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HIGHLIGHTS

• Moth‑eye structured polydimethylsiloxane (PDMS) films with different sizes were fabricated to improve the efficiency of perovskite 
solar cells.

• The PDMS with 300‑nm moth‑eye films significantly reduced light reflection at the front of the glass and therefore enhanced the solar 
cell efficiency of ~ 21%.

• The PDMS with 1000‑nm moth‑eye films exhibited beautiful coloration.

ABSTRACT Large‑area polydimethylsiloxane (PDMS) films with variably 
sized moth‑eye structures were fabricated to improve the efficiency of perovs‑
kite solar cells. An approach that incorporated photolithography, bilayer PDMS 
deposition and replication was used in the fabrication process. By simply attach‑
ing the moth‑eye PDMS films to the transparent substrates of perovskite solar 
cells, the optical properties of the devices could be tuned by changing the size 
of the moth‑eye structures. The device with 300‑nm moth‑eye PDMS films 
greatly enhanced power conversion efficiency of ~ 21% due to the antireflective 
effect of the moth‑eye structure. Furthermore, beautiful coloration was observed 
on the 1000‑nm moth‑eye PDMS films through optical interference caused by 
the diffraction grating effect. Our results imply that moth‑eye PDMS films can 
greatly enhance the efficiency of perovskite solar cells and building‑integrated 
photovoltaics.
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1 Introduction

Since a renewable energy device with a power conversion 
efficiency (PCE) of 3.8% appeared firstly in 2009, organic/
inorganic perovskite solar cells (PSCs) have received a 
great deal of attention as solar devices due to their super 

photovoltaic properties [1–6]. Advanced efforts to con‑
struct highly efficient PSCs in recent years have led to 
PCEs exceeding 20% with good reproducibility [7–9]. 
These high‑efficiency devices exhibit an average pho‑
tocurrent density of ~ 24 mA cm−2 with similarly high 
external quantum efficiency (EQE) values along the entire 
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wavelength [7]. Although this is lower than the theoretical 
maximum photocurrent density of ~ 26 mA cm−2, it has 
been noted that the best strategy for improving the PCE 
of photovoltaic devices is to enhance photocurrent density 
by increasing the absolute value of EQE [10]. Therefore, 
the efficiency of exterior sunlight absorbance is critical for 
evaluating the performances of photovoltaic devices, even 
when the same materials and methods are used for their 
fabrication [11]. Doped substrates, such as F‑doped  SnO2 
(FTO), indium tin oxide (ITO), and graphene, are typi‑
cally used to make conductive electrodes for PSCs. How‑
ever, compared to bare substrates, doped substrates reduce 
the transmission of incident light [12]. Thus, improving 
light‑harvesting efficiency (LHE) by optical modulation 
is important for maximizing the efficiency of PSC devices.

To increase the LHE of solar energy systems, antireflec‑
tive surfaces [10, 13–15], light‑scattering layers [16–18], 
and plasmonic photonic crystals [19–21] have been devel‑
oped and applied. Biomimetic soft lithography is a promis‑
ing alternative for increasing the PCE of PSCs; it involves 
simply coating or attaching a material to the external sur‑
face of a transparent substrate. Antireflective nanostructures 
inspired by the eye of a moth demonstrate superior structural 
antireflectivity over a wide range of wavelengths. These uni‑
formly arranged nanostructures induce a gradual refractive 
index gradient at the surface [11, 22]. In terms of materi‑
als, polydimethylsiloxane (PDMS) is frequently used for 
fabricating bioinspired structures using soft lithography. In 
previous work, we showed that the properties of PDMS can 
be applied effectively in photovoltaic devices [14]. Recent 
efforts to increase the PCE of PSCs have employed biomi‑
metic multiscale architecture approaches [23–26]. However, 
these approaches were applied to conventional devices with 
irregular microstructures obtained through expensive and 
complex fabrication processes. They did not employ uni‑
formly arranged moth‑eye nanostructures. The diffraction 
grating effect at visible wavelengths from 300 to 800 nm was 
therefore not considered, which made it difficult to exceed a 
PCE of 20%. Novel criteria and a standard methodology are 
thus required to fabricate well‑ordered bioinspired optical 
structures that can be introduced to highly efficient PSCs.

In this paper, we report an optimized PDMS nano‑
structure polymer film with inverted moth‑eye features 
for effective utilization of efficient PSCs. Using a PDMS 
soft lithography method, we successfully fabricated well‑
ordered, sharp, inverted moth‑eye nanostructures with 

high fidelity. The fabricated bioinspired polymeric surface 
demonstrated superior optical and antireflective properties 
as well as beautiful coloration from the diffraction grating 
effect. We compared 300‑nm and 1000‑nm periodic nano‑
structures to identify a critical dimension for enhancing 
the EQE of the photovoltaic devices based on the diffrac‑
tion grating equation and comprehensive experiments. By 
simply attaching the bioinspired film to the transparent 
substrate of a PSC via Van der Waals forces, the opti‑
cal properties were improved considerably over those 
of a reference device. Finally, the photocurrent density 
of the devices with 300‑nm periodic grating structures 
was improved by 5.4% over that of the reference due to 
enhanced LHE. Consequently, PCE in the PSCs reached 
up to ~ 21%. Furthermore, colorful photovoltaic devices 
were obtained using the 1000‑nm grating structures, which 
could be adapted for various applications, particularly in 
building‑integrated photovoltaics (BIPV).

2  Experimental Section

2.1  Preparation of Moth‑eye Silicon Masters

The detailed fabrication process has been described previ‑
ously [11]. To summarize it briefly here, a 1000‑nm‑thick 
photoresist (LX‑429, Dongjin Semichem, Korea) film 
was spin‑coated onto a clean 8‑inch silicon wafer. The 
coated photoresist was exposed to a KrF laser source with 
hexagonal array masks with pattern diameters of 170 or 
600 nm. Each patterned silicon wafer was anisotropically 
etched with an inductively coupled plasma (ICP) system 
to obtain pillar structures with depths of 180 or 500 nm, 
respectively. After removing the photoresist layer, a 100‑
nm or 330‑nm‑thick  SiO2 layer was deposited on the pil‑
lared wafer surface by thermal oxidation under flowing  H2 
and  O2 gas. Finally, hexagonally close‑packed 300‑nm and 
1000‑nm moth‑eye arrays (diameter, height, and period 
were equal to 300 and 1000 nm, respectively) were com‑
pleted following deposition of a 10‑nm‑thick nitride layer.

2.2  Fabrication of Moth‑eye PDMS Films

To reduce the surface energy of each moth‑eye master, gas‑
eous deposition of a very thin  C4F8 layer was performed 
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by an ICP system supplied with  C4F8 gas at approximately 
100 standard L  min−1 at 22 mTorr for 1 min. To replicate 
the prepared structures with high pattern fidelity, two dif‑
ferent PDMS materials (hard‑PDMS (h‑PDMS) and soft‑
PDMS (s‑PDMS)) were used. A highly viscous h‑PDMS 
solution was prepared by mixing 1.7  g VDT‑731 vinyl 
PDMS pre‑polymer (Gelest Corp., Germany), 0.5 g HMS‑
301 hydrosilane pre‑polymer (Gelest Corp., Germany), 10 
μL SIP6831.2 platinum catalyst (Gelest Corp., Germany), 
and 5 μL 2,4,6,8‑tetramethyltetravinylcyclotetrasiloxane 
modulator (Sigma‑Aldrich, USA) with magnetic stirring at 
2000 rpm for 10 min. The h‑PDMS solution was poured 
onto the moth‑eye silicon master and coated in an approxi‑
mately 20‑µm‑thick layer by doctor‑blading deposition. The 
h‑PDMS layer was cured in an oven at 80 °C for 20 min. A 
1:10 solution of s‑PDMS (base) and curing agent was made 
with a  Sylgard® 184 kit (Dow Corning, USA), cast onto the 
h‑PDMS supporting layer, and cured in an oven at 80 °C for 
1 h. Finally, the replicated 300‑nm and 1000‑nm inverted 
moth‑eye PDMS (h‑PDMS/s‑PDMS) films were detached 
from the silicon masters.

2.3  Fabrication of Perovskite Solar Cells

All chemical solutions for PSC fabrication were purchased 
from Sigma‑Aldrich (USA) and used as received. Poly(bis(4‑
phenyl)‑(2,4,6‑trimethylphenyl)amine) (PTAA) was pur‑
chased from Xi’an Co. (China). Lead iodide was purchased 
from Alfa Aesar. Methylammonium bromide (MABr), meth‑
ylammonium chloride (MACl), and formamidinium iodide 
(FAI) were purchased from Dyesol (Australia). The glass/
ITO substrate was cleaned sequentially with acetone, iso‑
propanol, and distilled water in an ultrasonicator. The sub‑
strate was spin‑coated with PTAA in chlorobenzene solution 
(2 mg mL−1) at 6500 rpm for 30 s and annealed at 100 °C 
for 10 min. A 1.3 M  PbI2 solution in 9.5:0.5 DMF/DMSO 
and a 1 mL solution of FAI (60 mg), MABr (6 mg), and 
MACl (6 mg) in IPA were prepared for fabrication of the 
perovskite films. The  PbI2 solution was spin‑coated onto 
the PTAA thin layer at 2500 rpm for 30 s, and then, the 
mixed organic halide solution was distributed on the semi‑
transparent  PbI2 film by dripping. The perovskite film was 
spin‑coated at 5000 rpm for 30 s and then annealed at 150 °C 
for 10 min. All spin‑coating was performed in a dry room at 
a relative humidity of < 10% at 25 °C. For electron transport, 

 C60 (20 nm) and BCP (10 nm) layers were deposited onto 
the perovskite layer by organic vacuum thermal evaporation 
at a rate of 0.2 Å s−1. A layer of Cu metal (50 nm) was then 
deposited on top of the BCP layer at 0.5 Å s−1 over a metal 
shadow mask to form the metal electrode. Each evaporation 
process was performed under a strong vacuum at  10−7 torr. 
Finally, we simply attached the moth‑eye PDMS films onto 
the glass side of the PSCs.

2.4  Characterization

Measurements for the J–V curves were performed at a scan 
rate of 0.4 mV ms−1 with a Keithley 2400 source meter 
(Tektronix, Beaverton, OR). An Oriel S013 ATM solar 
simulator (Newport Corp., Irvine, CA) was used for AM 
1.5 G illumination at an intensity of 100 mW cm−2, followed 
by calibration with a 91150 KG5 filtered standard silicon 
reference solar cell. Measurements were carried out at 25 °C 
in a  N2‑filled glove box. Quantum efficiency was evaluated 
by incident photon‑to‑charge carrier efficiency (IPCE) 
analysis with an IQE‑200 system (Newport, Beaverton, OR) 
equipped with a 100 mW Xe lamp and a lock‑in amplifier. 
The transmittance and reflectance spectra were collected on 
a Cary 5000 UV–visible spectrometer (Agilent technologies, 
Santa Clara, CA). Atomic force microscopy (AFM) images 
were obtained with an NX10 AFM (Park Systems, Suwon, 
Korea) in contact mode using a NSC36/Cr–Au tip. Scanning 
electron microscopy (SEM) images were obtained with a 
Merlin field emission SEM (Zeiss, Oberkochen, Germany) 
equipped with an Auriga series focused ion beam (FIB).

3  Results and Discussion

3.1  Structure of Perovskite Solar Cells with Moth‑eye 
PDMS Films

A representative schematic of a PSC with a moth‑eye PDMS 
film is shown in Fig. 1a. The PSC was comprised of a glass/
ITO electrode, a poly(bis(4‑phenyl)‑(2,4,6‑trimethylphenyl)
amine) (PTAA) hole transport layer, a perovskite active layer 
for photon absorption, a bathocuproine (BCP) buffer layer, a 
 C60 electron transport layer, and a Cu electrode. The inverted 
moth‑eye PDMS (h‑PDMS/s‑PDMS) film was gently affixed 
to the front side of the PSC by Van der Waals interactions 
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between the rubbery s‑PDMS surface and the ITO glass. The 
PSC schematic shown in Fig. 1b is based on a recent study 
on a state‑of‑the‑art high‑efficiency PSC [27].

The fabrication procedure for the moth‑eye PDMS film 
is illustrated in Fig. 1c–e. First, a moth‑eye silicon master 
with a well‑defined hexagonal array of 300‑nm or 1000‑
nm nanostructures was prepared by conventional photoli‑
thography and an anisotropic etching process. This was fol‑
lowed by successive deposition of  SiO2 and nitride to form 
a compact, parabolic structure (Fig. 1c). Before replicating 
the structure, a thin  C4F8 layer was deposited to reduce the 
surface energy of the moth‑eye silicon masters, which was 
critical for successful demolding of the replicated PDMS 
films. The bilayer feature of the PDMS (h‑PDMS/s‑PDMS) 
film (Fig. 1d) was important for high‑fidelity replication of 
the nanostructures and to ensure conformal contact with the 
glass surface. First, the prepared masters were coated with 
an approximately 20‑µm‑thick layer of h‑PDMS with a high 
elastic modulus (~ 9 MPa) [28] by doctor‑blading deposi‑
tion. Pouring and curing of a ≤ 3‑mm‑thick s‑PDMS layer 
with an elastic modulus of ~ 2 MPa [28] was performed on 
the supporting h‑PDMS layer. A schematic of the complete 

replicated PDMS (h‑PDMS/s‑PDMS) with an inverted 
moth‑eye structure is shown in Fig. 1e.

The inverted PSC in combination with the moth‑eye 
PDMS is based on the PTAA hole transport layer. PTAA‑
based PSCs exhibit not only extremely high efficiency but 
also great long‑term stability [29]. PTAA dissolved in chlo‑
robenzene was spin‑coated onto the ITO/glass to form the 
hole transport layer, as illustrated in Fig. 1f. The  PbI2 thin 
film and the mixed FAI/MABr/MACl solution were then 
sequentially spin‑coated onto the PTAA layer (Fig. 1g–h). 
The perovskite light‑absorbing layer was composed of 
 (FAPbI3)0.97(MAPbBr3)0.03 [27]. Finally, the  C60/BCP elec‑
tron transport layer and Cu metal electrode were added by 
evaporation deposition (Fig. 1i).

3.2  Morphology of Completed Moth‑eye PDMS Films 
and Perovskite Solar Cells

FIB‑assisted cross‑sectional SEM images of the inverted 
300‑nm and 1000‑nm moth‑eye PDMS films are shown 
in Fig. 2a and 2b, respectively, and a completed PSC can 
be seen in Fig. 2c. Both the inverted 300‑nm and 1000‑nm 
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Fig. 1  Representative schematic images of a completed PSC with moth‑eye layer and b PSC configuration. c Fabrication of the hexagonally 
packed moth‑eye array on a silicon wafer. d Replication of the master structure by successive coating and thermal curing of h‑PDMS and 
s‑PDMS. e Completed moth‑eye PDMS film. f Spin‑coating deposition of PTAA hole transport layer on ITO/glass substrate. g Spin‑coating 
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 C60/BCP electron transporting layer on Cu metal electrode



Nano‑Micro Lett. (2019) 11:53 Page 5 of 10 53

1 3

moth‑eye structures were successfully replicated from the 
silicon masters thanks to the  C4F8 surface passivation pro‑
cess and employment of h‑PDMS with a high elastic modu‑
lus. The back‑scattered electron (BSE) image of the cross‑
sectional PSC configuration (Fig. 2c) showed that each of 
the ITO, PTAA, perovskite,  C60/BCP, and Cu layers were 
well formed without any defects. To further investigate the 
sub‑micron morphological features of the inverted 300‑
nm moth‑eye PDMS films, AFM imaging was conducted 
in contact mode with constant force (Fig. 2d). Because the 
rubber‑like PDMS surface was easily deformed by the AFM 
tip, accurate height measurement was not possible. How‑
ever, the well‑defined morphology of the moth‑eye structure 
was clearly visible in the AFM images. Importantly, AFM 
analysis confirmed that the lateral pitch of the structure 
was approximately 300 nm. A digital camera image of a 
completed 2.5 × 2.5 cm2 PSC device is shown in Fig. 2e. 

Compared to the reference PSC device, the PSC with a 300‑
nm moth‑eye PDMS film had dark coloration due to the 
antireflective properties of the moth‑eye structure, which 
led to more light absorption in the perovskite layer. Interest‑
ingly, the PSC with a 1000‑nm moth‑eye PDMS film exhib‑
ited optical interference coloration due to external reflection 
from the structures. This phenomenon acted as diffraction 
gratings on the front of the PSC device in the visible wave‑
length range. It was difficult to obtain beautiful coloration 
on the PSC because the high absorption coefficient (α) of 
perovskite resulted in dark coloration. This optical char‑
acteristic can be adapted in diverse environments, where 
additional coloration of PSC is required, such as in BIPV. 
Furthermore, the moth‑eye PDMS films were highly flexible 
due to the low elastic modulus of s‑PDMS. Hence, it was 
relatively easy to attain conformal contact to the glass and 
to detach the moth‑eye layer from it (Fig. 2h).
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Fig. 2  FIB‑assisted cross‑sectional SEM images of a 300‑nm moth‑eye PDMS film, b 1000‑nm moth‑eye PDMS film, and c PSC configuration 
imaged in BSE mode. d AFM image and line profile of 300‑nm moth‑eye PDMS film. Digital camera images of e completed PSC device, f PSC 
with 300‑nm moth‑eye PDMS film, g PSC with 1000‑nm moth‑eye PDMS film, and h detachment of 300‑nm moth‑eye PDMS film from PSC
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3.3  Optical Properties of Moth‑eye PDMS Films

To elucidate the optical characteristics of the moth‑eye 
PDMS films, total transmittance spectra were collected from 
300 to 800 nm with a UV–Vis‑NIR spectrophotometer. The 
300‑nm moth‑eye PDMS films on glass exhibited greatly 
enhanced optical transmittance over a broad wavelength 
range compared to the reference glass substrate; however, 
the 1000‑nm moth‑eye PDMS films on glass had reduced 
optical transmittance over the entire measured region com‑
pared to the reference. These phenomena can be explained 
by the well‑known grating equation under normal incidence 
lighting (Eq. 1) [30].

where n is the refractive index of the incident medium, p is 
the grating period, m is the order of the diffracted light, λ is 
the incident wavelength, and θd is the diffraction angle. The 
incident medium was air, where nair ≈ 1. Based on Eq. 1, the 
300‑nm moth‑eye PDMS film effectively reduced external 
reflection because its 300‑nm periodicity suppressed exter‑
nal reflection at wavelengths between 300 and 800 nm. It 
therefore displayed greatly enhanced transmittance of up to 
approximately 96%, whereas the transmittance of the refer‑
ence glass was approximately 92%. This result explains the 
darker coloration of the PSC with the 300‑nm moth‑eye 

(1)sin �
d
= m�∕np

film shown in Fig. 2f. In the case of the 1000‑nm moth‑eye 
film, reduced transmittance over the 300–800 nm range was 
a consequence of higher‑order diffraction. In contrast to 
the 300‑nm moth‑eye structure, which exhibited no higher‑
order external reflection, the 1000‑nm moth‑eye displayed 
first‑, second‑, and even third‑order external reflection due 
to the diffraction grating effect. This was confirmed by the 
iridescent coloration visible in the digital camera image in 
Fig. 2g.

Further characterization of the optical properties of the 
300‑nm and 1000‑nm moth‑eye structures was carried out 
by reflectance spectral analysis. The reflectance spectra of 
the 300‑nm moth‑eye structure (Fig. 3b) showed an average 
reduced reflectance of approximately 4.3% compared to the 
reference value of approximately 7.9%, which is consistent 
with the enhanced transmittance seen in Fig. 3a. The 1000‑
nm moth‑eye structure yielded greater reflectance than the 
300‑nm moth‑eye structure. However, its reflectance was 
lower than that of the reference glass, which is not consistent 
with the transmittance results. We concluded that because 
of the higher‑order diffraction in the 1000‑nm moth‑eye 
PDMS film (n ≈ 1.43), which occurred up to the fourth order, 
normally incident light was trapped in the film due to total 
internal reflection. This resulted in optical loss, which was 
calculated by Eq. 2 [31].
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Schematic illustrations of the antireflective effects of the 
300‑nm moth‑eye PDMS film are shown in Fig. 3c, d. The 
300‑nm moth‑eye structure did not exhibit higher‑order 
external reflection; furthermore, its parabolic shape gradu‑
ally changed the refractive index at the interface between 
air and the PDMS surface. Therefore, it effectively reduced 
interfacial Fresnel reflection. The antireflective effect of the 
300‑nm moth‑eye PDMS film was confirmed by comparison 
with bare glass, as shown in Fig. 3e. With the 300‑nm moth‑
eye PDMS film, the characteristics under the glass were seen 
clearly due to the effectively reduced external reflection at 
the surface. However, with bare glass, the characteristics 
were not easily discernible.

(2)100 (%)− transmittance (%)− reflectance (%)
3.4  Photovoltaic Performance of PSCs with Moth‑eye 

PDMS Films

Optical enhancements brought about by moth‑eye PDMS 
films with nanostructures of different sizes were directly 
reflected in the photovoltaic performance of the PSCs. In 
particular, the current density (JSC) in the PSCs was con‑
siderably altered by both the 300‑nm and 1000‑nm moth‑
eye PDMS films. The device with the best performance was 
made with 300‑nm moth‑eye PDMS. Its power conversion 
efficiency (PCE) was 20.93%, and its JSC was as high as 
25.11 mA cm−2. The PCE of the reference device was only 
19.66%, and its JSC was 23.83 mA cm−2 (Fig. 4a). By addi‑
tion of the 300‑nm moth‑eye PDMS, PCE was improved 
by 6.5%, and JSC was improved by 5.4%. The increase in 
PCE is clearly attributable to enhanced light absorption 
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due to the antireflective property of the 300‑nm moth‑eye 
PDMS, which was also evidenced by the IPCE measure‑
ment (Fig. 4b). The integrated JSC from the IPCE measure‑
ments was slightly lower (approximately 10%) than the JSC 
from the J–V measurements. This is reasonable because 
IPCE measurements are conducted with monochromatic 
light, which has a lower intensity than one‑sun solar irra‑
diation [32, 33]. The device made with the 300‑nm moth‑
eye PDMS had higher external quantum efficiency than the 
reference device over the entire wavelength range from 350 
to 800 nm. While the 300‑nm moth‑eye PDMS improved 
PSC performance significantly, the purpose of the 1000‑
nm moth‑eye PDMS was to display beautiful coloration 
when attached to a dark black PSC. The PCE in this device 
reached as high as 17.43%, and a JSC of 22.43 mA cm−2 
was observed, despite the optical interference from its 
larger‑scale moth‑eye pattern. Though  JSC and PCE in 
this device were slightly lower than those of the reference 
device, its performance was still superior to that of colorful 
dye‑sensitized solar cells, indicating it could be used for 
BIPV applications [34–36].

Consistent trends in the photovoltaic performance among 
20 different PSC devices were observed. Their photovoltaic 
parameters are summarized in Table 1. Great reproducibil‑
ity was also verified by histograms (Fig. S1) and box plots 
(Fig. S2) of the device performance parameters (JSC, open 
circuit voltage (Voc), fill factor (FF), and PCE) for individu‑
ally fabricated devices. As can be seen in Table 1 and Fig. 
S2, changes in optical properties did not influence the photo‑
voltaic parameters of Voc and FF. This was also indicated in 
the plot of photovoltaic enhancement (%) shown in Fig. 4d. 
The trends in PCE variation were accompanied by similar 
changes in JSC. Even hysteresis behavior in the PSCs was not 
affected by the moth‑eye PDMS as PSCs with and without 
PDMS present the same J–V curves regardless of the scan 
direction (Fig. S3).

4  Conclusions

In summary, we have fabricated moth‑eye inspired func‑
tional PDMS films that improve the performance of PSCs 
using a robust soft lithography method. The nanostructured 
PDMS films displayed good structural fidelity and attached 
readily to the transparent substrates without requiring adhe‑
sives. We created high‑efficiency PSCs with PCEs exceeding 
20% by enhancing the LHE with 300‑nm periodic structures. 
We have also constructed colorful photovoltaic devices by 
applying 1000‑nm moth‑eye PDMS films. The iridescent 
color of these devices can be attributed to the diffraction 
grating effect. We predict the effective utilization of this 
bioinspired nano‑patterning technology to contribute to the 
advancement of efficient PSCs.
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