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ARTICLE HIGHLIGHTS

• By low‑temperature aging, superior bromine‑free  FA1–xMAxPbI3 perovskite film is realized.

• By suppressing lead iodide on the surface of perovskite, no further passivation step or layer is needed. The efficiency of planar per‑
ovskite solar cells is improved to 22.41% with robust reproducibility.

ABSTRACT Previous reports of formamidinium/methylamine (FAMA)‑
mixed halide perovskite solar cells have focused mainly on controlling 
the morphology of the perovskite film and its interface—for example, 
through the inclusion of bromine and surface passivation. In this paper, 
we describe a new processing pathway for the growth of a high‑quality 
bromine‑free  FAMAPbI3 halide perovskites via the control of intermediate 
phase. Through low‑temperature aging growth (LTAG) of a freshly depos‑
ited perovskite film, α‑phase perovskites can be seeded in the intermediate 
phase and, at the same time, prevent beta‑phase perovskite to nucleate. After 
postannealing, large grain‑size perovskites with significantly reduced  PbI2 
presence on the surface can be obtained, thereby eliminating the need of 
additional surface passivation step. Our pristine LTAG‑treated solar cells 
could provide PCEs of greater than 22% without elaborate use of bromine or an additional passivation layer. More importantly, when 
using this LTAG process, the growth of the pure alpha‑phase  FAMAPbI3 was highly reproducible.
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1 Introduction

Organic/inorganic hybrid perovskite solar cells (PSCs) are 
emerging next‑generation photovoltaic technologies that 
have attracted attention for their dramatic improvements 
in efficiency—from 3.8% [1] to over 24%—in less than a 
decade [2], their low manufacturing costs, and their ease of 
solution processing. To promote the device performance of 
PSCs beyond 20%, several techniques have been investigated, 
including variations in composition [3–5], control over the 
perovskite film growth [6–9], interface engineering [10–12], 
the use of additives [13–15], ionic liquid technique [16], and 
surface passivation [17–19]. Among the perovskite materials 
currently being investigated, the low‑band‑gap α‑phase form‑
amidinium lead iodide  (FAPbI3) perovskite, which possesses 
an ideal band gap of 1.48 eV and extended light absorption 
to 840 nm [20–22], appears to have the most promising per‑
ovskite composition to achieve record‑breaking photocurrent 
densities and power conversion efficiencies (PCEs) [23–27]. 
Nevertheless, obtaining the α‑phase  FAPbI3 in its pure 
composition is difficult through either one‑step anti‑solvent 
deposition or the two‑step sequential method [15, 28–30]. 
Therefore, mixed cation and inclusion of bromine have been 
employed to stabilize the α‑phase  FAPbI3 and, thereby, 
obtain device performances exceeding 21% [31–33]. Unfor‑
tunately, the inclusion of bromine also results in unwanted 
changes in the composition of the perovskite and contrib‑
utes to a narrower absorption spectrum. Thus, many attempts 
have been made toward achieving bromine‑free, pure α‑phase 
 FAPbI3‑based solar cells without compromising the intrinsic 
properties of the  FAPbI3 perovskite [34–37].

Two‑step sequential deposition methods are the most 
effective methods for preparing FA‑based halide perovskite 
films in planar n–i–p structures [8, 27, 34]. Previous studies 
have demonstrated that high‑quality perovskite films can be 
obtained in the presence of moderate amounts of humidity 
[5, 38]. Interestingly, excess lead iodide  (PbI2) also forms 
during the growth of perovskite films, which originates from 
the precursor ingredient and decomposes when high‑temper‑
ature postannealing of the perovskite film is performed in air 
[39–41]. Some studies have found that the  PbI2 by‑product 
has a beneficial effect by passivating the grain boundary 
defects inside the perovskite film under certain conditions, 
thereby enhancing device efficiency [32, 40–42]. For exam‑
ple, a small amount of  PbI2 can passivate the defects on the 

interface between the perovskite layer (PVK) and the hole‑
transporting layer (HTL), thus improving device efficiency 
and eliminating the hysteresis effect [31, 33, 43]. Neverthe‑
less, excess  PbI2 has negative effects. For instance, if too 
much  PbI2 separates out from the perovskite film surface, the 
thick  PbI2 layer may itself function as an insulating layer with 
increased defect density, rather than acting as a passivation 
layer [44–46]. Therefore, devices prepared with an excess of 
 PbI2 often have lower open‑circuit voltages (Voc) and undergo 
faster photodegradation, compared to  PbI2‑deficient devices 
[44–48]. Therefore, it is necessary to optimize the amount 
of  PbI2 at the PVK–HTL interface to passivate the interface 
defect states and, thereby, facilitate charge transport.

In several recent studies, efforts have been devoted toward 
optimizing the passivation layer on the top surface of the 
perovskite film to remove the excess  PbI2, by using vari‑
ous passivators, including organic halide salts. For exam‑
ple, Zhu et al. achieved a high value of Voc of 1.21 V when 
using guanidinium bromide salts on a control perovskite 
film; here, the excess  PbI2/PbBr2 crystals were “digested” 
with the assistance of the guanidinium bromide [48]. You 
et al. recovered the contact energy loss and obtained a certi‑
fied quasi‑steady‑state efficiency of 23.32% after passivat‑
ing excess  PbI2 crystals on perovskite film surface with the 
organic cationic salt of PEAI [34]. Furthermore, negative 
effects on the underlying perovskite layer have also been 
found when an inappropriate solvent or layer thickness was 
used for the passivation layer [17]. To date, the working 
mechanism of the passivation layer remains unclear. Deter‑
mining when to use a passivator, or which passivator to use 
in a given system, with the hope of reducing the effect of 
excess  PbI2 and mitigating non‑radiative recombination, 
can still be a challenge. Developing a passivation layer‑free 
method is important for the fabrication of perovskite layer to 
be flexible in terms of controlling the ideal amount of  PbI2 
for the self‑passivation of surface defects, while also ensur‑
ing that the process is simple and reproducible.

In this paper, we proposed a new method, involving low‑
temperature aging growth (LTAG) prior to thermal anneal‑
ing, for the production of high‑quality bromine‑free perovs‑
kite films, with control over the composition of  PbI2, from 
 FA1–xMAxPbI3 (FA: HC(NH2)2, MA:  CH3NH3, hereafter 
denoted “FAMAPbI3″) perovskites for planar n–i–p‑type 
solar cells. We demonstrate that an optimized residual con‑
tent of  PbI2 on the  FAMAPbI3 perovskite film surface can 
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be obtained after aging the as‑formed perovskite film at low 
temperature under  N2 (in a glove box) and annealing in air at 
a certain relative humidity (RH, 30–40%). Unlike conven‑
tional processes that utilize bromine and often lead to a large 
amount of excess  PbI2 on the top surface, the perovskite films 
produced using this LTAG method feature with a fine amount 
of  PbI2 crystals between the grain boundaries and much lower 
 PbI2 contents on the top surface. Analyses using time‑resolved 
photoluminescence (TRPL) spectroscopy, the space charge‑
limited current (SCLC) method, ultraviolet photoelectron 
spectrometry (UPS), and atomic force microscopy (AFM) 
revealed excellent charge transport and suppressed non‑radi‑
ative losses at the PVK–HTL interfaces of our LTAG‑treated 
samples. As a result, our champion LTAG devices achieved a 
record‑high PCE‑22.41% for a bromine‑free  FAMAPbI3 per‑
ovskite. Without the need for additional processing steps to 
modify the problematic  PbI2 layer, our present LTAG method 
can produce suitable amounts of  PbI2 on the top surface of the 
perovskite layer to provide stable PSC devices exhibiting high 
efficiency and excellent reproducibility.

2  Experimental Section

2.1  Materials

The  SnO2 colloid precursor (tin oxide, 15% in  H2O col‑
loidal dispersion) was purchased from Alfa Aesar.  PbI2 
(99.8%) was purchased from Kanto Chemical. Dimethyl 
sulfoxide (DMSO 99.8%), chlorobenzene (99.8%), N, 
N‑dimethylformamide (DMF, 99.8%), and isopropanol 
(IPA, 99.8%) were obtained from Sigma‑Aldrich. Lith‑
ium bis(trifluoromethylsulfonyl) imide (Li‑TFSI, 95%), 
4‑tert‑butylpyridine (TBP, 96%), and 2,2′,7,7′‑tetrakis‑(N, 
N‑di‑p‑methoxyphenylamine)‑9,9′‑spirobifluorene (Spiro‑
OMeTAD, 99%) were purchased from Lumtec. Formami‑
dinium iodide [CH(NH2)2I] and methylammonium iodide 
 (CH3NH3I) were obtained from Dysel. Methylammonium 
chloride (MACl) was purchased from Xi’an Polymer Light 
Technology. All chemicals and reagents were used without 
further purification.

2.2  Solar Cell Fabrication

Patterned ITO glass was cleaned sequentially through soni‑
cation in detergent, deionized water, acetone, and isopropyl 

alcohol. Prior to deposition, the ITO was treated with UV 
ozone for 15 min. The thin  SnO2 film was formed by spin‑
coating onto the substrates from a diluted  SnO2 precursor 
solution (2.67%, in water) at 3500 rpm for 30 s; the sample 
was then annealed in air at 150 °C for 40 min. After cooling 
to room temperature, the ITO/SnO2 substrate was cleaned 
with UV ozone for 15 min to improve the surface wetting in 
the following steps. To prepare the perovskite film, 1.5 M 
 PbI2 in DMF/DMSO (9:1) was spin‑coated on the ITO/
SnO2 substrate at 1500 rpm for 30 s, and then the sample 
was annealed at 70 °C for 1 min. A solution of FAI, MAI, 
and MACl (90:6:9 mg) in IPA (1 mL) was added dropwise 
onto the  PbI2 film at 2000 rpm for 30 s; the as‑formed fresh 
film was then converted to a black  FAMAPbI3 film through 
annealing on a hot plate in air at 150 °C for 15 min (30–40% 
humidity). For low‑temperature aging growth (LTAG) of the 
crystallization process, a fresh film was aged in a glove box 
at various temperatures for 5 min; the as‑formed film was 
transferred into ambient air for further thermal annealing. 
After the  FAMAPbI3 perovskite film had formed, the sam‑
ple was transferred to a glove box and then a solution of 
Spiro‑OMeTAD in chlorobenzene (72.3 mg mL−1) contain‑
ing Li‑TFSI solution (17.5 µL; prepared as a 520 mg mL−1 
solution in MeCN) and TBP (28.8 µL) was spin‑coated on 
the perovskite film at 3000 rpm for 30 s. Finally, a Au film 
(80 nm) was deposited, as the counter electrode, through 
thermal evaporation on top of the Spiro‑OMeTAD layer. The 
device size was 0.18 cm2; the accurate active cell area was 
0.1 cm2, using a non‑reflective mask, when measuring.

2.3  Characterization

X‑ray diffraction (XRD) patterns were obtained using a 
Rigaku Ultima IV diffractometer and Cu Ka radiation. 
Scanning electron microscopy (SEM) images were obtained 
using a JEOL JSM‑7800F Prime scanning electron micro‑
scope. UV–Vis absorption spectra were recorded using a 
Lambda 35 UV–Vis spectrometer. Steady‑state fluorescence 
and time‑resolved photoluminescence (TRPL) spectra were 
recorded using a FLS1000 photoluminescence spectrometer 
with excitation at a wavelength of 450 nm. Current den‑
sity–voltage (J–V) curves of the photovoltaic devices were 
measured using a Keithley 2400 source meter. Photocur‑
rents were measured under AM1.5G illumination at 100 mW 
 cm−2 using an Abet Technologies Sun 2000 solar simulator. 
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External quantum efficiency (EQE) spectra were recorded 
using an Enlitech LQE‑50‑FL IPCE measurement system. 
The light intensity was calibrated using a silicon standard. 
The active area of each cell was 0.1 cm2. The J–V measure‑
ments were recorded in ambient air without encapsulation; 
both reverse (1.2 → − 0.1 V) and forward (− 0.1 → 1.2 V) 
scans were performed using the same step of 0.02 V s−1. 
Electrochemical impedance spectroscopy (EIS) was per‑
formed using a Donghua DH7000 electrochemical work‑
station. Ultraviolet photoelectron spectroscopy (UPS) was 
performed using an AXIS Ultra DLD instrument with the 
emitting UV energy at 21.21 eV.

3  Results and Discussion

3.1  Fabrication and Characterization of the Perovskite 
Films

In the low‑band‑gap  FAMAPbI3 perovskite systems, a robust 
preparation method without bromine is highly desirable to 
provide devices with higher photocurrent. A new two‑step 
sequential method is presented here to deposit a bromine‑
free  FAMAPbI3 perovskite absorber film. As displayed in 
Fig. 1a, in the conventional two‑step method,  PbI2 is dis‑
solved in a mixed solvent of DMF and DMSO. The first 
step involves formation of a  PbI2–DMSO film. In the sec‑
ond step, a solution of the mixed organic FAI and MAI is 
applied, such that critical intramolecular exchange occurs 
with the  PbI2–DMSO film to form an intermediate‑phase 
FAI–MAI‑PbI2–DMSO film [26]. Typically, the brown fresh 
film is directly subjected to high‑temperature annealing in 
air at a controlled humidity (RH, 30–40%) to allow the 
highly crystallized perovskite films to form [6]. However, 
the freshly prepared intermediate film usually transforms, 
within approximately 10 s, into a yellow δ‑phase  FAMAPbI3 
when exposed to air, resulting in a white or opaque surface 
for final perovskite film (Fig. S1). As reported previously 
[49], the intermediate phase is a layered‑structure film that 
lacks an exact composition. If it is not handled properly, 
this intermediate phase is highly unstable which can cause 
problems in the following perovskite crystallization process.

In our LTAG method, as displayed in Fig. 1a, the freshly 
coated intermediate‑phase brown film is first left on a hot 
plate and aged at various low temperatures for 5 min. Spe‑
cifically, the low‑temperature aging is set at 30, 50, and 

70 °C for LTAG‑30, LTAG‑50, and LTAG‑70, respectively. 
Then, the as‑formed aged film is then baked on a hot plate 
at 150 °C for 15 min to produce the α‑phase perovskite film 
(Fig. S2). To study the mechanism of LTAG process, we per‑
formed XRD patterns of the as‑formed intermediate‑phase 
films for control and LTAG method (at 30, 50, and 70 °C) 
after the exposure to air but prior to final high‑temperature 
annealing, as shown in Fig. 1b. For the control film without 
LTAG treatment, the intermediate phase peaked at 9.3° is 
clearly observed [29, 50]. The undesired δ‑phase perovskite 
peaked at 11.6° is, however, dramatically high, indicating 
the existence of δ‑phase perovskite inside intermediate film. 
In LTAG‑based film, as displayed in Fig. 1b, no signal of 
δ‑phase  FAMAPbI3 is found at 11.6°. The signals at 9.3° 
and 13° for LTAG‑30 indicate that the intermediate phase is 
well kept for the aging temperature at 30 °C. More impor‑
tantly, α‑phase  FAMAPbI3 peaked at 13.94° starts to appear 
in the intermediate phase after LTAG treatment, indicat‑
ing LTAG can precrystallize α‑phase perovskite [51–53]. 
With increases of aging temperature to 50 and 70 °C, the 
 PbI2 peak at 12.7° starts to exist. This shows that the inter‑
mediate phase is volatile and can easily turn into yellow 
δ‑perovskite phase in the control film, but with the help 
of LTAG the intermediate film is more likely to nucleate 
α‑phase perovskite.

To further certify this phenomenon, Fourier transform 
infrared spectroscopy (FTIR) was performed and results are 
shown in Fig. 1c. The characteristic peak in 1016 cm−1 rep‑
resents S = O stretch, indicating the intermediate FAI–MAI‑
PbI2–DMSO phase from the coordination between DMSO 
and  MA+,  FA+, and  Pb2+ ions [29, 50]. For control film, the 
intermediate FAI‑MAI‑PbI2‑DMSO phase exists, and the 
intensity of intermediate phase decreases when the aging 
temperature increases and disappears at the temperature of 
70 °C. These results indicate that LTAG process can avoid 
the formation of yellow δ‑phase  FAMAPbI3 as compared to 
control process. The conversion of the intermediate‑phase 
film to α‑phase perovskite is more thorough by releasing the 
residual complex compositions (e.g., IPA, MAI, or MACl) 
in the intermediate film beforehand. In other words, LTAG 
process can help the intermediate phase to start nucleating 
α‑phase perovskite at low aging temperature and finish the 
conversion to α‑phase perovskite during high‑temperature 
postannealing.

Figure 1d presents XRD patterns of the postannealed per‑
ovskite films prepared using various aging temperatures. All 
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of the samples exhibited characteristic peaks at 12.7° and 
13.94°, which were assigned to  PbI2 and α‑phase perovskite, 

corresponding to their (001) and (100) reflections, respec‑
tively (Fig. S3) [7]. The intensity of the  PbI2 diffraction peak 
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was remarkably high in the XRD pattern of the control sam‑
ple. In this case, the  PbI2 diffraction peak was even stronger 
than that of the perovskite peak. For the LTAG samples, 
the intensity ratios of the  PbI2 (001) and perovskite (100) 
signals were much lower than that for the control sample. 
For low‑temperature aging at 30 °C, the intensity of the 
 PbI2 peak was the lowest among all of our tested samples. 
The intensity of the  PbI2 peak got stronger with increasing 
temperature of LTAG method, which was also in consist‑
ence with the previous results from XRD and FTIR in the 
as‑prepared films. In other words, the existence of δ‑phase 
in the as‑prepared intermediate phase from control process 
may cause an incomplete conversion of δ‑phase to α‑phase 
perovskites, thereby inducing mass nucleation of  PbI2 in 
the meantime. When using the LTAG method, the α‑phase 
perovskites already precrystallized in the as‑prepared inter‑
mediate films can help form highly crystallized α‑phase per‑
ovskite in postannealing step and, at the same time, reduce 
the presence of  PbI2, which is critically important for the 
later preparation of high‑performance devices [54].

To examine the amount of excess  PbI2, we recorded SEM 
images of the top surfaces of thermally postannealed perovs‑
kite films—one prepared without aging, hereafter denoted 
as the control sample/film, and three prepared using the 
LTAG method with aging at temperatures of 30, 50, and 
70 °C, hereafter denoted as LTAG‑30, LTAG‑50, and LTAG‑
70 samples/films, respectively. In Fig. 2a, for the sample 
prepared without intermediate film aging, large amounts of 
bright crystals were present on the surface. In these bright 
crystals, the dense white areas were formed by  PbI2, while 
the dark areas were the surrounding perovskite grains [6, 
31]. For the LTAG‑based perovskite films (Fig. 2b–d), the 
numbers of white  PbI2 crystals decreased dramatically. 
The remaining  PbI2 was distributed around the perovskite 
grain, suggesting a suppressed  PbI2 formation when using 
the LTAG method. The LTAG‑30 sample featured the mini‑
mum amount of  PbI2 on the top surface; here, the grain size 
of the perovskite had increased to 1.15 μm (Fig. S4). The 
average grain‑size distribution obtained from SEM images 
is exhibited in Fig. S5, indicating that LTAG treatment can 
restrain the  PbI2 contents and induce a larger grain size of 
perovskite crystals as compared to that of control samples. 
These results are also in consistence with the cross‑sectional 
SEM images for control and LTAG‑30‑treated devices in 
Fig. 2e, f, an excess amount of  PbI2 is evident on the top 
surface in control sample, but no  PbI2 is visible on the top 

surface for LTAG‑30 device. In other words, during the 
thermal postannealing recrystallization process, the forma‑
tion of the perovskite crystals and the  PbI2 crystals occurred 
simultaneously. The LTAG method appeared to seed α‑phase 
perovskites in the intermediate phase and allow the α‑phase 
perovskite crystal grains to grow into larger sizes, thereby 
limiting the formation of  PbI2 at the surface. In addition, 
the red shift of absorption edges of LTAG‑based perovskite 
films was observed (Fig. S6). The visible band gap of the 
LTAG‑based films was slightly shifted to a narrower band 
gap (ca. 1.53 eV). Similar shift has also been found when 
the content of  PbI2 was decreased on perovskite layer [33].

3.2  Device Fabrication and Characterization

We investigated the efficiencies of solar cells incorporating 
the perovskite films prepared under the various conditions. 
The control device and the LTAG‑based devices, prepared 
using aging temperatures of 30, 50, and 70 °C, were fabri‑
cated with the following planar configuration: indium tin 
oxide (ITO)/SnO2/FAMAPbI3/Spiro‑OMeTAD/Au. The 
thicknesses of the  SnO2,  FAMAPbI3 perovskite, and Spiro‑
OMeTAD layers, determined from cross‑sectional SEM 
images, were 35, 800, and 150 nm, respectively (Fig. S7). 
Figure 3a presents the current density–voltage (J–V) curves 
plotted with respect to the aging temperature.

Table 1 summarizes the average photovoltaic parameters 
obtained from 32 devices subjected to the aging treatment. 
When the aging temperature was set at 30 °C for LTAG‑30, 
the average PCE of perovskite devices reaches the best per‑
formance of 21.4%. Further increase in aging temperature to 
50 and 70 °C did not continue to increase the performance 
but did not keep efficiency at 20%, which is still greatly 
enhanced from that of the control devices at 18.9% effi‑
ciency. Furthermore, 30 °C is the optimal LTAG temperature 
attributing to its capability to keep the intermediate phase 
without drying it completely. The proof of this suggestion 
can be found in Fig. 1b. The control devices provided a low 
PCE of 19.75%, an open‑circuit voltage (Voc) of 1.06 V, a 
short‑current current density (Jsc) of 23.96 mA cm−2, and a 
fill factor (FF) of 0.77. The LTAG‑based devices displayed 
significantly improved photovoltaic performance, par‑
ticularly in terms of their values of Voc and Jsc. For exam‑
ple, the value of Jsc of the LTAG‑30 sample could exceed 
24.40 mA cm−2—the highest measured in this study. The 
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values of Voc obtained from the devices incorporating the 
LTAG‑treated films that had been aged at 30, 50, and 70 °C 
were 1.10, 1.12, and 1.10 V, respectively.

Furthermore, we studied the time effect of LTAG (Figs. 
S8, S9, and Table S1). It was found that 5‑min aging time 
is required to complete LTAG and obtain reduced  PbI2 
crystals. When aging time is prolonged over 5 min, there 
exhibited no significant difference on the morphology and 
corresponding device performance. These results suggest 
that decreasing and precisely controlling the  PbI2 content 

significantly affected the device performance. Considering 
that a fine amount of  PbI2 could act as a passivation agent 
for the grain boundary defects but not affect charge trans‑
port at the PVK–HTL contact, we could use the LTAG‑30 
device, which exhibited the highest performance, to define 
the optimal content of residual  PbI2 in this study. Indeed, the 
LTAG‑30 device exhibited the highest PCE of 22.41%, with 
a Voc of 1.12 V, a Jsc of 24.79 mA cm−2, and an FF of 0.807 
(Fig. 3d). Compared with the results reported previously 
for  FAPbI3‑based solar cells prepared without passivation 
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Fig. 2  Top‑view SEM images of postdeposition annealed perovskite films: a control sample without aging, b LTAG‑30‑treated sample, c 
LTAG‑50‑treated sample, and d LTAG‑70‑treated sample. Cross‑sectional SEM images of e control and f LTAG‑30‑treated device; the scale 
bars: 1 μm (a–d); 500 nm (e, f)
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layers (Table S2), this device efficiency is the highest ever 
recorded for a bromine‑ and passivation layer‑free planar‑
structure perovskite solar cells. Furthermore, we tested the 
device performance when LTAG‑based film was annealed in 
the ambient under different humidity conditions and found 
that the corresponding device performance exhibited almost 
no decrease, indicating a better stability toward humidity 
as compared to the control devices which are found with 
a significant degradation under high humidity environment 
(Fig. S10).

We also tested the devices obtained after performing the 
aging growth under various atmospheres  (N2, Ar, and  O2); 

Figure S11 and Table S3 present the corresponding pho‑
tovoltaic parameters, which reveal that the aging growth 
treatment was the key factor, rather than the  N2 atmosphere, 
promoting the greater device performance [55]. We attribute 
the enhancement in device performance to the lower residual 
 PbI2, the enhanced light absorption, and the improved charge 
recombination, as inferred from the XRD, absorption spec‑
tral, and PL intensity data.

To examine the hysteresis effects, we measured the J–V 
curves of the LTAG‑based and control devices in reverse 
and forward scans. As shown in Fig. 3b, the LTAG‑30 
device exhibited lower hysteresis, along with a lower 
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Fig. 3  a J–V curves of devices prepared using the LTAG method (at 30, 50, and 70 °C), compared with that of the control device. b J–V curves 
recorded from reverse and forward scans for the control device and the LTAG‑30 solar cell. c Distributions of PCEs measured from the control 
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Table 1  Average and champion device performance parameters for solar cells processed using the controlled process (control) and the LTAG 
process (30, 50, 70)

Thirty‑two devices were fabricated for each condition

Aging temperature (°C) Voc (V) Jsc (mA cm−2) FF PCE (%) Champion 
PCE (%)

Control 1.06 ± 0.02 23.5 ± 0.4 0.75 ± 0.03 18.9 ± 0.6 19.75
30 1.12 ± 0.01 24.4 ± 0.4 0.79 ± 0.01 21.4 ± 0.5 22.41
50 1.10 ± 0.02 24.2 ± 0.2 0.76 ± 0.02 20.2 ± 0.7 20.91
70 1.10 ± 0.02 24.1 ± 0.4 0.75 ± 0.02 19.9 ± 0.7 20.67
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H‑index, relative to the control device (Table S4), suggest‑
ing superior charge transfer from the PVK to the HTL in 
the LTAG‑30 sample. Figure 3c presents the PCE distribu‑
tions of the devices obtained using the LTAG and control 
methods. Table S5 summarizes the detailed parameters 
of the LTAG‑30 cells. We obtained PSCs with a PCE of 
approximately 22% and high reproducibility, for each of the 
devices obtained using the LTAG method. Figure 3e dis‑
plays the external quantum efficiency (EQE) spectra and the 
integrated values of Jsc of the LTAG‑30 champion device. 
The calculated value of Jsc of 24.24 mA cm−2 matches well 
with the value measured (24.79 mA cm−2) from the J–V 
curves, higher than that of the control device (Fig. S12). Fig‑
ure 3f reveals a stabilized steady‑state efficiency of 21.43%, 
with a steady‑state current density of 22.24 mA cm−2 at 
a constant bias voltage of 0.96 V, for the best‑performing 
LTAG‑30 device. Figure S13 provides the corresponding 
data for the reference device. Furthermore, we examined 
the device stability at room temperature of the un‑capsulated 
perovskite solar cells stored in a dry oven (RH = 20%; Fig. 
S14). The LTAG‑30 device retained 90% of its initial PCE 

after 1800 h; in contrast, the control device retained only 
70% of its initial PCE after the same duration. Accordingly, 
we conclude that decreasing the amount of residual  PbI2 at 
the interface improved the device stability, possibly also by 
mitigating the ion migration of  PbI2 across the interface.

To investigate the dynamics of the photocarriers in these 
devices, and their relationship with the improvement in 
the value of Voc, we recorded steady‑state PL spectra of 
the thermally postannealed perovskite films. Figure  4a 
reveals that the PL intensity increased dramatically for the 
LTAG‑30‑based film relative to the control sample, imply‑
ing improved photocharge properties and a decrease in the 
amount of spontaneous non‑radiative recombination from 
the surface traps in the LTAG samples. We also measured 
the TRPL spectrum (Fig. 4b) as dots, which we fitted using a 
biexponential decay function (solid lines) featuring fast (τ1) 
and slow (τ2) decay times [56]. We derived average lifetime 
constants of 497.81 and 846.03 ns for the control and LTAG‑
30 films, respectively (Table S6). The LTAG‑based film pos‑
sessed the longer average lifetime, indicating a decrease in 
its non‑radiative recombination and potentially passivated 
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surface traps, arising from the well‑controlled residual  PbI2 
content across the perovskite layer surface. We used EIS to 
study the interfacial charge transfer properties. As displayed 
in Fig. 4c, the high and low frequencies corresponded to the 
bulk transfer (Rtr) and interface recombination (Rrec) resist‑
ances in the perovskite device, respectively [57]. Compared 
with the control sample, we measured a lower value of Rtr 
and a higher value of Rrec in the LTAG sample (Fig. S15, 
Table S7), suggesting that charge transfer across the bulk 
material and the contact interface had both improved in the 
LTAG‑based device.

We used the SCLC method to examine the decrease in 
the defect density for our devices, employing the following 
electron‑only device configuration: ITO/SnO2/FAMAPbI3/
PC61BM/Au. Figure 4d reveals three different regions in the 
logarithmic I–V curves: a linear ohmic region (slope = 1), a 
nonlinear trap‑filling region (slope > 2), and a SCLC region 
(slope = 2) [58]. Upon increasing the bias voltage in region 
2, the trap‑filled limit voltage (VTFL) was reached when all 
of the traps were filled, and the defect density (Nt) could be 
calculated from Eq. 1 [58]:

where εr is the relative permittivity of perovskite mate‑
rial (εr = 32) [9, 59], ε0 is the vacuum permittivity 
(ε0 = 8.85 × 10−12 F  m−1), e is the electron charge, and L is 
the thickness of perovskite film (L = 800 nm) in the devices 
[60]. The value of VTFL decreased from 0.73 to 0.60 V after 
performing the aging treatment; the estimated defect density 
of 4.97 × 1015 cm−3 for the LTAG‑based device was lower 
than that for the control reference (6.05 × 1015 cm−3). This 
finding suggests that effective self‑passivation had occurred 
and, thus, the number of traps had decreased. This phenom‑
enon contributed to the observed higher values of Voc, which 
led to the higher PCEs, of the LTAG‑based solar cells [61].

Energy band alignment between the perovskite and trans‑
port layers is crucial to avoiding non‑radiative recombina‑
tion and Voc loss at the interface [62, 63]. To examine the 
intrinsic cause of the improvement in the value of Voc after 
the aging growth treatment, we used UPS to examine the 
electronic structure of the perovskite layers. Figure S16 pre‑
sents the electronic properties of the control sample featuring 
an excess of residual  PbI2 and of the LTAG sample featuring 
the fine residual  PbI2. From the cutoff region, we found that 
the work functions (WFs) increased from − 4.0 V for the con‑
trol film to − 3.9 eV for the LTAG‑based film. The valence 

(1)N
defect

= 2�
0
�
r
V
TFL

∕eL2

band energies (EVB) of control and LTAG‑based films were 
− 5.91 and − 5.86 eV, respectively. The slight increase in the 
value of EVB upon decreasing the amount of residual  PbI2 
presumably led to a better match with the reported value 
of Spiro‑OMeTAD (− 5.22 eV), resulting in enhanced hole 
transport from the perovskite to the HTL and minimized car‑
rier recombination [64], both contributing partially to the 
improved values of Voc of our LTAG‑based devices.

To identify the surface defects, we applied conductive 
atomic force microscopy (c‑AFM) in dark to detect the phase 
and potential differences of the perovskite films. Figure 5a, b 
presents AFM phase images of the control and LTAG films, 
respectively. For the control film, the white  PbI2 phases had 
aggregated and were common on the top surface. In con‑
trast, in the LTAG film, the crystal grains of the perovskite 
(observed with a dark color) were common on the top sur‑
face, with the white  PbI2 phase likely present in the grain 
boundary areas. Figure 5c, d presents two‑dimensional (2D) 
surface potential spatial maps of the control and LTAG films, 
respectively. The potential distribution in the control perovs‑
kite film is discontinuous and surrounded by the separated 
white areas, suggesting high surface potential barriers exist 
between perovskite crystals and grain boundaries due to the 
excess amount of  PbI2 on the perovskite surface. However, 
the film provided by the LTAG method shows a relatively 
uniform potential distribution across the perovskite surface 
without any remarkable dots, indicating that a minimized 
surface potential barrier exists between the perovskite crys‑
tals and grain boundaries. The potential barrier between the 
perovskite grain and grain boundary can cause a significant 
influence on the carrier transfer [65]. For the control film, 
the surface potential of the separated white areas of  PbI2 was 
40 mV higher than that of the dark areas of the bulk perovs‑
kite, indicating severe charge trapping in the  PbI2 areas. For 
the LTAG film, the film surface potential difference between 
the  PbI2 and the bulk perovskite was much lower, at 15 mV, 
revealing that the self‑passivation of  PbI2 was highly effec‑
tive and that charge trapping at the grain boundaries had been 
alleviated. This improvement resulted from the decreased 
presence of  PbI2 phases on top of the perovskite phases, 
enhancing the carrier transporting capability [39, 66]. These 
results are consistent with our experimental observations 
from the TRPL, EIS, SCLC, and UPS analyses, which sug‑
gested that LTAG treatment improved the values of Voc and, 
thereby, the performance of the photovoltaic devices.
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4  Conclusions

We have demonstrated that preannealing through an LTAG 
method produces highly crystallized and bromine‑free 
 FAMAPbI3 perovskite films, with control over the content 
of  PbI2. In LTAG method, the composition of as‑prepared 
intermediate film is optimized by inhibiting the formation 
of δ‑phase perovskite and allowing α‑phase perovskite to 
nucleate. Thereby, when postannealing is applied, seeded 
α‑phase perovskites can easily turn into large grain‑sized 
perovskites with suppressed  PbI2 formation. This process 
readily optimizes the levels of  PbI2 at the interface between 
the perovskite and the HTL and at the grain boundaries, 
resulting in effective self‑passivation of grain boundary 
defects and lowering of the PVK/HTL contact resistance. 
Moreover, the corresponding LTAG‑based devices exhibited 

superior PCEs of up to 22.41% with increased Voc of up to 
1.12 V, high reproducibility and low hysteresis. The small 
residual amount of  PbI2 created through the LTAG process 
was beneficial to decreasing the recombination loss on the 
top perovskite surface without requiring the use of an addi‑
tional passivation layer or passivation agents, which may 
have negative effects. Therefore, this method of preanneal‑
ing low‑temperature aging is a simple process that provides 
highly efficient and reproducible low‑band‑gap  FAMAPbI3 
PSCs.
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