiSe2/NiFe2Se4@NiFe 
was determined to be ~ 2.58 according to inductively cou-
pled X-ray fluorescence spectrometry. X-ray photoelec-
tron spectroscopy (XPS) revealed the co-habiting of Ni, 
Fe, and Se elements in the  NiSe2/NiFe2Se4 (Fig. S8). The 
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high-resolution Ni 2p XPS spectra of  NiSe2/NiFe2Se4@
NiFe heterostructure displayed two principal peaks located 
at 873.8 and 855.5 eV, which are corresponding to the  Ni2+ 
2p1/2 and  Ni2+ 2p3/2 (Fig. 1f), associated with two satellite 
peaks. Relative to the pure  NiSe2 [29, 38], a slight shift of 
the principal peaks toward the higher binding energies was 
observed for  NiSe2/NiFe2Se4@NiFe, which could be attrib-
uted to strongly coupled effects between  NiSe2 and  NiFe2Se4 
in the heterostructure [39]. Furthermore, the binding ener-
gies centered at 852.9 and 870.3 eV are corresponding to 
metallic Ni from the NiFe alloy. The high-resolution Se 3d 
XPS spectra of  NiSe2/NiFe2Se4@NiFe exhibited three con-
tributions, including two Se 3d5/2 and Se 3d3/2 peaks located 
at 54.5 and 55.2 eV, respectively, and one low and wide 
peak located at 58.6 eV of  SeOx species (Fig. 1g) [40, 41]. 
It is important that, the Se 3d peaks at 54.5 and 55.2 eV are 
separately located between 54.0 eV for  Se2− and 54.7 eV for 
 Se2

2− as well as between 54.9 eV for  Se2− and 55.6 eV for 

 Se2
2−, suggesting the co-existence of  NiSe2 and  NiFe2Se4 

[42].

3.2  Electrocatalytic OER Performance

The OER polarization curve of  NiSe2/NiFe2Se4@NiFe was 
first determined in 1.0 M KOH electrolyte. In comparison, 
the control samples of Ni foam@60 mg Se 300 °C (NF-Se), 
Fe foam@60 mg Se 300 °C (IF-Se), and Ir/C/NiFe were 
also tested. As shown in Fig. 2a, b, the  NiSe2/NiFe2Se4@
NiFe exhibited admirable electrocatalytic activity with 
smaller potentials of 1.49, 1.53, and 1.54 V at current den-
sities of 100, 500, and 1000 mA cm−2, compared with those 
of NF-Se and IF-Se. Significantly, the potential needed to 
drive a large current density up to 1500 mA cm−2 was only 
1.56 V, which makes the  NiSe2/NiFe2Se4@NiFe up-and-
coming OER electrocatalyst towards industrial applications 
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in alkaline water splitting. Meanwhile, the OER Faradaic 
efficiency of  NiSe2/NiFe2Se4@NiFe was calculated to be 
∼ 100% (Fig. S9).

Comparison of the OER performances among  NiSe2/
NiFe2Se4@NiFe, NF-Se, and IF-Se demonstrated the posi-
tive effects of the synergistic effect between  NiSe2 and 
 NiFe2Se4 components, which contributed to the superior 
OER activities of the  NiSe2/NiFe2Se4@NiFe. Apparently, 
the OER catalytic activity of  NiSe2/NiFe2Se4@NiFe signifi-
cantly surpassed that of the benchmark Ir/C/NiFe, which 
showed high potentials of 1.53, 1.60, and 1.65 V at 100, 500, 

and 1000 mA cm−2, respectively. The Tafel slope of  NiSe2/
NiFe2Se4@NiFe was 52.7 dec−1 (Fig. 2c), which was much 
smaller than the Tafel slopes of NF-Se (105.7  dec−1), Fe–Se 
(119.6 dec−1), and Ir/C/NiFe (96.4 mV dec−1), indicating 
a rapid reaction kinetic of the  NiSe2/NiFe2Se4@NiFe. The 
OER kinetics of  NiSe2/NiFe2Se4@NiFe was further inves-
tigated by electrochemical impedance spectroscopy (EIS), 
and the Nyquist plots of the  NiSe2/NiFe2Se4@NiFe showed 
the much lower charge-transfer impedance as compared with 
that of NF-Se and IF-Se (Fig. 2d), supporting the fast elec-
tron transfer ability of  NiSe2/NiFe2Se4@NiFe. The potential 
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at 100 mA cm−2 and corresponding Tafel slope of  NiSe2/
NiFe2Se4@NiFe were appreciably superior than that of those 
previously reported Ni/Fe-based selenides and other non-
precious OER electrocatalysts in 1.0 M KOH (Fig. 2e and 
Table S1) [6, 40, 43–47].

Figure S10 shows a multi-step chronopotentiometric 
curve of  NiSe2/NiFe2Se4@NiFe, in which the starting cur-
rent density was 380 mA cm−2 at 1.67 V, and remained 
unchanged for the rest 100 s; the other four steps also exhib-
ited parallel results up to 1180 mA cm−2, suggesting the 
remarkable mass transport properties and mechanical tough-
ness of  NiSe2/NiFe2Se4@NiFe [48, 49]. As the durability is 
another effective standard to assess the electrocatalytic abil-
ity of  NiSe2/NiFe2Se4@NiFe, continuous electrochemical 
cycling tests were performed for 500 cycles. In Fig. 2f, the 
 NiSe2/NiFe2Se4@NiFe exhibited permanent stability with a 
minor current loss at the end of cycling. Further, the  NiSe2/
NiFe2Se4@NiFe also owned long-term durability with an 

insignificant recession during consecutive current output at 
500 mA cm−2 over 11 h (Fig. 2 g).

In order to identify the synergistic effect of bimetallic 
selenide heterostructure towards the extrusive OER perfor-
mance, we measured double-layer capacitance (Cdl) to evalu-
ate the electrochemical surface area (ECSA) of 3D  NiSe2/
NiFe2Se4@NiFe. As shown in Fig. 3a and Fig. S11, the Cdl 
of 33.67 mF cm−2 for  NiSe2/NiFe2Se4@NiFe was much 
higher than 16.48 mF cm−2 for NF-Se and 5.09 mF cm−2 
for IF-Se, illustrating that the  NiSe2/NiFe2Se4@NiFe pos-
sessed an extraordinary activity with larger ECSA and 
more accessible active sites as compared with the NF-Se 
and IF–Se. For clarification of the inherent OER activity 
of 3D  NiSe2/NiFe2Se4@NiFe, the polarization curve of 
the heterostructure electrode was further normalized by 
ECSA (Fig. 3b), and the results displayed that the intrin-
sic activity of  NiSe2/NiFe2Se4@NiFe was still much higher 
than that of NF-Se and IF-Se [50, 51]. In order to further 
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investigate the influence of Ni: Fe ratios, we additionally 
constructed other catalytic materials of  Ni0.5Fe0.5@60 mg 
Se 300 °C  (Ni0.5Fe0.5–Se) and  Ni0.7Fe0.3@60 mg Se 300 °C 
 (Ni0.7Fe0.3–Se) with different Ni/Fe proportions. As shown 
in Fig. 3c, d and Fig. S12, the OER performances of the 
 NiSe2/NiFe2Se4@NiFe,  Ni0.5Fe0.5–Se, and  Ni0.7Fe0.3–Se dis-
played that the potentials of  Ni0.5Fe0.5–Se and  Ni0.7Fe0.3–Se 
were 1.59 and 1.57 V at 500 mA cm−2, which are signifi-
cantly larger than that of the  NiSe2/NiFe2Se4@NiFe (1.53 V 
at 500 mA cm−2). Also, when the overpotential was fixed 
at 300  mV, the current densities of both  Ni0.5Fe0.5–Se 
and  Ni0.7Fe0.3–Se were 166 and 204 mA cm−2 (Fig. 3d), 
extremely smaller than that of  NiSe2/NiFe2Se4@NiFe 
(542 mA cm−2). These results indicated that the  NiSe2/
NiFe2Se4@NiFe with a Ni/Fe ratio of 3:7 possessed the 
optimized OER activity in comparison with  Ni0.5Fe0.5–Se 
and  Ni0.7Fe0.3–Se [52].

3.3  Identifying Active Phase

The structural change of  NiSe2/NiFe2Se4@NiFe during 
the OER process was analyzed by in-situ electrochemi-
cal Raman spectroscopy at different applied potentials in 
1.0 M KOH (Fig. 4a). At a voltage of 1.0 V, the Raman 
peaks of  NiSe2/NiFe2Se4@NiFe located at 152, 170, 205, 
and 237 cm−1 could be assigned to  NiSe2 (Fig. 4b, c); it 
was clearly seen that the Raman peaks of  NiSe2 gradually 
weakened with the increased voltage. After the OER tests 
(Fig. 4d), no Raman peaks of  NiSe2 were detected, but 
new distinctive peaks associated with the unique Raman 
features of amorphous FeOOH and NiOOH species could 
be observed, which indicated that the amorphous FeOOH 
and NiOOH phases are the catalytically active phases of 
 NiSe2/NiFe2Se4@NiFe during the OER process [39, 53]. 
Such features are also consistence well with post-HRTEM 
observations (Fig. S13). The chemical valence states of 
 NiSe2/NiFe2Se4@NiFe before and after OER tests were 
measured by XPS spectra. After 11 h OER stability test-
ing, in the high-resolution XPS spectra of Ni 2p (Fig. 4e), 
the binding energy of metallic Ni disappeared, and the 
binding energies of  Ni3+ 2p3/2 and  Ni3+ 2p1/2 emerged 
and located at 856.4 and 874.5 eV, which indicated the 
oxidation of  Ni2+ to  Ni3+ [54]. For the high-resolution 

XPS spectra of Fe 2p (Fig. 4f), four main peaks located 
at 710.7, 713.2, 724.6, and 728.7 eV were corresponded 
well with  Fe2+ 2p3/2,  Fe3+ 2p3/2,  Fe2+ 2p1/2, and  Fe3+ 2p1/2, 
respectively. After the OER tests, two new Fe 2p3/2 peaks 
appeared at 711.7 and 725.1 eV, respectively, which are 
the characteristic binding energies of  Fe3+ in FeOOH [1]. 
These results demonstrated that the in-situ derived amor-
phous FeOOH and NiOOH phases serve as OER active 
centers in  NiSe2/NiFe2Se4@NiFe during the OER process, 
which was in accord with the Raman results. Based on the 
above results, a possible mechanism of the OER electro-
catalysis in alkaline electrolyte has been considerate as 
follows [43, 55, 56]:

where the NiOOH and FeOOH species were firstly formed 
on the surface of  NiSe2/NiFe2Se4@NiFe accessed by 
 OH− in alkaline electrolyte. Then, the formed NiOOH and 
FeOOH phases were further combined with the  OH− to 
generate  O2 under OER conditions (M = Ni, Fe) [57–60].

Considering that the  O2 bubbles generated under the 
harsh electrochemical conditions tend to decrease the 
surface roughness and limit electron transfer, the contact 
wetting angle of  NiSe2/NiFe2Se4@NiFe was measured 
(Fig.  4g–j). The results showed that the generated  O2 
bubbles are separated in an ultra-fast speed from the sur-
face, indicating a “superaerophobic” feature. The unique 
“superaerophobic” structure of  NiSe2/NiFe2Se4@NiFe 
could deliver a huge potential to release the in-situ gener-
ated  O2 bubbles and avoid the bubbles to be detented dur-
ing the OER process, thus retaining the original catalytic 
sites of  NiSe2/NiFe2Se4@NiFe. Therefore, besides the 
FeOOH and NiOOH active phases, the unique “superaero-
phobic” property of  NiSe2/NiFe2Se4@NiFe that can expel 
the in-situ generated  O2 bubbles also make a contribution 
to the high-efficient OER activity and excellent stability 
at high current densities [61].
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3.4  Overall‑Water‑Splitting Performance

Based on the outstanding OER performances, the 3D  NiSe2/
NiFe2Se4@NiFe were applied as both anode and cathode for 
the testing of overall-water-splitting. The  NiSe2/NiFe2Se4@
NiFe exhibited a bifunctional electrocatalytic performance 
in overall-water-splitting, which only needed cell voltages 
of 2.32 and 2.82 V to reach high current densities of 500 
and 1000 mA cm−2 in 1.0 M KOH, respectively. Notably, 
such a high overall-water-splitting performance for  NiSe2/
NiFe2Se4@NiFe was even superior to that of precious metal 
catalysts of Ir/C anode and Pt/C cathode with larger cell 

voltages of 2.56 and > 3.0 V at 500 and 1000 mA cm−2 
(Fig. 5a), respectively. Furthermore, the long-term stabil-
ity of  NiSe2/NiFe2Se4@NiFe in electrochemical overall-
water-splitting was confirmed with a high current density 
at 1000 mA cm−2 for > 10 h (Fig. 5b). As required for an 
industrial use, we further made an alkaline electrolyzer 
for overall-water-splitting using the bifunctional  NiSe2/
NiFe2Se4@NiFe in 10.0 M KOH at 25 and 60 °C. As shown 
in Fig. 5c, the  NiSe2/NiFe2Se4@NiFe delivered the higher 
overall-water-splitting performance at 60 °C (2.17 V at 
1000 mA cm−2) than that at 25 °C [62]. Furthermore, the 
 NiSe2/NiFe2Se4@NiFe sustained durable stability with a low 
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voltage of 1.96 V to achieve 500 mA cm−2 in 10.0 M KOH 
at 60 °C after chronoamperometry testing (Fig. 5d). Dur-
ing the testing process, the generated  O2 and  H2 bubbles 
are in-situ produced on the bifunctional  NiSe2/NiFe2Se4@
NiFe (Fig. 5e), evidencing the favorable overall-water-split-
ting performance. These results suggested that the  NiSe2/
NiFe2Se4@NiFe could satisfy the industrial criteria for 
overall-water-splitting electrocatalysis.

4  Conclusions

A novel superaerophobic 3D  NiSe2/NiFe2Se4@NiFe hetero-
structure composing of  NiSe2 and  NiFe2Se4 nanowrinkles 
was developed by a thermal selenization procedure. The 
 NiSe2/NiFe2Se4@NiFe showed excellent OER performance 
evidenced by outputting high current densities of 500 and 
1000 mA cm−2 at low potentials of 1.53 and 1.54 V under 
alkaline condition, respectively, which are superior to those 
of most previously reported Ni/Fe-based selenides, even 

outperforming the commercial Ir/C. The excellent OER per-
formance of  NiSe2/NiFe2Se4@NiFe to a large extent was due 
to the large active surface area and high electronic conduc-
tivity. The in-situ conversion-derived FeOOH and NiOOH 
species from the  NiSe2/NiFe2Se4@NiFe are intrinsic active 
sites for the OER catalysis. The unique “superaerophobic” 
structure of  NiSe2/NiFe2Se4@NiFe further promoted the 
rapid release of in-situ formed  O2 bubbles in a superfast 
speed. The  NiSe2/NiFe2Se4@NiFe heterostructure required 
a low voltage of 2.17 V to attain 1000 mA cm−2 in 10.0 M 
KOH electrolyte for overall-water-splitting at 60 °C meet-
ing the requirement for industrial use. Therefore, the  NiSe2/
NiFe2Se4@NiFe heterostructure presented in this work may 
provide a promising way to synthesize superaerophobic 
bimetallic selenides towards the practical applications for 
clean hydrogen production, as well as the electrochemical 
 CO2 reduction,  O2 reduction, and  N2 reduction reactions.
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