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HIGHLIGHTS

• The recent progress of spin injection, spin transport, spin manipulation, and application in 2D materials was summarized.

• The current challenges and outlook of future studies in spintronics based on 2D materials and related heterostructures were discussed.

ABSTRACT Spintronics, exploiting the spin degree of electrons as the 
information vector, is an attractive field for implementing the beyond 
Complemetary metal‑oxide‑semiconductor (CMOS) devices. Recently, 
two‑dimensional (2D) materials have been drawing tremendous atten‑
tion in spintronics owing to their distinctive spin‑dependent properties, 
such as the ultra‑long spin relaxation time of graphene and the spin–val‑
ley locking of transition metal dichalcogenides. Moreover, the related 
heterostructures provide an unprecedented probability of combining the 
different characteristics via proximity effect, which could remedy the 
limitation of individual 2D materials. Hence, the proximity engineering 
has been growing extremely fast and has made significant achievements 
in the spin injection and manipulation. Nevertheless, there are still chal‑
lenges toward practical application; for example, the mechanism of spin 
relaxation in 2D materials is unclear, and the high‑efficiency spin gating is not yet achieved. In this review, we focus on 2D materials 
and related heterostructures to systematically summarize the progress of the spin injection, transport, manipulation, and application for 
information storage and processing. We also highlight the current challenges and future perspectives on the studies of spintronic devices 
based on 2D materials.
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1 Introduction

With the imminent end of Moore’s law, exploiting new 
degrees of freedom has become an essential research direc‑
tion to promote further development of electronic devices. 
The aim of spintronics is to utilize the spin degree of free‑
dom of electrons to realize novel information storage and 
logic devices. A spintronic device has the superiority of 
faster speed, ultra‑low heat dissipation, and non‑volatility, 
making it an ideal candidate for future electronics. Addition‑
ally, 2D materials, such as graphene [1], black phosphorus 
(BP) [2], transition metal dichalcogenides (TMDCs) [3], and 
silicene [4], have created an excellent platform for spintronic 
research due to their unique spin‑dependent properties, like 
ultra‑long spin relaxation time and spin diffusion length, 
Rashba spin–orbit coupling (SOC), spin–valley locking, and 
quantum spin Hall effect. Furthermore, stacking individual 
2D materials in a precisely designed order can combine the 
best of different components in one ultimate material [5, 6]. 
For example, the heterostructure of graphene and TMDCs 
enable graphene to have both excellent spin transport perfor‑
mance and larger SOC [7–9]. Along the way, 2D materials 
and related heterostructures can accomplish long‑distance 
spin transport and effective spin manipulation, thereby real‑
izing magnetic logic gates, magnetic random access memory 
(MRAM) [10, 11], and other spintronic devices.

However, several challenges remain to be solved in 2D 
material spintronics. Firstly, the 2D materials used in spin‑
tronics are mostly non‑ferromagnetic [or the Curie temper‑
ature (Tc) is far below room temperature]. Consequently, 
this requires a spin injection into the 2D materials by vari‑
ous methods, which brings a new issue on improving the 
polarization efficiency of the spin injection. On the other 
hand, efficiently manipulating the spin and maintaining the 
spin state are not yet achieved. The inability to transmit spin 
information and switch spin states means that the applica‑
tion of spin is impossible. Over the past few years, much 
of the effort has gone into seeking solutions to these topics 
and much progress has been made, such as the continuous 
improvement of spin parameters [12], the discovery and 
research of the novel 2D materials [13], the magnetic engi‑
neering of non‑magnetic 2D materials [14], and the in‑depth 
study of various spin effects. In this review, while we reca‑
pitulate the pioneering work of spintronics in 2D materials, 
we focus on the recent research and development in this area. 

The first section of this review presents the spin injection in 
2D materials, while the second section reviews the research 
of spin transport in 2D materials. The third section describes 
the ways to manipulate spin, and the final section discusses 
the application of 2D materials in spintronic devices.

2  Spin Injection in 2D Materials

Spin injection is a key and essential topic in the research and 
application of spintronics in 2D materials. A simple solution 
is to produce magnetism in 2D materials, thereby obtaining 
a spin‑polarized state. Besides, many other approaches to 
inject spin have been proposed, including electrical injec‑
tion, optical injection, and spin–orbit coupling effect.

2.1  Magnetic Engineering of Non‑magnetic 2D 
Materials

At present, the widely used 2D materials in spintronic 
research, such as graphene and TMDCs, are non‑magnetic. 
Therefore, magnetic engineering is a significant topic to 
obtain spin‑polarized states in 2D materials, especially 
through gating, doping, functionalization. Magnetism origi‑
nates from the moving charges and spin of elementary par‑
ticles and is commonly deemed unstable in 2D systems on 
account of fundamental hindrances, such as thermal distur‑
bance. Through the efforts of recent years, it is now possible 
to realize long‑range magnetism in 2D systems and many 
achievements have been made in the magnetic engineering 
of non‑magnetic 2D materials.

The mainstream strategy is through introducing vacancies 
or adding adatoms in 2D materials [14] that uses unpaired 
electrons to obtain local magnetic moments [15], such as 
hydrogenated graphene [16–19] (Fig. 1a), vacancy graphene 
[16, 20, 21] (Fig. 1b), and graphene nanoribbons [22–24] 
(Fig. 1c). As shown in Fig. 1a, hydrogen chemisorbs revers‑
ibly on graphene, forming a strong covalent bond [25]. This 
effectively removes one PZ orbit (it shifts the bonding state 
down by several electron volts) from the � band, thus creating 
a sublattice imbalance [15]. And a single H atom leads to a 
quasi‑localized state with a magnetic moment of 1 �B . Also, 
as an analogue of fully hydrogenated graphene but far more 
complex, graphane has been noticed and predicted to possess 
unique properties [26]. Moreover, organic molecules could 
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change the properties of graphene [27] and graphane (CH), 
[28] by absorbing on the surface. However, the magnetic 
states may depend on the type [29–31], concentration [16, 19, 
29], and distribution [16, 32, 33] of the adsorbates, as well as 
the stacking order in case of multilayer graphene [11, 34]. A 
detailed summary of the theoretical calculations under differ‑
ent adsorption conditions can be found in Ref. [11]. Besides, 
by removing four electrons from the bands, a single vacancy 
in graphene generates a local spin‑polarized electronic den‑
sity, which could be further connected by cruise electrons, as 
shown in Fig. 1b. However, realizing long‑range ferromag‑
netic order is still a considerable challenge through the above 
methods, and even there was a report [20] questioned the fea‑
sibility of these approaches, because only the paramagnetic 
response in graphene with fluorine adatoms or vacancies at 
low temperatures has been observed. What’s more, there was 
only limited experimental work on magnetic engineering, 
and most of the results were theoretically calculated based 
on assumptions. In reality, 2D materials are normally sup‑
ported by substrates, which may affect the results [18, 35]. 
Although there have been many reports on the formation of 
ferromagnetism in non‑magnetic 2D materials, no consensus 
has been reached. The main argument has been focused on 
the source of the detected signal, which might be from the 
ferromagnetic impurities of the substrate [36, 37].

Additionally, graphene nanoribbons have extended 
defects, which result in dangling bonds formed by unpaired 
electrons at the boundary, contributing to magnetic 
moments, as shown in Fig. 1c. Nonetheless, these chemically 
active extended defects are easily passivated, giving rise 
to unstable magnetic properties. Also, theoretically, strict 
long‑range 1D ferromagnetic order cannot exist [22]. Band 
structure engineering is a vital route to create 2D ferromag‑
netism without the assistance of structural imperfections, 
which was predicted to exist in electrically biased bilayer 
graphene [38, 39] and doped GaSe [40]. In biased bilayer 
graphene, the vertical electric field causes the electrostatic 
potentials of the two layers different, opening a band gap 
and inducing a Mexican hat distribution (Fig. 1d) at low 
energy, which is usually accompanied by the itinerant fer‑
romagnetism. However, experimentally, the ferromagnetism 
has not been confirmed yet. It was speculated that this might 
be due to the limited total magnetic moments or low TC . 
Similarly, the doped GaSe should also display the Mexican 
hat distribution.

Recently, there have been a large number of reports on 
proximity effect, which provides non‑magnetic 2D mate‑
rials with a solution of borrowing magnetic properties 
from neighboring magnetic materials, especially ferro‑
magnetic insulators. Conversely, 2D materials provide a 
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Fig. 1  Schematic diagram of magnetic engineering strategy. a Hydrogenated graphene. b Vacancy graphene. c Graphene nanoribbon. Different 
colors represent magnetic moments in different directions [15]. d Calculated Mexican hat band dispersion in electrically biased Bernal stacked 
bilayer graphene. The diverging electronic DOS at the edge of the Mexican hat potentially results in ferromagnetic Stoner instability [38]. e 
Schematic drawing (with top gate) of the devices, which can prove the proximity‑induced ferromagnetism in graphene transferred to a YIG/GGG 
substrate [41]. Figures reproduced with permission from Refs. [15, 38, 41]. (Color figure online)
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unique platform for exploring the full potential of mag‑
netic proximity effect. Through transferring the exfoliated 
graphene to ferromagnetic insulator yttrium ion garnet 
(YIG, Fig. 1e) [41] or EuS [42], a spin precession, caused 
by a sufficiently strong exchange field, can be observed, 
which is significant evidence of the presence of ferro‑
magnetism in graphene. Also, the magnetic proximity 
coupling can significantly lift the valley splitting in  WS2 
by first‑principles calculation that is valuable to achieve 
spin polarization [43]. Also, if the magnetic insulator is a 
2D material, a seamlessly integrated and interacting van 
der Waals (vdW) heterostructure can be formed, and the 
strong atomicity at the interface is favorable for interfa‑
cial exchange.

2.2  Electrical Injection in 2D Materials

Though magnetic engineering can induce spin‑polar‑
ized states and thus acquire magnetism in 2D materi‑
als, electrical injection is a more common and practical 
strategy to produce spin‑polarized states for spintronic 
devices. It was theoretically predicted that the spin injec‑
tion efficiency (illustrated by spin injection polarization, 
P = (N↑ − N↓)∕(N↑ + N↓) ) from ferromagnetic electrodes 
into graphene can be as high as 60–80% [44]. In practice, 
when polarized electrons are directly injected into a 2D 
material through a ferromagnetic electrode, due to conduc‑
tivity mismatch, spin injection efficiency is extremely low 
[45–51]. The spin injection polarization can be described 
by Eq. 1 [48]:

 with the total effective resistance rFN = rF + rN + rC , 
in which rF , rN , rC are the effective resistance of the fer‑
romagnetic electrode, 2D material, contact, respectively. 
PF =

(

�↑ − �↓
)

∕
(

�↑ + �↓
)

 is the conductivity polarization 
of the ferromagnetic electrode, and PC is the conductiv‑
ity polarization of the contact. For direct contact ( rC = 0 ), 
because of rF ≪ rN, P is very low.

To solve the conductivity mismatch and improve the spin 
injection efficiency, a tunneling injection method was pro‑
posed, in which a tunnel barrier was added between the fer‑
romagnetic electrode and the 2D material ( rC ≠ 0 ) [45, 46, 48, 
49, 52–66]. Generally, the tunnel barrier is a metal oxide, such 

(1)P =
rFPF + rCPC

rFN

as MgO,  Al2O3, and  TiO2. However, growing a layer of oxide 
of an appropriate thickness and defect‑free (with electron tun‑
neling and no backflow) became a new challenge [45, 52, 53, 
62, 63]. Related research has attempted to solve these problems 
and achieved positive results by improving growth techniques 
[53, 62, 63, 67] or incorporating other materials [45, 46]. For 
example, if the vdW 2D insulator is served as a tunnel barrier, 
such as hBN [68], the spin depolarization caused by interface 
defects can be well solved. Comparison of some representative 
results is shown in Fig. 2. This is because the surface of hBN is 
atomically smooth, and has few charge inhomogeneities [69]. 
Furthermore, atomically hBN is an isomorph of graphite with 
a similar hexagonal layered structure and a small lattice mis‑
match [70] of ~ 1.8%, exerting less strain on graphene [71]. 
Therefore, there is less surface state at the interface and the 
charges or spin traps are minimized.

Surprisingly, theoretical calculation shows that the spin 
injection efficiency can reach 100% with the increase in 
the hBN’s thickness by using a Ni electrode [68], which 
has a good lattice match with both the graphene and the 
hBN. Experimentally, both of exfoliated hBN [72, 73] and 
CVD‑hBN [74–77] have been extensively studied as a tun‑
nel barrier. What’s more, it was indicated that a thicker 
hBN tunneling layer could achieve higher spin polariza‑
tion [78]. For instance, Singh et al. experimentally demon‑
strated that bilayer hBN is a better choice for tunnel barrier 
than monolayer hBN [72]. And recently, Leutenantsmeyer 
et al. have characterized the spin injection into bilayer gra‑
phene with a trilayer hBN tunnel barrier and compared the 

Fig. 2  Development of electrical injection with different tunnel bar‑
riers.  Pinj stands for the spin injection polarization in graphene. And 
T shows the experimental temperature. The numbers are the relevant 
reference. It should be noted that the above statistics are incomplete, 
just representative results
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result with that of the spin injection achieved with bilayer 
hBN [79].

Generally, the graphene/hBN heterostructure is fabri‑
cated by the transfer technology. Although the transfer 
technology comes in various forms, the fast pickup tech‑
nique [80] (Fig. 3a, b) is relatively mature [81], and the 
possible residue on the material interface is considered 
the source for the great disparity between the experimen‑
tal value and the theoretical prediction. On this account, 
growing hBN directly on graphene by CVD may be a 
viable solution and the annealing is of great importance 
to improve the device performance. Moreover, a bias can 
further increase the spin injection polarization. Kamalakar 
et al. made the enhanced magnitude of the spin polariza‑
tion up by ~ 65%, which was an order of magnitude higher 
than the result achieved with oxide barriers and much 
higher than the maximum intrinsic spin polarization of Co 
(~ 35%), through the changing of the CVD‑hBN thickness 
and the resistance of Co/CVD‑hBN/graphene interface. 
Meanwhile, they observed the signal inversion in graphene 
for the first time [82]. In another report, unexpected large 

and bias‑induced (differential) spin injection (detection) 
polarizations close to ± 100% (Fig. 3c, d) have been dis‑
covered in FM/bilayer hBN/graphene/hBN heterostruc‑
tures [83], as shown in Fig. 3e. The authors also found a 
distinction between the exfoliated hBN and the CVD‑hBN, 
which might result from stacked layers (refer to Fig. 3c).

Separately, Friedman et al. reported a very high spin injec‑
tion efficiency ( > 60% ) with a graphene bilayer in which the 
fluorinated upper layer served as a tunnel barrier and the 
non‑fluorinated bottom layer acted as a high‑mobility trans‑
port channel [11, 84], as shown in Fig. 3f. Indeed, through 
the control of the graphene/FM interface area to enhance the 
contact resistance, it can realize high‑efficiency spin injec‑
tion and detection in the case of transparent contact (without 
the tunnel barrier) [85].

In addition, 2D ferromagnetic materials can effectively 
enhance the spin injection polarization. For example, it 
was found that  CrI3 as a tunnel barrier, tunneling electrons 
could be scattered multiple times across the alternatively 
spin‑polarized layers, resulting in large spin polarizability 
[86–89]. This result was attributed to the magnon‑mediated 
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tunneling process (with ferromagnetic barriers,  CrI3 [89], 
 CrBr3 [90]), in contrast to the conventional phonon‑ or 
electron‑mediated tunneling (with non‑magnetic barri‑
ers). On the other hand, 2D ferromagnetic materials, such 
as  Fe3GeTe2, can serve as a ferromagnetic electrode. Due 
to better interface contact between 2D materials, enhanced 
spin injection polarization may be obtained. Additionally, 
half‑metal materials with high spin polarization, such as 
Heusler alloys [91] and topological insulators (TI) [92], 
are now good candidates for achieving high spin injection 
polarization. Similarly, 2D magnetic half‑metal materials 
are also worthy of attention. Possible 2D half‑metals pre‑
dicted by theory include manganese trihalides [93],  FeCl2, 
 FeBr2,  FeI2 [94], Janus structure of monolayer MnSSe [95], 
and 2H‑VSe2 [96]. However, currently found 2D ferromag‑
netic materials in room temperature only include  VSe2 [97], 
 MnSe2 [98], and gate‑tuned  Fe3GeTe2 [99]. The ferromag‑
netic phase transition temperature ( TC ) of almost all other 
magnetic 2D materials is still much lower than the room 
temperature (refer to Table 1). Hence, for practical applica‑
tion and research, a great effort needs to be directed toward 
high‑temperature 2D magnets. While this is a huge chal‑
lenge, the potential of realizing high‑temperature ferromag‑
netic behavior in 2D materials is attractive. Moreover, the 

fundamental restriction of 2D long‑range magnetic order 
is nonexistent theoretically, but the enhanced thermal fluc‑
tuation is rather always a hindrance. Based on the available 
research information, the rule of thumb in designing high‑
temperature 2D ferromagnetic materials is to strengthen the 
exchange interaction and the uniaxial magnetic anisotropy 
[14].

2.3  Optical Injection in 2D Materials

During electrical injection, the contact between the spin 
transport channel and the electrode (or the tunnel barrier) 
causes spin‑dependent scattering at the interface, which 
affects the efficiency of spin injection and limits the poten‑
tial of materials in spintronic research. Instead, the non‑
destructive optical injection has no such drawback. In the 
presence of a strong SOC, the interaction between the inci‑
dent light and the orbital degree of freedom of graphene 
makes a possible spin injection. Inglot et al. reported that 
by linearly polarized incident light, without any FM elec‑
trode, direct injection of spin‑polarized current into gra‑
phene could be achieved. The SOC of graphene comes 
from the substrate‑induced Rashba effect and is assisted by 
external static magnetic fields in the plane. Furthermore, 

Table 1  Part of the 2D magnetic materials

2D material Tc Electric properties Magnetic properties

Cr2Ge2Te6 30 K (bilayer)
68 K (bulk)
Weak magnetic dependence

Insulator Ferromagnetism

Cr2Si2Te6 33 K (monolayer > bulk)
290 K (under stress)

Semiconductor Ferromagnetism

Fe3GeTe2 205 K (bulk)
150–220 K (Fe occupancy)
300 K
(monolayer, gate tune)

Metal Ferromagnetism

VSe2‑1T 300 K (monolayer) Metal Ferromagnetism (monolayer, controversial)
Paramagnetic (bulk)

VS2‑1T 300 K (few layers) Metal Ferromagnetism
(few layers)
Ferromagnetism (monolayer, theoretic)

MnSe2‑1T 300 K (monolayer) Metal Ferromagnetism (ultra‑thin layer)
Antiferromagnetism (bulk)

CrI3 45 K (monolayer)
61 K (bulk)

Insulator Ferromagnetism

CrBr3 37 K (monolayer) Insulator Ferromagnetism
ReI3 65 K (theoretic) Half‑metal Ferromagnetism (theoretic)
ReBr3 390 K (theoretic) Half‑metal Ferromagnetism (theoretic)
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by adjusting the intensity of the SOC and the magnetic 
field, up to 22% of the spin injection polarization can be 
achieved [100]. Besides, without the assistance of the in‑
plane magnetic field, Rioux and Burkard have also realized 
optical injection by linearly polarized incident light. And 
through controlling the gate voltage and the incident light 
frequency, spin polarization could reach up to 75% [101].

On the other hand, the spin–valley coupling of TMDCs 
provides an attractive approach for optical injection and 
derives a novel field called valleytronics [102]. The valley 
selectively absorbs the circularly polarized light, which 
can excite spin‑polarized carriers, and those spin‑polar‑
ized carriers can diffuse into the neighboring graphene 
layer, realizing high‑efficiency spin injection. For example, 
Luo et al. fabricated monolayer  MoS2/few‑layer graphene 
hybrid spin valves and demonstrated, for the first time, 
the opto‑valleytronics spin injection and lateral spin trans‑
port in room temperature [103]. Avsar et al. achieved spin 
injection by using monolayer  WSe2/graphene and utilized 
polarization‑dependent measurement to prove that the spin 
originated from the monolayer  WSe2 [104], as shown in 
Fig. 4a. They then conducted research of bilayer  WSe2 
and found that spin polarization was absent because of the 
restored inversion symmetry in bilayer  WSe2, which fur‑
ther confirmed that the spin‑polarized current in graphene 
was derived from the optical injection.

Recently, Cheng et al. [105] have taken advantage of 
a femtosecond laser to form far out‑of‑equilibrium spin 
populations in a Co electrode, and successfully injected 
spin‑polarized current directly into a monolayer  MoS2 
semiconductor (Fig. 4b). They also estimated the mag‑
nitude of spin current density to attain  106–108 A cm−2, 
which is a orders of magnitude larger than the amplitudes 
of a typical spin current injection into a semiconductor 
(for example,  102–103 A cm−2 using spin pump [106] and 
 10–1–100 A cm−2 via tunnel junction [107, 108]). With the 
incident femtosecond laser normal on Co, the far out‑of‑
equilibrium spin population was generated in ferromag‑
netic Co. As the excited carriers diffused, they relaxed in 
energy. Moreover, due to the strong spin asymmetry in Co, 
a significant number of majority spin electrons would per‑
sist for a longer time at high energies. As theoretically pro‑
posed [109], only the majority spin electrons with energy 
higher than the semiconductor conduction band minimum 
could cross into the semiconducting layer [105], as shown 
in the bottom of Fig. 4b.

2.4  SOC Effects in 2D Materials

Spin–orbit coupling (SOC) is the relativistic interaction 
between the spin and momentum degrees of freedom of 
electrons. In low dimensions, the SOC effects are greatly 
enhanced, and the new phases of matter, such as spin‑polar‑
ized surface and interface states, get emerged. At the surface 
or interface, inversion symmetry is broken and the resultant 
electric field couples with the spin of itinerant electrons, 
generating spin splitting, known as Rashba SOC, with the 
corresponding Hamiltonian,

where v0 is the Rashba parameter and �̂ is the unit normal to 
the surface or interface, while � is momentum, and � is the 
spin. Moreover, (2) corresponds to an effective �‑dependent 
magnetic field,

The coupling parameter � depends on the potential and 
the external field that may be applied by gates. Besides, spin 
polarization also exists on the surface of TI, with additional 
topology properties (The Hamiltonian has the same Rashba 
form). In both cases, a strong 2D SOC locks the electron 
spin and momentum together, directly affecting the inter‑
action between the charge and spin transport. These low‑
dimensional SOC‑based effects are generally robust and can 
be explored at room temperature [110]. Hence, the SOC‑
based effects have a great significance to realize all‑electric 
spintronic devices.

According to Edelstein or inverse Edelstein effects [111] 
(Fig. 5), Rashba surface and topological surface states with 
spiral spin polarization distribution at Fermi surface can 
realize conversion between the spin current and the charge 
current. The spin Hall effect of heavy metals is another 
type of conversion by SOC effects in 3D [112]. As shown 
schematically in Fig. 5e [113], an in‑plane charge current 
can shift the Fermi contours in the direction of the cur‑
rent (x‑direction). The electric field changes � and forces 
the electrons out of alignment with �(�) . Therefore, while 
moving in the momentum space, the electrons experience 
an effective torque which tilts the spins, and the spin tilt 
in opposing directions on opposite sides of the Fermi sur‑
face ( �� > 0 or < 0 ). The spin accumulation will even‑
tually occur perpendicular to the current direction in the 
plane (y‑direction). Furthermore, the accumulated spins can 

(2)HR = v0�̂ ⋅ (� × �)

(3)�(�) = 2𝛼�̂ × �
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diffuse into the adjacent layer, resulting in a pure 3D spin 
current. There are some predicted 2D TIs of first‑principles 
calculations that are worth noting, including the α‑tin [114, 
115], dumbbell tin [116], silicene/germanene [117] and the 
decorated Bi/Sb [118].

Experimentally, Vaklinova et al. demonstrated the injec‑
tion of spin‑polarized current into graphene (Fig. 4c) from 
a topological insulator,  Bi2Te2Se, whose 2D surface states 
host massless Dirac Fermions. In several sets of the experi‑
ments, the highest spin injection polarization reached 10%. 
Although there was doubt about the source of the spin 
signals, which might come from the surface state of TI or 
from spin Hall effect caused by the proximity effect, the 
authors analyzed the signal source according to the trend 
of non‑local spin signal with various conditions and were 
able to basically determine that the signal originated from 

the surface states of TI [85]. Moreover, the non‑local spin 
signal was detected with a transparent contact in this experi‑
ment. In addition, by combining Hall probes with ferromag‑
netic electrodes (Fig. 4d) and varying temperatures up to 
room temperature [119], Safeer et al. unambiguously dem‑
onstrated experimentally the spin Hall effect in graphene 
induced by  MoS2 proximity. Furthermore, theoretical cal‑
culation shows that  WS2 can maximize the spin proximity 
effect in graphene compared to graphene on  MoS2,  WSe2, 
or  MoSe2. To enhance the spin proximity effect, the highest 
interface quality should be sought [9]. As a heavy metal, Pt 
has a strong SOC similar to  MoS2, and it has been reported 
that the spin Hall effect in Pt could generate pure spin cur‑
rents in a few‑layer graphene channel at room temperature 
[120], as shown in Fig. 4e.
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a partial compensation of the contributions of the two contours.) e Schematic picture of intrinsic spin–orbit generated spin currents. An electric 
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3  Spin Transport in 2D Materials

While the implementation of spin injection in materials has 
been successful, an elementary issue in spintronics is how 
to maintain the spin states for a long enough time and a long 
enough distance to complete the transmission of informa‑
tion. Take that into consideration, 2D material is an ideal 
platform with great advantages.

2D materials, such as graphene, BP, and silicene, are 
the excellent channels of spin and the crucial materials 
for the practical application of spin devices. Theoretical 
estimations indicate that in 2D materials, the spin diffusion 

length can be as long as ~ 10 μm and the spin relaxation 
time is up to ~ 1 μs at room temperature [15], which are 
several orders of magnitude larger than the traditional 
metal conductors. Emphatically, for the research of spin 
transport, the non‑local spin valve is still the most vital 
structure. The usual non‑local spin valve is a four‑electrode 
structure, with two ferromagnetic electrodes in the middle 
as the injector and detector, and a 2D material channel 
at the bottom. Although many innovative structures have 
emerged in the research (refer to Fig. 6 and Table 2), the 
fundamental has not changed yet. Moreover, the non‑local 
spin valve can be used for Hanle measurements (Fig. 7a, 

A

D1

Graphene hBN SiC, YIG, TMDC, etc.

PMMA, LOR, etc.FM

SiO2/Si

Al2O3, MgO, etc.

D2

B2B1

C

Fig. 6  Development trend of spin device structure (graphene as an example). A Non‑local spin valve with oxide tunnel barriers, B with sus‑
pended graphene, C with a different substrate, D with hBN as encapsulation or tunnel barrier

Table 2  Development of spin transport research

Bold, graphene; italic, BP; bold–italics,  MoS2. It should be noted that the below statistics are incomplete, just representative results. *means that 
the encapsulated hBN is also a tunnel barrier

Year Structure �s/ns �s∕μm T/K References

2007 SiO2/Si (sub) 0.17 2 300 [52]
2012 SiC (sub) 1.3 0.56 300 [130]
2012 hBN (sub) 0.39 4.5 300 [137]
2014 hBN (sub) and hBN‑encapsulated 2 12 300 [140]
2016 hBN (sub) and ML‑hBN‑encapsulated* 0.18 5.1 300 [141]
2016 hBN (sub) and 2–3L‑hBN‑encapsulated* 1.86 5.79 300 [72]
2016 Suspension and hBN‑encapsulated 12.6 30.5 300 [147]
2019 Flexible substrate 0.25 8 300 [142]
2017 hBN (sub) and hBN-encapsulated* 4 6 100 [154]
2017 SiO2/Si (sub) 46 0.24 12 [161]
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b), which is able to demonstrate spin transport and cal‑
culate the spin relaxation time ( �s ) and the spin diffusion 
length ( �s =

√

�sDs , where Ds is the diffusion coefficient) 
by fitting the data with Eq. 4 [15], (4)
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    where the ± represents the parallel or antiparallel mag‑
netization state, and L is the distance from the injector to the 
detector, while 𝜔L = g𝜇BB⊥∕� ( �B is the Bohr magneton and 
ℏ is reduced Planck constant).

Figure 6 shows that graphene was extensively studied 
in spin transport. The ultra‑high carrier mobility and weak 
intrinsic spin–orbit coupling of graphene make the electron 
spin be carried nearly unaffected over unprecedented dis‑
tances, even at room temperature [15, 121–124]. Initially, 
the research of spin transport was performed in graphene 
samples on a silicon substrate prepared by exfoliation or 
CVD growth (Fig. 6A). Tombros et al. reported the spin 
transport in single graphene with a silicon substrate at room 
temperature for the first time. They obtained the highest 
spin relaxation time of ~ 170 ps and a spin diffusion length 
of ~ 2 μm [52]. However, early studies on the silicon sub‑
strate did not achieve a spin relaxation time of more than 
500 ps and mobility of more than 5000 cm2 V−1 s−1, which 
are several orders of magnitude lower than expected [45, 
125]. Such low values are believed to be caused by residual 
impurities during the fabrication of the device and the scat‑
tering of electrical and adsorbed atoms on the silicon sub‑
strate [126–129].

To improve the spin relaxation time and the spin diffusion 
length, there have been attempts to epitaxially grow gra‑
phene on other substrate materials, such as SiC [130, 131], 
YIG [132, 133], and TMDCs [8, 134, 135] (Fig. 6C). With 
the SiC substrate, the spin relaxation time of monolayer gra‑
phene at room temperature reached up to 1.3 ns [130], while 
the localized states in SiC were found to influence the spin 
diffusion transport through the interlayer hopping mecha‑
nisms [136]. Another approach is to use hBN as a substrate, 
and transfer graphene into the hBN (Fig. 6D1). Zomer et al. 
[137] fabricated the first graphene spin valves on an hBN 
substrate and showed high mobility of ~ 40,000 cm2 V−1 s−1 
and enhanced spin diffusion length up to ~ 4.5 μm. But the 
spin relaxation time was only ~ 390 ps, which is similar to 
the value achieved on a silicon substrate. It was further dem‑
onstrated that there was no strong correlation between the 
spin relaxation time and the mobility of the graphene, which 
was consistent with a study of spin transport in graphene 
with different mobilities [138]. Also, it was shown that the 
charge scattering was not a major role in the spin relaxa‑
tion time. Thus, more attention was paid to the effect of 
the residual solution on spin relaxation time during device 
fabrication [139], and an approach for hBN‑encapsulated 

graphene was proposed (Fig. 6D2). It was shown [140] that a 
partial fully encapsulated monolayer graphene device could 
achieve a spin relaxation time of 2 ns and a spin diffusion 
length of 12 μm. Meanwhile, as a comparison, the measured 
spin relaxation time was only 0.3 ns in the incompletely 
encapsulated part. Additionally, Gurram et al. [141] fabri‑
cated a fully encapsulated monolayer graphene device with 
a top monolayer hBN, but obtained a spin relaxation time of 
only 176 ps and a spin diffusion length of 5.1 μm. The rea‑
son could be that the interface resistance of the monolayer 
graphene/hBN was extremely low, leading to unsatisfactory 
injection efficiency, while the hBN was too thin to protect 
graphene from contamination. Therefore, recently, they have 
encapsulated the graphene with bilayer hBN, which con‑
sisted of two individually stacked CVD hBN monolayers via 
the conventional wet transfer method [75], but only achieved 
a mobility below 3400  cm2 V−1 s−1 and a spin relaxation 
time below 400 ps. Such low values might be caused by 
solution residues during the transfer process (through the 
wet transfer method), or by a misalignment between unnatu‑
rally grown double‑layered hBN (refer to Fig. 7c). Simi‑
larly, with hBN as a tunnel barrier, Singh et al. reported the 
spin relaxation time that exceeded a nanosecond (1.86 ns) 
at room temperature for the first time. Furthermore, they 
explored different layers of hBN and suggested 2–3 layers as 
optimal [72]. As can be seen from the above discussion, even 
though the same device structure was adopted, the results of 
Gurram and Singh are different, which was most likely due 
to the different stack forms of hBN (refer to Fig. 7c).

Moreover, Serrano et al. studied the spin transport on flex‑
ible substrates with a CVD monolayer graphene, as shown in 
Fig. 7d. Although on a rougher substrate, the spin diffusion 
coefficient still reached ~ 0.2 m2 s−1 at room temperature in 
long graphene channels (up to 15 μm). Compared to the 
Si/SiO2 substrate, such values were up to 20 times larger, 
leading to spin signals one order higher and an enhanced 
spin diffusion length of ~ 10 μm. In general, the intrinsic 
roughness of the polymer substrate, which is 4–5 times 
higher than the roughness of the standard silicon substrates, 
is not encouraging for spin transport compared to the Si/
SiO2 substrate, but the carrier mobility was up to 10 times 
larger. Atomic force microscope (AFM) revealed that in the 
polymer, despite a higher roughness, the roughness is also 
wider, implying a reduction in protruding scattering peaks 
per unit area in comparison with a Si/SiO2 substrate (esti‑
mated reduction of up to 90%) [142].
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In addition to the above methods, suspending graphene is a 
fantastic way to solve the substrate scattering (Fig. 6B). In this 
way, it is able to avoid the coupling of graphene and substrate 
electrons and so to avoid masking the intrinsic properties of 
2D materials. However, initially, the most common technique 
to suspend graphene flakes was acid‑based [143, 144], which 
was used to etch the substrate and that also etched away the 
ferromagnetic electrodes. Therefore, a polymer‑based scheme 
has been developed and the flake can be suspended over long 
distances (Fig. 6B1). Moreover, researchers have discussed 
the reasons for the low spin relaxation time in detail [145]. 
Later, Drogeler et al. presented a new suspending way based 
on electrodes (Fig. 6B2). They firstly prepared the Co/MgO 
electrodes onto Si/SiO2 and then mechanically transferred a 
graphene/hBN heterostructure onto the pre‑patterned elec‑
trodes. Furthermore, they explored room‑temperature spin 
transport with different layers of graphene [146]. And by these 
means, even at a short transport channel of 2–3.5 μm, they 
achieved a spin relaxation time of 12.6 ns and a spin diffusion 
length of 30.5 μm [147], which are the maximum values of 
pristine graphene so far. It was also evidenced that the spin 
dephasing, caused by the solvent, was almost as important as 
the contact‑induced dephasing. A recent suspending device 
with CVD monolayer graphene achieved a relaxation time 
of only 1.75 ns at room temperature [148]. Presumably, the 
discrepancy originated from the CVD graphene and the exfo‑
liated graphene. On the other hand, utilizing highly polarized 
LSMO electrons, Yan et al. reported a spin valve with a few‑
layer graphene flake bridging electrodes that had a long spin 
diffusion length at low temperature [149].

Also, long‑distance spin transport can be realized through 
a graphene quantum Hall antiferromagnet. Stepanov et al. 
reported a large non‑local electrical signal across a 5‑μm‑long 
channel, where the utility of graphene in the quantum Hall 
regime was demonstrated [150]. In comparison with gra‑
phene, black phosphorus (BP) is a relatively new member of 
2D materials with a sizeable direct band gap [2] (overcoming 
the lack of band gap in graphene) and considerable room‑
temperature mobilities (1000 cm2 V−1 s−1) [151] making it a 
promising transport material [152]. Moreover, phosphorus is 
a light element with weak SOC [153], indicating a long spin 
transport distance in theory. Avsar et al. fabricated a non‑
local spin valve with an hBN/BP/hBN structure, as shown in 
Fig. 7e, and obtained a spin relaxation time up to 4 ns and a 

spin diffusion length exceeding 6 μm at 100 K [154]. Besides, 
they established the basic spin properties of BP, to demon‑
strate that spin injection, transport, procession, and detection 
could be achieved in BP at room temperature.

In recent years, silicene has been attracting growing 
attention [155]. The different edges of silicene nanorib‑
bons lead to rich possibilities of magnetic states, which 
bring in new opportunities for silicene to become spin 
transport channels [156]. In theory, the carrier mobility of 
silicene is up to 10,000 cm2 V−1 s−1 at room temperature 
[157]. Moreover, there are a large number of theoretical 
predictions proving that spin polarization and spin trans‑
port can be accomplished in silicene nanoribbons [155, 
158, 159] and spin FET based on silicene nanoribbons 
was also proposed [158]. In the experiment, it has been 
reported that spin polarization was achieved in highly 
doped silicon at room temperature and the spin relaxa‑
tion time was ~ 270 ps [107]. On the other hand, Li Tao 
et al. used a special growth–transfer–fabrication process 
(Fig. 7f) to implement FET at room temperature. Par‑
ticularly, this approach addresses a major challenge for 
material preservation during transfer and device fabrica‑
tion and is applicable to other air‑sensitive 2D materials 
such as germanene and phosphorene [160]. In brief, these 
research outcomes encourage us to consider silicene as a 
promising candidate for efficient spin devices.

Apart from the traditional electronic transport channels 
mentioned above, a report suggested that 2D semiconduc‑
tors can also act as a spin transport channel. Although the 
semiconductor channel remains challenging, Liang et al. 
have shown the evidence of electrical spin injection and 
detection in the conduction band of a multilayer  MoS2, in 
which the spin diffusion length reached ~ 235 nm [161].

4  Spin Manipulation in 2D Materials

Flexible control of the electron spin in materials is crucial 
to realize the practical application of spin devices [162]. 
Much of the effort has gone into exploiting effective 
manipulating schemes. Fortunately, 2D materials supply 
a wealth of means for spin manipulation, including mag‑
netic engineering and proximity effect.
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4.1  Magnetic Control Engineering in 2D Materials

Starting from macroscopic magnetics is the most intuitive 
and direct way to manipulate the electron spin. Nevertheless, 
the practical application of this approach is not attractive. 
The magnetism of 2D materials is affected by many factors, 
providing abundant means for spin manipulation.

Firstly, electric control, through either an electric field 
or electrostatic doping, can change the electron population, 
orbit occupation, etc., leading to the modification of mag‑
netic properties [14]. The 2D materials have an ultra‑thin 
thickness, therefore, the external electric field can easily 
penetrate and change the magnetism of the 2D materials. 
For example, as shown in Fig. 8a, b, via ionic liquid gating, 

the TC of  Fe3GeTe2 exceeded room temperature [99], which 
is beneficial to the conductive electron‑mediated ferromag‑
netism. In addition, by electrostatic doping (Fig. 8d, e), the 
bilayer  CrI3 can be completely converted from interlayer 
antiferromagnetism to ferromagnetism [163]. And in the 
same manner, the TC of monolayer  CrI3 can be significantly 
regulated. Furthermore, if the magnetoelectric multiferroics 
of the materials are utilized, the electrical regulation effi‑
ciency of the magnetism could be significantly improved 
due to the inherent coupling of magnetic and electric orders. 
Unfortunately, there is little relevant theoretical information 
available.

Additionally, stress is an effective method to control the 
properties of materials, which is able to change the lattice 
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structure of materials. Since the magnetic properties are 
closely related to the structural parameters of the material, 
such as the magnetostrictions, the stress also has a good 
regulation effect on the magnetic properties of the material. 
Spin–lattice coupling has been experimentally observed or 
theoretically predicted in layered magnets such as  Cr2Si2Te6 
[164],  Cr2Ge2Te6 [165], and  Fe3GeTe2 [166].

What’s more, the magnetic properties of magnetic 2D 
materials also strongly depend on the magnetic coupling 
between layers, implying that interlayer vdW interac‑
tions can be employed for magnetic control. For example, 
although the bulk  CrI3 exhibits ferromagnetism, the inter‑
layer magnetic interaction of the bilayer  CrI3 exhibits anti‑
ferromagnetism. And the theory shows that the stacking 
between  CrI3 monolayers determines the nature of interlayer 
magnetic coupling [167] (refer to Fig. 8c).

4.2  Heterostructure in 2D Materials

As described earlier, the extremely weak SOC of graphene 
makes it the ideal spin transport channel. However, such 
weak SOC leads to the inability of electron spins in gra‑
phene, which limits its application in spin devices. As a 
result, enhancing the SOC of graphene has become a hot 
research direction, and many methods for improving the 
SOC of graphene have been proposed. For example, the 
covalently bonded hydrogen atoms can greatly enhance the 
spin–orbit interaction of the graphene [168]. But introducing 
adatoms will influence the transport of the spin electrons. 
Instead, the 2D material heterostructure, utilizing the prox‑
imity effect, is an ideal solution.

On the contrary, TMDCs have a strong SOC, and the het‑
erostructure with graphene can significantly improve the SOC 
of graphene. For instance, in graphene with a  WS2 substrate, 
there is a clear low‑temperature weak antilocalization effect, 
which provides direct evidence of the enhanced SOC [8]. In 
the same way, TIs/graphene vdW heterostructure can lead 
to a strong proximity‑induced SOC in graphene [169, 170]. 
Although an increasing number of methods have been adopted 
to enhance the SOC of graphene, there is still a lack of good 
schemes on how to manipulate spin transport. Recently, Yan 
et al. have successfully realized the manipulation of spin cur‑
rent in graphene by constructing a  MoS2 on the graphene 
channel and they further explained its mechanism with the 
spin absorption theory [171]. Soon after, Dankert and Dash 

achieved manipulation at room temperature (Fig. 8f) that veri‑
fied the spin absorption theory experimentally [135]. Nonethe‑
less, true sense of utilizing SOC for precise spin manipulation 
as Datta and Das mentioned in 1990 [172] is still not realized.

In addition, the heterostructure of the spin channel and 
the ferromagnetic material can manipulate the spin by the 
exchange interaction between electrons. The exchange 
proximity interaction experienced by graphene in proxim‑
ity to a ferromagnetic material acts as an effective Zeeman 
field for electrons in graphene that induces a spin preces‑
sion around the magnetization axis of the ferromagnetic 
materials. Also, the magnetic properties of ferromagnetic 
materials can be controlled by electrical methods, making 
their practical applications possible [11]. Besides, utilizing 
a magnetic proximity effect of 1D ferromagnetic contact, Xu 
et al. demonstrated the gate‑tunable spin transport. An elec‑
trostatic back gate can tune the Fermi level of graphene to 
probe different energy levels of the spin‑polarized density of 
states of the 1D ferromagnetic contact (Fig. 8g). In contrast 
to conventional spin valves, they provided an alternative path 
to realize spin manipulation in graphene [173]. Recently, 
with first‑principles calculation, Zollner has investigated the 
electronic band structure and the proximity exchange effect 
in bilayer graphene on a family of ferromagnetic multilay‑
ers of Cr2X2Te6 (X = Ge, Si, and Sn). They suggested that 
applying a vertical electric field reverses the exchange, allow‑
ing effective turning ON and OFF proximity magnetism in 
bilayer graphene [174].

Fascinatingly, different from the conventional manipulation 
methods, Lin et al. presented a mechanism of gate‑driven pure 
current in graphene. Such a mechanism relies on electrical 
gating of carrier density‑dependent conductivity and spin dif‑
fusion length in graphene and can realize the manipulation of 
spin current in a graphene spin current demultiplexer with a 
Y‑shaped graphene channel [175], as shown in Fig. 8h.

5  Application

2D materials provide a super‑excellent platform for spin‑
tronic research. Besides, 2D materials have brought new 
prospects to the practical application of spintronics and 
are expected to make breakthroughs in low‑power storage, 
computing, and communication.

First of all, 2D materials are broadly applied in magnetic 
tunnel junction (MTJ). The MTJ is a crucial component in 



 Nano‑Micro Lett. (2020) 12:9393 Page 16 of 26

https://doi.org/10.1007/s40820‑020‑00424‑2© The authors

spin devices and vital for implementing logic operations. 
And it is generally composed of two ferromagnetic layers 
separated by a tunnel barrier. The switch is realized by 
controlling the magnetization direction of the ferromag‑
netic layer to be parallel or antiparallel. Particularly, the 
uniform interface of the all‑2D material MTJ can facilitate 
the all‑area tunneling. Furthermore, based on the different 
properties of 2D materials, both the traditional MTJ and 
the MTJ with unique properties can be realized.

Conventionally, the tunnel barrier of MTJ is a metal 
oxide, such as  Al2O3, MgO, and  TiO2. However, it is dif‑
ficult to avoid uneven metal oxide film during the growth 
process, which would result in low magnetoresistance. On 
the contrary, 2D materials have an atomically flat surface. 
Hence, as a tunnel barrier, the 2D insulator allows the spin 
flow to pass through uniformly, thereby achieving greater 
efficiency. For example, using CVD‑hBN as a tunnel bar‑
rier, a magnetoresistance of 6% ( MR =

(

RAP − RP

)

∕RP ) 
was achieved at low temperature [176]. And recently 
Piquemal‑Banci et  al. have fabricated two illustrative 
systems (Co/CVD‑hBN/Co and Co/CVD‑hBN/Fe) and 
obtained magnetoresistance as high as 12% for Co/hBN/
Co and 50% for Co/hBN/Fe. Furthermore, they analyzed 
these large values in light of spin filtering at hybrid chem‑
isorbed/physisorbed hBN, in support of ab initio calcula‑
tions [177]. Also, 2D semiconductors can act as a tunnel 
barrier, such as  MoS2 [178–180] and  WS2 [181]. Dankert 
et al. reported spin‑polarized tunneling through a mul‑
tilayer CVD  MoS2 at room temperature (Fig.  9a) and 
observed a tunnel magnetoresistance of 0.5% [182]. In 
addition, by employing the heterostructure of a 2D fer‑
romagnetic electrode of  Fe3GeTe2 and hBN (Fig. 9b), the 
magnetoresistance could reach 160% at low temperature 
[183]. This structure makes the use of the advantages of 
the all‑2D material MTJ, where the interface can achieve 
the all‑area tunneling. Otherwise, according to the expo‑
nential function relationship between the tunneling current 
and the barrier thickness, the tunneling current tends to 
pass through the thinner area, resulting in a lower mag‑
netoresistance [14]. Besides, 2D magnetic insulators have 
been proved to be effective to achieve large magnetoresist‑
ance. For example, with  CrI3 as a tunnel barrier, a million 
percent magnetoresistance can be measured under low 
temperature in a strong magnetic field [89].

On the other hand, the perfect spin filtering effect of gra‑
phene can be well applied in MTJ. Due to the special lattice 

matching between graphene and some ferromagnetic elec‑
trodes (Co, Ni, etc.), only a minority of spin states can pass 
through graphene, and the majority of the spin states are 
filtered out [184, 185], as shown in Fig. 9c. In this way, a 
magnetoresistance of 12% at low temperatures is attained 
and magnetoresistance of 5% is still present at room temper‑
ature [186]. Moreover, a heterostructure of graphene/metal 
oxide film, as a tunneling barrier, can give rise to a large 
magnetoresistance. It has been reported that the atomic layer 
deposition technique could deposit  Al2O3 film on CVD gra‑
phene, where the lattice structure of graphene was protected 
from damage, and the magnetoresistance at low temperature 
reached 31% [50]. Notably, most of the above researches 
could only get high magnetic resistance at low temperatures, 
and the switching states were regulated by external magnetic 
fields. Hence, there are still challenges limit the impending 
practical applications, but MTJ based on 2D materials has 
broad application prospects in spintronic devices.

Apart from MTJ, other conventional spintronic devices 
also rely on the regulation of external magnetic fields. 
Noticeably, the ideal device is able to achieve good electri‑
cal control with a small volume of critical current. The spin 
torque device based on the 2D materials can well meet this 
requirement, in which the interaction of spin‑polarized elec‑
trons switches the magnetic states. Furthermore, by means of 
2D materials, the device can be thinned toward atomic scale 
without causing the spin current dissipation in the body like 
in the bulk material [14]. In addition, 2D materials, such as 
 MoS2 [187], can greatly enhance the perpendicular magnetic 
anisotropy of the ferromagnetic layer that is significant to 
overcome the thermal fluctuation.

The spin‑transfer torque magnetic random access memory 
(STT‑MRAM) [188], which has the advantages of non‑vola‑
tility and fast storage speed, is a momentous application area 
for the spin torque device. STT‑MRAM switches the logic 
state via changing the magnetization direction of the free layer 
with different spin polarization currents. However, traditional 
STT‑MRAM cannot achieve the long‑term goal of a smaller 
volume and write current. Therefore, achieving atomic thick‑
ness and a smaller switching critical current is essential for 
the potential application of the 2D materials for STT‑MRAM.

Also, the unique advantages of 2D materials in elec‑
tron spin transport, such as long enough spin relaxation 
time and spin diffusion length at room temperature, can 
be well applied. In addition to the previously mentioned 
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graphene/TMDCs heterostructure field‑effect transistors, 
various graphene‑based FETs have been proposed theo‑
retically and graphene‑based spin logic devices have also 

been proposed, especially the graphene‑based magneto‑
logic gate [15, 122]. The structure of the magnetologic 
gate is shown in Fig. 9d, in which the output M is given 
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by {(A XOR B) OR (C XOR D)} ( XOR and OR present the 
logic gate operation). The "or gate" can be obtained by set‑
ting the states of B and C to "0" (magnetization direction 
"↓"). When the input of the A terminal is "1" (magnetization 
direction "↑"), the polarized direction of the spin current 
("↑") injected into the graphene channel is opposite to that 
of the B terminal ("↓"). Due to the high resistance, the spin 
current ("↑") finally reaches the M terminal (non‑polarized). 
Similarly, when the D input is "1" ("↑"), the spin flow ("↑") 
finally reaches the M end. Therefore, the output current at 
the M terminal is “0” only when the inputs of A and D are 
both "0," according to "or gate." On the contrary, when the 
states of B and C are set to "1" ("↑"), the "NAND gate" can 
be realized. Particularly, the magnetization direction of the 
electrode is managed by Iw/Ir via spin torque.

The emergence of 2D materials has brought innovative 
platforms to spintronic devices, and various novel and inter‑
esting application ideas have been proposed. However, there 
are many restrictions to be overcome to realize the practical 
application of 2D material‑based spintronic devices, includ‑
ing breakthroughs in room temperature, efficient and reliable 
spin manipulation, and mature processing techniques.

6  Conclusion and Outlook

2D materials offer numerous prospects for spintronic devel‑
opment, making 2D material spintronics a fledgling field 
with infinite vitality. Based on several fundamental issues of 
spintronics, this review discusses the recent progress, future 
opportunities and challenges of spintronics in 2D materials.

First of all, the crucial conundrum is how to complete 
all‑electric spin devices, which is aspirational for spintronic 
applications. From the spin injection point of view, an ade‑
quately enormous spin polarization has been obtained by the 
tunneling method, especially through hBN, or the optical 
method, with the assistance of the magnetic field for switch‑
ing the FM electrodes or the incident light. In contrast, the 
SOC effect is capable of generating pure spin current via 
charge spin transition without the FM electrode. Nonethe‑
less, the injection efficiency of this scheme is extremely low 
for spin devices at present. Additionally, the SOC effect is 
a central approach to manipulate spin for all‑electric gate‑
tunable spin devices, which has not been accomplished yet. 
Recently, it has been demonstrated that the surfaces of 2D 
materials and the interfaces of heterostructures are crucial to 

the SOC effect. Therefore, a great effort should be directed 
to improve the surface and interface and further explore 
the more underlying characters of spintronics based on 2D 
materials.

On the other hand, spin relaxation is an imperative topic 
of 2D material spintronics, which is the key to optimize 
spin transport and dispose of the incompatibility between 
manipulation and transport. The current devices perform far 
below the theoretical value owing to the extrinsic factors that 
require better structure and fabrication process of the device, 
including hBN encapsulation, the transfer technique, and 
direct preparation of heterostructures by CVD. Although an 
hBN substrate is not able to upgrade the spin relaxation time 
� directly, it can effectively enhance the mobility and the 
spin diffusion length � ( � =

√

�D ). Also, annealing, which 
can get rid of the solvent residue, is a weighty technique to 
improve the performance of the device. In addition, there is 
still no consensus on the mechanism of spin relaxation in 
graphene. Therefore, the microcosmic picture of relaxation 
needs to be further explored, whereby the conflict between 
enhanced SOC and the long enough relaxation time could 
be managed well.

Notably, except for graphene, other 2D materials, such 
as BP, silicene, TMDCs, and their heterostructures, are all 
of the equal significance for transport channel study and 
application. Also, 2D magnetic materials with TC exceeding 
room temperature are long‑term goals for spin injection and 

Fig. 10  Schematic of the spintronics based on 2D materials. Elec‑
trons can be injected into 2D materials to generate spin current (the 
colors present the different spin) by electrical or optical injection, in 
which the electrons with different spins diffuse in the opposite direc‑
tion. The spin could be manipulated by the interface effect of the 2D 
heterostructure to produce logic signals. (Color figure online)
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manipulation at ambient conditions. Accordingly, there has 
been much effort going for achieving the high‑temperature 
robust 2D magnetism and long‑range ferromagnetic order. 
Meanwhile, there are various theoretically predicted mate‑
rials to be explored. In light of existing results, it has been 
suggested that strengthening the exchange interaction and 
uniaxial magnetic anisotropy is the rule of thumb. As well, 
2D TIs, which own strong SOC, are expected to play a sig‑
nificant role in spin devices. Beyond all doubts, the discov‑
ery of novel 2D materials can greatly enrich the spin effects 
and the ideas on device design.

Overall, 2D materials furnish a perfect platform for spin‑
tronics. Furthermore, the related heterostructures are a step‑
ping stone for the research of 2D material spintronics, as 
shown in Fig. 10. Through decades of research, the achieve‑
ments are quite attractive, but there are several snags that 
deserve attention. In short, the combination of 2D materi‑
als and spintronics presents an incredibly broad prospect 
and imperative value, not only for elementary theoretical 
research, but also for the advance of novel electronic devices.
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