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Abstract InGaAs is an important bandgap-variable ternary semiconductor which has wide applications in electronics and

optoelectronics. In this work, single-crystal InGaAs nanowires were synthesized by a chemical vapor deposition method.

Photoluminescence measurements indicate the InGaAs nanowires have strong light emission in near-infrared region. For

the first time, photodetector based on as-grown InGaAs nanowires was also constructed. It shows good light response over

a broad spectral range in infrared region with responsivity of 6.5 9 103 A W-1 and external quantum efficiency of

5.04 9 105 %. This photodetector may have potential applications in integrated optoelectronic devices and systems.
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1 Introduction

One-dimensional semiconductor nanowires have attracted

considerable attention as unique building blocks for various

interesting applications in integrated electronic and opto-

electronic devices and systems, such as nanoscale lasers, field-

effect transistors, solar cells, and photodetectors [1–8].

Among them, nanowire-based photodetectors have aroused

wide interests as potential key functional units in on-chip

information communication and processing [9, 10]. Although

muchwork has been devoted to investigating nanowire-based

photodetectors in the past few years [10–16], most of the

reported nanowire detectors are limited in the visible and

ultraviolet spectral regions [9, 11, 13, 14], and little work is

conducted in the infrared region [15, 16]. III–Vsemiconductor

nanowires with narrow bandgap are considered as promising

candidates for constructing infrared photodetectors. To date,

infrared photodetectors based on InAs, InPAs, and InGaSb

nanowires have been reported [8, 10, 16, 17].

As an important III–V ternary semiconductor, InGaAs are

expected to have potential bandgap tunability from the near-

infrared (NIR) to mid-infrared (MIR) region (0.35 B Eg
B 1.42 eV).Due to its tunable bandgap, aswell as high electron

mobility and small leakage current, InxGa1-xAsnanowires have

been widely used in optoelectronic devices, such as NIR emis-

sion lasers, photovoltaics, and field-effect transistors [18–20].

Till nowphotodetectors basedon InGaAsquantmdots andfilms

have been fabricated. However, the performances of these

devices are relatively poor. It is desirable to fabricate InGaAs

photodetectors with high performance based on other nanoma-

terials. To the best of our knowledge, there is no report on room-

temperature infraredphotodetector basedon InGaAsnanowires.

In this work, InGaAs nanowires were first synthesized

via a simple chemical vapor deposition (CVD) method.

Raman and photoluminescence measurements illustrate
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that the as-grown nanowires are high-quality single crys-

tals. More importantly, integrated infrared photodetectors

were constructed by using these as-grown nanostructures.

The achieved devices exhibit good photoresponse in a

broad spectral range from 1100 to 2000 nm, in which the

responsivity (R) and the external quantum efficiency

(EQE) are comparable with those infrared photodetectors

based on other III–V nanostructures at room temperature

[8, 16]. Our results may possess important applications in

integrated photonics and optoelectronics devices.

2 Experimental

CVD method was used to grow InGaAs nanowires. Briefly,

InAs power (Alfa Aesar, 99.99 %) and GaAs power (Alfa

Aesar, 99.99 %) were mixed equivalently and placed into the

heating zone of the furnace. Silicon wafers coated with 5-nm-

thick gold film were placed downstream with a distance of

24 cm away to the center of tube furnace to collect the

deposited InGaAs nanowires. Before heating Ar mixed with

10 %H2gasflowed through the horizontal quartz tubeat a rate

of 45 sccm and the pressure maintained at 3 Torr. The tem-

perature of the powder sources was set to 860 �C and that of

the substrate was approximately 520 �C (schematic diagram

of the experimental setup and the temperature gradient in the

furnace see Fig. S1). After 90 min of growth at 860 �C, the
temperature was reduced naturally to room temperature.

The morphology of the as-prepared sample was charac-

terized by field emission scanning electron microscopy (FE-

SEM, Hitachi S-4800). The phase characterization was

identified using XRD (Rigaku D/Max 2500). Transmission

electron microscopy (TEM, Tecai F20) combined with

energy-dispersive X-ray spectroscopy (EDX) was used to

investigate the microstructure and elemental composition.

Raman spectrum was performed by a l-Raman (WITec

alpha-300) system excited with a 488 nm argon ion laser.

The photoluminescence (PL) measurements were carried

out on a home-built IR micro-PL setup. The samples were

excited by a passively mode-locked Ti:sapphire laser.

(Spectra Physics Tsunami, 800 nm, 150 fs pulse duration,

80 MHz repetition rate.) The PL signal was collected and

detected using a spectrometer (HORIBA iHR 550) equipped

with a liquid nitrogen-cooled InGaAs photodiode detector

(1300–2300 nm). The current–voltage (I–V) characteristics

of the photodetectors were measured using a Keithley 4200.

3 Results and Discussion

The typical SEM image of the as-grown sample is shown in

Fig. 1a. The nanowires with uniform diameter and tens of

micrometers length were deposited in high yields on the Si

substrate. The inset of Fig. 1a shows a high-magnification

SEM image of a typical nanowires with a diameter of about

150 nm. Figure 1b represents the XRD pattern of the as-

deposited alloy nanowires. For contrasting study, XRD

patterns of pure InAs (bottom, JCPDS No. 88-2489) and

GaAs (top, JCPDS No. 89-3314) are also plotted. All the

diffraction peaks located between those of zinc blende

InAs (bottom, JCPDS No. 88-2489) and GaAs (top, JCPDS

No. 89-3314) single crystals are clearly seen, confirming

the as-grown sample is an InGaAs alloy with zinc blende

crystallographic phase. There are no characteristic peaks

from other oxides or crystalline impurities, suggesting the

formation of high-purity InGaAs nanowires.

Figure 2a shows the TEM image of a representative

nanowires. It can be seen that the surface of the nanowire is

smooth, and there is a typical spherical catalytic particle at

the tip of the nanowire evidenced by the typical metal-

catalyzed vapor–liquid–solid (VLS) growth mechanism.

Figure 2b displays the high-resolution TEM (HRTEM)

image taken from the nanowire (the pink rectangle in

Fig. 2a). It demonstrates that the nanowire has single-

crystalline zinc blende (ZB) structure. The plane spacing is

0.341 and 0.286 nm, which is corresponding well to (111)

and (200) lattice planes in the In-rich thin-film counterparts

[21], respectively. Figure 2c illustrates the corresponding

EDX spectra of the nanowire. The peaks of In, Ga, and As

have strong intensities and their atomic ratio is close to

0.65:0.35:1, demonstrating that the composition of the

achieved wires is In0.65Ga0.35As alloys (the detected Cu
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Fig. 1 a Typical SEM image of the morphology of the as-grown

nanowires. b XRD patterns of the as-deposited alloy nanowires
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element originates from the copper grid). Figure 2d–f show

the two-dimensional (2D) elemental mapping of this

nanowire. As can be seen, In, Ga, and As are homoge-

neously distributed across the whole nanowire.

In order to further characterize the microstructural prop-

erties of the as-grown In0.65Ga0.35As nanowires, we have

performed the Raman spectrum measurements. A typical

Raman spectrum of the In0.65Ga0.35As nanowires is displayed

in Fig. 3. Two phononmodes at 223 and 249 cm-1 are clearly

seen, which is assigned to the InAs-like and GaAs-like

transverse optical phononmodes, respectively. Regarding the

peaks position of the two phonon modes, it can be found that

the experimental data are in agreement well with literature

values [22, 23]. This confirms that the achieved In0.65Ga0.35As

nanowires have good compositional homogeneity and high-

quality crystallization without the stacking disorder.

Figure 4a exhibits the temperature-dependent PL of the

In0.65Ga0.35As nanowires excited with an 800-nm fem-

tosecond laser at the temperature from 77 to 270 K. A strong

PL emission band with the peak wavelength at 1794 nm can

be observed at 77 K, which is well consistent with the band

gap value of In-rich InGaAs alloy nanowires (0.69 eV)

grown by MBE (Molecular Beam Epitaxy) at this temper-

ature [24]. The temperature dependence of the band gap is a

continuous function with the Varshni’s empirical relation

ðEgðTÞ ¼ Egð0KÞ � aT2=ðT þ bÞÞ [25]. According to this

equation, the fitted a and b are 3 9 10-4 eV K-1 and 105 K

for the In0.65Ga0.35As (the calculated process sees Sup-

porting Information). The measured experiment results

obtained from PL peak position are consistent with the

calculated band gap values as shown in Fig. 4b, which

demonstrates that the observed PL is mainly from the

bandedge emission of the In0.65Ga0.35. As nanowires with-

out any observed defect-related emission bands. All of these

results are in agreement well with the structural and com-

position investigations described above, further demon-

strating the high-quality of the In0.65Ga0.35As nanowires.

To shed light on studying the photoconductance prop-

erties of as-grown nanowires, photodetectors were
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Fig. 2 a TEM image of a representative single InGaAs nanowire. b HRTEM image taken from the pink rectangle of Fig. 2a. c Corresponding
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Fig. 3 Raman spectrum of the In0.65Ga0.35As nanowires excited with

a 488 nm argon ion laser
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constructed using these high-quality In0.65Ga0.35As alloy

nanowires. The wires were first dispersed on a p-type Si

substrate with 300-nm thickness of SiO2 layer. Photo-

lithography was employed to define the source and drain

pattern. Cr/Au (10/60 nm) source/drain (S/D) electrodes

were made by metal evaporation and lift-off processes. A

single InGaAs nanowire connected with the Cr/Au Schot-

tky contact electrodes constitutes a typical M–S–M pho-

todetector. Figure 5a shows the I–V curves of a

representative nanowire photodetector (see the inset of the

figure) with a wire diameter of d * 150 nm and a channel

length of L * 10 lm, measured in the dark condition and

under the illumination of a beam of a monochromatic light

with the wavelength of 1100, 1300, 1500, 1600, 1800, and

2000 nm (light intensity Pin = 15.8 mW cm-2) at room

temperature, respectively. At a fixed bias voltage of 0.5 V,

it can be seen that the dark current is about 144 nA, and the

largest photo-excited current reaching *2.5 lA was

recorded at the wavelength of 1600 nm. The curves show

the electric conductance of the devices drastically increases

under the light illumination of all the given wavelengths,

suggesting good photoresponse ability of the device in

near-infrared spectrum.

In order to get the intuitional result of the photore-

sponse, the calculated spectral responsivity (Rk) and

external quantum efficiency (EQE) results of the In0.65-
Ga0.35As nanowire device for different wavelengths rang-

ing from 1000 to 2000 nm are depicted in Fig. 5b. One can

notice that the photoresponse increases gradually as the

incident light wavelength changes from 1100 to 1600 nm

and then decreases rapidly with the increase of light

wavelength larger than 1600 nm. This indicates that the

response spectrum is related to the energy band structure of

In0.65Ga0.35As nanowires. The photons with larger energy

than band gap are easily capable to excite the electron–hole

pairs and therefore enhance the photoconductive sensitiv-

ity. These results demonstrate that the device based on

In0.65Ga0.35As nanowires has good wavelength selectivity

and high photosensitivity to infrared light in the NIR region

from 1100 to 2000 nm.

R and EQE, two key parameters of a photodetector

sensitivity to the incident light, can be expressed as [9, 13]

R ¼ Iph

PS
ð1Þ

EQE ¼ R� hc

ek
; ð2Þ

where Iph is the photocurrent, P is the light intensity, S is

the effective illuminated area, h is Plank’s constant, c is the

velocity of light, and k is the incident light wavelength.

The values of R and EQE at 1600 nm were calculated to be

6.5 9 103 A W-1 and 5.04 9 105 % at a bias voltage of

0.5 V, respectively. They are higher than those of con-

ventional infrared photodetectors constructed with InGaAs

quantum dots and thin films [26, 27].

It is well known that one-dimensional semiconducting

nanowires own higher surface-to-volume ratio and can easily

induce trap states at the nanowire surface. Those trap states

will significantly affect the transport and photoconduction

properties of the nanowire-based photodetectors. It was

reported that In0.65Ga0.35As nanowire has higher density of

surface electrons. Oxygen molecules can be easily adsorbed

and combined with free electrons on the nanowire surface to

form a low-conductivity depletion layer and result in

increase of carrier densities [24]. Under NIR light illumi-

nation, the generated electron–hole pairs diffuse into the

depletion region and then drift to the surface under the

electric field in a radial direction and neutralize the adsorbed

oxygen ions. This process releases back the captured free

electrons and increases the free electron concentration. It

was reported that the photoconductive gain can be expressed

as G = s/Tr, where s is the carrier lifetime and Tr is the

transition time between electrodes. Because of the existence

of an internal electric field, the recombination of carriers will

be slowed down and the life time of the photocarrier (s) will
be prolonged [13]. For In0.65Ga0.35As nanowires with a

proper radius of 150 nm, the active area of the carrierswill be

confined by one-dimensional structure and therefore the
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Fig. 4 a Temperature-dependent PL spectra of the In0.65Ga0.35As

nanowires under the same laser excitation, the dashed line shows the

shift of the PL peak energy with changing the temperature.

b Temperature-dependent bandgap of the achieved In0.65Ga0.35As

nanowires
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scattering and carrier trapping will reduce. This will result in

a less Tr [28]. The nanowires in higher quality of defect-free

single crystal can facilitate the transport of the carrier along

the axis of the wires and therefore increase the photocurrent

gain [29]. It can be concluded that the electron trapping at the

nanowire surface and one-dimensional structure with higher

quality are two key elements to affect the carrier drift for a

photocurrent gain. In addition, the electrode distance and

Schottky contact may also affect the photoresponse. The

shorter distance of 10 lm between the two electrodes ben-

efits to shorten the carrier transit time during the transport

process. Moreover, the Schottky barriers in metal–semi-

conductor–metal (MSM) will reduce due to the photo-gen-

erated carriers and also benefits the electron injection [15,

30]. All of these elements can increase the photocurrent

density effectively, and therefore lead to an enhancement of

photoresponse.

Figure 5c displays the dependence of photocurrent on

light intensity curves measured at a voltage of 0.5 V. It

demonstrates a good linear relationship between the pho-

tocurrent and the light intensity, which is beneficial for

application in light power detection. This indicates that the

In0.65Ga0.35As nanowire is a typical photon-dependent

resistor. There may exist complex processes of carrier

generation, trapping, and recombination in the nanowires

[31]. The higher photoresponse is mainly due to its inner

photoelectrical effect [9]. Figure 5d shows the time-related

reproducible response of the photocurrent to illumination at

1600 nm. One can see that the photodetector is stable under

an optical power of 15.8 mW cm-2 and a bias voltage of

0.5 V. The response time and recovery time, defined as the

time between 10 and 90 % of maximum photocurrent, is

respective 70 and 280 ms (the detailed curves of pho-

tocurrent changing with time see Fig. S2). These values are

comparable with those of InAs nanowire photodetectors

[7].

4 Conclusion

In summary, single-crystal In0.65Ga0.35As nanowires were

synthesized by a simple CVD method. The nanowires have

strong light emission in the near-infrared region. Pho-

todetector based on as-grown nanowires was constructed

and it exhibits a good photoresponse over a broad range

from 1100 to 2000 nm. A higher responsivity of 6.5 9 103

A/W and external quantum efficiency of 5.04 9 105 %

were observed. The photodetector in this work may have

Fig. 5 a I–V curves for a representative In0.65Ga0.35As nanowire photodetector under light illumination with different wavelengths (Pin = 15.8

mW cm-2) at room temperature, inset, SEM image of a fabricate photodetector, the scale bar is 2 lm. b The corresponding R and EQE versus

incident wavelength of the photodetectors. c The photocurrent dependence of the incident light power density at a bias voltage of 0.5 V. d Time-

dependent photocurrent response to 1600 nm light under 0.5 V bias
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potential applications in integrated optoelectronic devices

for infrared radiation imaging, sensing, and information

communications.
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