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HIGHLIGHTS

• We first report on  H11Al2V6O23.2 with large layer spacing as cathode for aqueous zinc-ion battery, which accelerates the diffusion of 
 Zn2+.

• The graphene-wrapped  H11Al2V6O23.2 nanobelts can improve electronic conductivity, and potentially inhibit the dissolution of elements 
in the aqueous electrolyte.

• H11Al2V6O23.2@graphene exhibits high capacity and stable cycling stability even at an ultra-high mass loading of ~ 15.7 mg cm−2.

ABSTRACT Rechargeable aqueous zinc-ion batteries (AZIBs) have 
their unique advantages of cost efficiency, high safety, and environmental 
friendliness. However, challenges facing the cathode materials include 
whether they can remain chemically stable in aqueous electrolyte and 
provide a robust structure for the storage of  Zn2+. Here, we report on 
 H11Al2V6O23.2@graphene (HAVO@G) with exceptionally large layer 
spacing of (001) plane (13.36 Å). The graphene-wrapped structure can 
keep the structure stable during discharge/charge process, thereby pro-
moting the inhibition of the dissolution of elements in the aqueous elec-
trolyte. While used as cathode for AZIBs, HAVO@G electrode delivers 
ideal rate performance (reversible capacity of 305.4, 276.6, 230.0, 201.7, 180.6 mAh  g−1 at current densities between 1 and 10 A  g−1). 
Remarkably, the electrode exhibits excellent and stable cycling stability even at a high loading mass of ~ 15.7 mg cm−2, with an ideal 
reversible capacity of 131.7 mAh  g−1 after 400 cycles at 2 A  g−1.
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1 Introduction

Nowadays, lithium-ion batteries (LIBs) are widely used as 
energy storage/supply devices in various applications such 
as portable devices, transportation, and even the military 

[1–4]. However, the limited reserves of lithium are gradu-
ally becoming a non-negligible problem [5]. Their toxic 
organic electrolytes also cause safety and environmental 
problems during production and recycling [6]. Hence, new 
battery chemistries taking into account economic, safety, and 
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environmental issues urgently need to be developed [7–11]. 
Among them, rechargeable aqueous battery systems using 
chemically stable, well-stocked multivalent metals (Mg, Zn, 
Ca, Al, etc.) as anodes and nontoxic aqueous solutions as 
electrolytes have been widely reported and considered as 
alternatives to LIBs because of their simple assembly, cost 
efficiency, high safety, and eco-friendliness [12–15]. The 
metal Zn, in particular, has a lower standard hydrogen poten-
tial [− 0.76 V vs. that of the standard hydrogen electrode 
(SHE)], and higher theoretical and volume-specific capaci-
ties (820 and 5885 mAh  cm−3, respectively) and chemical 
stability in aqueous solution, causing aqueous zinc-ion 
batteries (AZIBs) to attract more attention [16]. However, 
compared with  Li+, bivalent  Zn2+ will enhance electrostatic 
interaction with the traditional cathodes for LIBs, making 
them unable to meet the requirements for AZIBs [17]. Find-
ing a cathode that maintains a stable structure during the 
rapid (de)intercalation of  Zn2+ becomes the primary prob-
lem for AZIBs [18].

In recent years, Prussian blue analogues (PBAs), manga-
nese-based materials, and vanadium-based materials have 
been successively reported as cathodes for AZIBs and have 
exhibited their own advantages [19–21]. Manganese-based 
materials with different crystal structures or valence states 
of Mn, such as α-MnO2, β-MnO2, γ-MnO2, and  Mn2O3, have 
been researched and found to reflect higher and smooth oper-
ating voltages but poor reversible capacities [22–26]. On the 
other hand, vanadium oxides  (V2O5,  VO2) are frequently 
reported to provide ideal capacities, but the dissolution of 
vanadium in electrolyte and their structural instability inevi-
tably have a negative effect on the cycling stability [27–29]. 
 V2O5 with layered structure has the ability of storing metal 
ions [30, 31]. However, because of its narrow inner struc-
ture (the interlayer spacing of (001) plane is about 4.4 Å) 
and poor electronic conductivity, it is still unsuitable for the 
storage of  Zn2+.

Through structural modifications, the electrochemi-
cal performance of this kind of material has been greatly 
improved.  V2O5·nH2O with water molecule intercalated 
exhibited ideal reversible capacity because of its spacious 
interior [32], and together with the intercalation of metal 
ions (such as  Na0.33V2O5,  MgxV2O5·nH2O,  LixV2O5·nH2O, 
 Ca0.25V2O5·nH2O, and  Zn0.25V2O5·nH2O) [33–39], the 
inner structural stability and electronic conductivity can 

be improved. Meanwhile, some vanadates, such as  LiV3O8, 
 NH4V4O10, and  Na1.1V3O7.9, have also been applied to 
AZIBs and exhibited desirable properties [40, 41]. With 
more AZIB, cathodes with larger lattice spacing of spe-
cific crystal planes being reported, researches focusing 
on the layered design of vanadium-based materials are 
still underway. Bivalent  Zn2+ is known to have a strong 
electrostatic interaction with the cathode host. Therefore, 
the large diffusion channel will facilitate  Zn2+ diffusion 
during charge/discharge process, leading to enhancement 
of cycling stability and rate capability. However, the larg-
est interlayered spacing of crystal planes in these reported 
vanadium-based cathode materials are generally below 
13.0 Å, and the use of trivalent metal ions  (Al3+, etc.) 
to modify the structure of vanadium oxides for AZIBs 
is rarely discussed. In addition, a cause for concern with 
respect to practical application is that the electrochemi-
cal performance is evaluated under high mass loading 
(e.g., high areal capacity), which is critical for achieving 
cell-level energy and power density. Unfortunately, there 
is very little discussion about this aspect on previously 
reported AZIBs.

In this work, we have, for the first time, synthesized 
graphene-wrapped  H11Al2V6O23.2 nanobelt (HAVO@G) 
composites through a hydrothermal method and a fur-
ther freeze-drying treatment. The large spacing of 
(001) planes and loose arrangement of the nanobelts in 
HAVO@G provide an ample inner structure and exter-
nal contact area for the electrochemical reaction, and the 
presence of  Al3+ may enhance the electronic conductiv-
ity. It is found that the nanobelt morphology could be 
completely preserved and uniformly coated by the gra-
phene during discharge/charge. Meanwhile, it cannot be 
ignored that the surface coating of graphene in HAVO@G 
may inhibit the dissolution of elements in the electrolyte. 
While used as cathode for AZIBs, HAVO@G electrode 
exhibits excellent and stable rate performance (deliv-
ers average reversible capacities of 305.4, 276.6, 230.0, 
201.7, and 180.6 mAh  g−1 at current densities from 1 to 
10 A  g−1, respectively). Importantly, even at a high load-
ing mass of ~ 15.7 mg cm−2, the composite also performs 
at an ideal reversible capacity and cycling performance 
(131.7 mAh  g−1 after 400 cycles at 2 A  g−1).
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2  Experimental Section

2.1  Synthesis of HAVO@G

Typically, 2.0 mmol  V2O5, 1.3 mmol  AlCl3·6H2O, 75 mg 
graphene oxides (prepared using an improved Hummers 
method [42]), and 2.0 mL 30%  H2O2 solution were dis-
solved in 25 °C deionized water (30 mL) with vigorous 
stirring for 4 h. The solution was then transferred into a 
50-mL Teflon-lined autoclave and maintained at 180 °C 
for 12 h. After cooling to indoor temperature (20 °C), the 
composite was washed repeatedly with deionized water 
and freeze-dried for 48 h after the pre-freezing.

2.2  Material Characterization

X-ray diffraction (XRD) patterns were measured using 
Rigaku D/max 2500 X-ray powder diffractometer with Cu 
Kα-radiation (λ = 0.15405 nm). The morphology was dis-
played via scanning electron microscopy (SEM, FEI Nova 
Nano SEM). Transmission electron microscopy (TEM, Tec-
nai G2 F20) was used to investigate high-resolution TEM 
(HRTEM) images, selected area electron diffraction (SAED) 
patterns, and energy dispersive spectrometer (EDS) element 
mappings. X-ray photoelectron spectroscopy (XPS) spectra 
were collected through an ESCALAB 250 Xi X-ray photo-
electron spectrometer (Thremo Fisher). Differential scanning 
calorimetry (DSC) and thermogravimetric (TG) analysis 
curves were collected by the instrument (Netzsch STA449 
C, Germany) in air at a heating ramp rate of 10 ◦C  min−1.

2.3  Electrochemical Measurements

Stainless coin cells (CR2016), with metal zinc as anode, 
glass fiber as separator, and 2 M  ZnSO4 solution as electro-
lyte, were assembled in air to investigate the electrochem-
ical performance of the HAVO@G cathode, which was 
prepared by coating a slurry mixed with the active mate-
rial (HAVO@G, 70 wt%), acetylene black (20 wt%), and 
polyvinylidene fluoride (PVDF, 10 wt%) with N-methyl-
2-pyrrolidone (NMP) onto a stainless steel wire mesh 
(SSWM), and drying in a vacuum oven at 80 °C for 12 h.

The electrochemical performances of the Zn//HAVO@G 
cells were all measured in the voltage range of 0.4–1.4 V 

(vs.  Zn2+/Zn). Cyclic voltammetry (CV) at different scan 
rates were carried out using CHI-660E electrochemical 
station. The galvanostatic intermittent titration technique 
(GITT) measurement was taken in Arbin Battery Tester 
BT-2000 (Arbin Instruments, Inc., College Station, Texas). 
The specific capacities of HAVO@G and  H11Al2V6O23.2 
(HAVO) electrodes were calculated based on the weights 
of HAVO@G and HAVO, respectively.

3  Results and Discussion

The XRD pattern of HAVO@G is shown in Fig. 1a. It can 
be observed that all the diffraction peaks are indexed to the 
monoclinic crystalline phase of  H11Al2V6O23.2 [PDF#49-
0693] without any impurity. Particularly, a strong peak 
located at 6.61° corresponds to the (001) crystal plane in 
the composite, and its lattice spacing calculated according 
to Bragg’s law is 13.36 Å, which is 3 times larger than the 
original layered structure of  V2O5 (4.4 Å, PDF#41-1426), 
and basically larger than other vanadium-based cathodes 
(such as  VO1.52(OH)0.77 and  (NH4)2V10O25·8H2O) reported 
previously [43, 44]. Such tremendous interlayer spacing of 
(001) plane is achieved thanks to the incorporation of  Al3+ 
in the layered structure of vanadium oxides [35, 45]. On the 
other hand, SEM images reflect that the HAVO@G nano-
belts, which are generally about 3 μm in length and 0.5 μm 
in width, are completely covered by graphene with smooth 
surface (Fig. 1b). The TEM image also indicates that the 
HAVO nanobelts are coated by the graphene (Fig. 1c). This 
is further confirmed by the HRTEM image (Fig. 1d), which 
shows a series of lattice fringes of graphene (green dotted 
box) clearly observed on the surface of the HAVO nanobelt 
in region 1. The Raman spectrum of HAVO@G shows two 
characteristic bands located at around 1367 and 1597 cm−1 
for D-band and G-band, respectively (Fig. S1), which fur-
ther indicates the existence of graphene. In addition, the 
lattice spacing (1.336 nm) corresponds to the (001) plane 
of the HAVO phase, which is consistent with the results in 
the XRD pattern. The diffraction rings in the SAED pat-
tern reflect the high-angle (005) and (405̄ ) planes of HAVO, 
respectively. In the meantime, the homogeneous distribution 
of Al, V, and O elements in the nanobelts can be seen in the 
TEM-EDS element mappings. Furthermore, XPS spectra 
(Fig. 1e) were used to ascertain the elemental composition 
of HAVO@G, in which the Al 2p peak located at 70.7 eV is 
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associated with the oxidation degree of  Al3+. In addition, the 
peaks located at 517.6 and 524.9 eV correspond to V 2p3/2 
and V 2p1/2 core levels of  V5+, respectively, while the peaks 
at 516.0 and 523.1 eV are ascribed to V 2p3/2 and V 2p1/2 
core levels of  V4+, respectively. The result reflects the mixed 
valence state of vanadium species existing in HAVO@G. 
Hence, it can be believed that the relatively roomy inter-
nal space supported by the (001) planes, together with the 
enhanced electronic conductivity assisted by the existing 
 Al3+, mixture of vanadium valence states of  V5+ and  V4+, 
and the graphene-coated structure, gives HAVO@G poten-
tial for the storage of  Zn2+ [46, 47].

The TG and DSC curves (Fig. S2) are further col-
lected with a temperature ramp rate of 10 °C  min−1 in air 
to determine the proportion of graphene oxide (GO) and 
HAVO in HAVO@G composites. Two main weight loss 
stages observed on the TG curves result in a weight loss of 
23.09%. The first one before 140 °C can be attributed to the 
decomposition of water from  H11Al2V6O23.2, correspond-
ing with the endothermic peaks at 78.6 and 111.5 °C in the 
DSC curve, while the last one is due to the decomposition 
of graphene and oxidation of vanadium to form  AlV3O9 
[48]. We calculated the proportion of GO and HAVO in the 

HAVO@G composites based on the conserved molar quan-
tity of aluminum, which shows the proportion of GO is about 
11.9% in the HAVO@G composites.

The electrochemical performances of Zn//HAVO@G 
AZIBs have been investigated using 2 M  ZnSO4 aqueous 
solution as the electrolyte. CV curves at 0.1 mV s−1 have 
been measured to reflect the  Zn2+ (de)intercalation process 
in HAVO@G at the beginning cycles (Fig. 2a). Two pairs 
of redox peaks, located at 1.07/0.98 V and 0.60/0.45 V, 
respectively, demonstrate a multistep (de)intercalation of 
 Zn2+ in HAVO@G, which is frequently reported in other 
vanadium-based cathodes [32, 35]. Furthermore, the stable 
position of redox peaks and the substantially unchanged 
area of the closed portion in the curves demonstrate the 
high reversibility of the electrode. The galvanostatic 
charge–discharge (GCD) measurement at a current den-
sity of 2 A  g−1 has been taken to preliminary investigate 
the electrochemical performance of HAVO@G, as shown 
in Fig. 2b. HAVO prepared without adding graphene is 
used for comparison. The HAVO@G exhibits a more ideal 
reversible capacity (280.2 mAh  g−1 after 200 cycles), 
while significant capacity fading can be observed in HAVO 
electrode, which may be due to the partial dissolution of 
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the active material and poor electronic conductivity [21, 
49]. It is reported that  NaV3O8·1.5H2O nanobelts exhib-
ited rapid capacity fading due to the fast dissolution of 
 NaV3O8·1.5H2O in the aqueous  ZnSO4 electrolyte [21]. 
Dissolution of the active material leading to capacity fad-
ing was also observed for manganese-based oxides [50, 
51]. For example, Liu et al. demonstrated rapid deterio-
ration in capacity for α-MnO2 in 2 M  ZnSO4 due to the 
 Mn2+ dissolution from the  MnO2 electrode [50]. It is also 
reported that graphene scroll-coated α-MnO2 effectively 
increases the electrical conductivity and relieves the dis-
solution of α-MnO2 during cycling [52]. Therefore, it is 
reasonable that surface coating graphene plays an impor-
tant role in cyclic stability of HAVO@G. Meanwhile, the 
addition of graphene increases the electronic conductivity 
of HAVO@G (Fig. S3), which may promote the reaction 
kinetics and diffusion of  Zn2+, thus leading to excellent 
rate capability of HAVO@G. The GCD curves at 1 A  g−1 
demonstrate the discharge/charge platforms of HAVO@G 
(Fig. 2c), which are consistent with the CV results. As 
shown in Fig. 2d, average reversible capacities of 305.4, 
276.6, 230.0, 201.7, and 180.6 mAh  g−1 at 1, 2, 5, 8, and 
10 A  g−1, respectively, can be observed. When the current 
density returns to 5 A  g−1, the HAVO@G electrode can 

still deliver a reversible capacity of 228.5 mAh  g−1 and 
remain stable for 500 cycles (209.0 mAh  g−1 in the 500th 
cycle).

Importantly, cycling performances of different areal-
mass-loading electrodes have been carried out to explore 
the potential practical application of HAVO@G. The SEM 
images of the HAVO@G electrodes indicate that the out-
line of stainless-steel welded mesh (SSWM) can be seen in 
the electrode with low areal loading, but it is not visible at 
the high areal loading one (Fig. S4). It is also obvious that 
the active material is tightly attached to the SSWM, which 
facilitates the long-term cycling performance. The cycling 
performances of HAVO@G with different areal mass load-
ings at 2 A  g−1 were tested (Fig. S5). As the areal mass 
loading increases, the specific capacity decreases, which 
may be due to underutilization of active materials. It can be 
also seen from Fig. S6 that the electrochemical impedance 
value gradually increases with the increase in areal mass 
loading. Fortunately, all these electrochemical impedance 
values are lower than that of HAVO with a mass loading 
of 5.1 mg cm−2 (Fig. S3). The HAVO@G electrodes with 
different areal mass loadings exhibit excellent stability. An 
electrode with a high mass loading of ~ 15.7 mg cm−2, espe-
cially, delivers an initial capacity of 115.8 mAh  g−1 at 2 A 
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 g−1, which gradually increases to 137.6 mAh  g−1 in the 50th 
cycle because of the slow activation process and electrolyte 
penetration. The electrode maintains 131.7 mAh  g−1 in the 
400th cycle with a capacity retention of 95.7%, based on the 
maximum capacity (Fig. 2e). Furthermore, HAVO@G with 
a high areal mass loading of 5.4 mg cm−2 exhibits excellent 
cycling stability at a high current density of 5 A  g−1, which 
maintains a capacity retention of 94.0% after 900 cycles, 
based on the maximum capacity (Fig. S7).

To explain the improved electrochemical performance, the 
CV curves at scan rates between 0.1 and 1.2 mV s−1 have 
been obtained, to investigate the electrochemical kinetics 
of the HAVO@G, as shown in Fig. 3a. As the scan rate 
increases, the area of a CV curve with similar shape gradu-
ally increases, with the reduction peaks and oxidation peaks 
shifting to lower and higher voltages, respectively, owing to 
the polarization effect [53]. In the meantime, the pseudo-
capacitive characteristic of the HAVO@G electrode can be 
quantitatively measured by Eqs. 1 and 2 [54]:

where i is the current (A), v is the scan rate (mV s−1), and 
a and b are adjustable parameters. The value of b is from 
0.5 to 1, wherein b = 0.5 indicates a full diffusion-controlled 
process and b = 1 corresponds to the full capacitive contribu-
tion. The b values can be obtained by calculating the slope of 
the log(i) vs. log(v) plots, as shown in Fig. 3b. The b values 
during the discharge and charge processes have been calcu-
lated to be 0.69 and 0.80, respectively, demonstrating that 
the corresponding redox reactions are a combination of the 
capacitive contribution and ion diffusion process. Thus, the 
reversible capacity in the cycles can be divided into pseudo-
capacitive contribution and diffusion contribution according 
to Eqs. 3 and 4 [55]:
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b

(2)log (i) = b ⋅ log (v) + log (a)

(3)i = k1v + k2v
1∕2

(4)i∕v1∕2 = k1v
1∕2 + k2

2.0

1.5

1.0

0.5

0.0

−0.5

−1.0

0.4

0.2

0.0

−0.2

−0.4

−0.6

−0.8

C
ur

re
nt

 (m
A

)

2.0

1.5

1.0

0.5

0.0

−0.5

−1.0

C
ur

re
nt

 (m
A

)

0.1 mV s−1

0.2 mV s−1

0.4 mV s−1

0.6 mV s−1

0.8 mV s−1

1.0 mV s−1

1.2 mV s−1

Charge-1

Charge-1
b=0.7970

Discharge-1

Discharge-1
b=0.6936

0.4

100

80

60

40

20

0

0.6 0.8 1.0
Potential (V vs. Zn2+/Zn)

1.2 1.4

0.4 0.6 0.8 1.0
Potential (V vs. Zn2+/Zn)

1.2 1.4 0.1

C
on

tri
bu

tio
n 

ra
tio

 (%
)

38.4 39.2 42.8
51.0

55.9
60.5

67.1

0.2 0.4 0.6 0.8 1.0 1.2

lo
g(

cu
rr

en
t) 

(lo
g(

m
A

))

log(scan rate) (log(mV s−1))

Scan rate (mV s−1)

)b()a(

)d()c(

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

60.5%

Fig. 3  a CV curves at 0.1–1.2 mV s−1 for HAVO@G. b Log(i) versus log(v) plots at specific peak currents in a. c CV curve with the calculated 
pseudocapacitive fraction shown by the shaded area at 1 mV s−1, and d Bar chart showing the percent of calculated pseudocapacitive contribu-
tion at 0.1–1.2 mV s−1



Nano-Micro Lett. (2019) 11:69 Page 7 of 12 69

1 3

where the pseudocapacitive contribution and the diffusion 
contribution are measured with k1 and k2, respectively. For 
example, the pseudocapacitive contribution has been cal-
culated to be 60.5% for HAVO@G at 1.0 mV s−1, as illus-
trated by the area with independent color in Fig. 3c. As a 
whole, a bar chart has been used to show the percent of 
calculated pseudocapacitive contribution at 0.1–1.2 mV s−1, 
respectively, in which it can be seen that the pseudocapaci-
tive contribution ratios are generally improved from 38.4 to 
67.1% with the increase in scan rates (Fig. 3d). The graphene 
coating and high specific surface area of nanobelt structures 
cause the pseudocapacitive processes to form majority of 
the charge storage in HAVO@G, thus exhibiting fast elec-
trochemical reaction kinetics [56].

GITT measurement has been taken to further inves-
tigate the kinetics of the  Zn2+ solid-state diffusion of the 
HAVO@G electrode, in which the diffusion coefficient (D) 
of  Zn2+ can be calculated from the parameters and voltage 
changes during the testing, according to Eq. 5 [57]:

where t and τ represent the duration of current pulse (s) 
and relaxation time (s), respectively. L corresponds to 
the  Zn2+ diffusion length (equal to the thickness of elec-
trode, ≈ 0.75 mm). ∆ES and ∆Et are the steady-state volt-
age change (V) by the current pulse and voltage change (V) 
during the constant current pulse (eliminating the voltage 
changes after relaxation time), respectively. The measured 
GCV curves and calculated results are shown in Fig. 4, in 
which the diffusion coefficient (D) calculated is basically 

(5)D =
4L2

��

(

ΔE
S

ΔE
t

)2

consistent in changing trends, and the value falls between 
 10−7 and  10−8  cm2  s−1, which is superior to those of most 
of the reported vanadium-based cathodes [8, 49, 56]. The 
reason for this is that the introduction of  Al3+ in V–O lay-
ers enlarging the (001) plane with spacious inner spacing 
accelerates the  Zn2+ diffusion process.

The reaction mechanism of the HAVO@G electrode has 
been explored, to investigate the exceptional performance 
of the electrode. The ex situ XRD patterns at selected dis-
charged/charged states have been obtained, which reveal 
that the position of the (001) plane remains unchanged 
during the cycles but weakens in intensity (Fig.  5a). 
Meanwhile, some characteristic peaks are observed cor-
responding to  Zn3(OH)2V2O7·2H2O [PDF#50-0570] in 
the discharging process, which are due to the intercalated 
 Zn2+ bonded with vanadium–oxygen layer to form the 
new phase. Similar to other reported cathodes for AZIBs, 
the HAVO@G electrode also exhibits  H+ intercalation in 
the discharge process, causing the electrolyte to be alka-
line and promoting the formation of  Zn4SO4(OH)6·5H2O 
[PDF#39-0688] [58], as indicated in Fig.  5a. Obvi-
ously, these two phases disappear upon the subsequent 
charge process, indicating the highly reversibility of the 
HAVO@G electrode during the cycles. XPS measurement 
at full discharged/charged states has been used to analyze 
the changes in the valence state of elements during the 
cycles, as shown in Fig. 5b. Two new peaks appear con-
spicuously at 1022.03 and 1045.02 eV assigned to Zn 2p3/2 
and Zn 2p1/2, respectively, when the electrode discharged 
to 0.4 V, reflecting the existence of  Zn2+ in HAVO@G. 
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Meanwhile, the signal of  V4+ intensifies as a consequence 
of the  Zn2+ intercalation (Fig. 5c). While charged to 1.4 V, 
the component of  V4+ disappears almost with a part of 
 Zn2+ remaining in the electrode, which indicates that the 
 V4+ that existed in the original substance participates in 
the electrochemical reaction, leading to an increase in the 
capacity at the beginning of the cycle. On the other hand, 
the basically unchanged position and intensity of the char-
acteristic peak located at 70.7 eV determine the stable 
existence of  Al3+ in HAVO@G during discharge/charge 
states (Fig. 5d). Additionally, the TEM image, and the 
HRTEM image with SEAD pattern have been investigated 
to intuitively evaluate the evolution of the cycle (Fig. 5e). 
The (001) planes are present throughout the process with a 
stable lattice spacing of 1.336 nm but reduce in sharpness 
because of the decreased crystallinity caused by the inter-
calation of  Zn2+ and formation of intermediate products, 
which is consistent with the weakening in intensity of the 
diffraction peak in the ex situ XRD patterns. Furthermore, 
the high-angle (500) and (405̄ ) planes remain stable dur-
ing the cycle, according to their constant diffraction rings 
in SAED patterns. An extra diffraction ring appears cor-
responding to the (114) plane of the  Zn3(OH)2V2O7·2H2O 
phase in the full discharged state. The homogeneous dis-
tribution of C, V, and Al in HAVO@G, and the interca-
lation of  Zn2+ in the discharged state, and the residual 
of  Zn2+ during the charging state are further verified via 
TEM-EDS element mapping. The morphology and gra-
phene-wrapped structure, especially, remain stable dur-
ing discharge/charge, indicating the excellent stability in 
the construction of this unique structure. Based on the 
aforementioned analysis, the highly expanded (001) plane, 
with the especially stable inner structure of HAVO@G, is 
suitable for the insertion/extraction of  Zn2+ accompanied 
with  H+. The graphene-wrapped HAVO nanobelt construc-
tion is beneficial to keeping the structure stable during 
discharge/charge process, thereby inhibiting the dissolu-
tion of cathode in the electrolyte. Such a battery system 
also undeniably exhibits high stability and safety during 
cycling.

4  Conclusions

In summary,  H11Al2V6O23.2@graphene (HAVO@G) com-
posites have been successfully prepared through a hydro-
thermal method and a further freeze-drying treatment. The 
as-prepared HAVO@G with intercalation of  Al3+ possesses 
a large lattice spacing (~ 13.36 Å), which may provide a 
broad channel and spacing for the intercalation of  Zn2+. 
Meanwhile, the uniform coating of graphene on the surface 
of the HAVO nanobelts may enhance electrical conductivity 
and inhibit the dissolution of the active material in electro-
lyte. While used as a cathode for AZIBs, HAVO@G deliv-
ers stable cycling performance and excellent rate capability. 
Remarkably, HAVO@G exhibits an ideal performance in 
the high-areal-loading measurement (~ 15.7 mg cm−2), dem-
onstrating its potential practical application in large-scale 
energy storage.
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