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Abstract In this paper, a novel method of a subwavelength binary simple periodic rectangular structure is presented to

realize even beam splitting by combining the rigorous couple-wave analysis with the genetic algorithm. Several even

splitters in the terahertz region were designed and one of the silicon-based beam splitters designed to separate one incident

beam into four emergent beams has total efficiency up to 92.23 %. Zero-order diffraction efficiency was reduced to less

than 0.192 % and the error of uniformity decreased to 6.51 9 10-6. These results break the limitation of even beam

splitting based on the traditional scalar theory. In addition, the effects of the incident angle, wavelength, as well as the

polarizing angle on the diffraction efficiency and uniformity were also investigated.

Keywords Beam splitters � Binary optics � Diffraction gratings � Diffraction theory � Subwavelength structures

1 Introduction

Beam splitters are widely applied in various fields such as

optical communications, optical calculation, optical stor-

age, etc. [1]. Several polarization beam splitters [2–5] and

odd beam splitters for an incident beam with trans-

verse electric (TE) polarizations have been presented, in-

cluding 1 9 3 beam splitter of double-groove fused-silica

gratings [6], 1 9 7 beam splitter based on double-groove

blazed grating [7], three-port beam splitter of a binary

fused-silica grating [8], etc. Compared with odd splitters,

the isocandela even beam splitters for eliminating zero-

order diffraction spectrum spot have attracted much inter-

est due to their unique applications in circumstance with

higher requirement in zero-order elimination, such as the

fabrication of linearly chirped phase mask for fiber grating,

beam splitting in the optical system of the lithography

machine, and the denoising of the digital holographic

optical system function. However, for the noise charac-

teristic of the zero-order diffraction, the even beam splitters

must achieve high efficiency and good uniformity in the

condition of eliminating the noise introduced by the zero-

order diffraction. The design and optimization are much

more complicated and difficult than those of the odd

splitters, which induces a higher requirement on the fab-

rication process. Many researchers have focused on binary

phase grating structure which can avoid step lithography in

manufacture process, e.g., Dammann gratings with com-

plex periodic structure designed by traditional scalar theory

[9–12]. The reported diffraction efficiency achieved, re-

spectively, up to 60–83 %, and an error of uniformity down

to 5.7 9 10-5–3.2 9 10-4. Recently, even beam splitters

with a subwavelength Dammann grating based on the

vector theory were proved on enhancement of the effi-

ciency. Though the efficiency is higher than 90 %, prob-

lems existed in manufacturing process due to numerous

points of sudden phase in the structure are difficult to solve,

and therefore, it is hard to achieve good performance of

zero-order elimination and higher efficiency. According to

the traditional scalar theory, it is impossible to achieve the

even beam splitter with a binary simple periodical rectan-

gular structure because it is difficult to eliminate the zero-
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order diffraction. As far as we know, there is no report to

solve this problem in spite of its importance on the increase

of efficiency and uniformity.

Our group has done a lot of researches on binary optics

in recent years [13–18]. Here, novel even beam splitters

based on subwavelength binary simple periodic rectangular

structure are presented by combining the rigorous couple-

wave analysis (RCWA) with the genetic algorithm (GA).

The zero-order elimination, efficiency, and uniformity as

well as other properties of as-prepared splitters in terahertz

region were investigated.

2 Design Theory and Method of Even Splitters Based

on Subwavelength Binary Simple Periodic

Rectangular Structure

Figure 1 illustrates a subwavelength binary simple periodic

rectangular structure in which the refractive index dis-

tributing uniformly on the y axis and periodically on the

x axis. a and d are, respectively, the ridge and the period, h is

the depth, f is the duty cycle (f = a/d), and H is the thickness

of the substrate. On the z axis, the grating area can be di-

vided into four levels: (i) the area of z \ 0 is the incident

medium with its refractive index equal to n1; (ii) the area of

0 \ z \h is composed of two different mediums with their

refractive index equal to n1 and n2, respectively; (iii) the area

of h \ z\h ? H is the substrate medium with its refractive

index equal to n2; (iv) the area of z [ H is the output

medium with its refractive index equal to n1. The incident

medium and the output medium can be regarded as infinite,

relative to that of the grating area.

A TE-polarized plane wave of wavelength k0 is incident

upon the subwavelength structure with an angle h and

separated into N beams, while N = 2L, L = 1, 2, …, n, and n is

the natural number. When the plane wave is normally incident

and (Lk0/n1) \ d \(L ? 1)k0/n1, the grating generates L d-

iffraction orders [19, 20]. Nearly all the energy is focused on

the expected splitting orders, including the zero-order

diffraction. By optimizing the parameters of the structure and

utilizing the unique characteristic of the subwavelength

structure, the guided mode resonance effect of the zero-order

diffraction could be realized to form an evanescent field in the

surface of the splitter. Thus, the zero-order diffraction could

not transmit, leading to more energy distributed to non-zero-

diffraction orders. Then a zero-order-elimination even splitter

with high efficiency and low error of uniformity could be

obtained. In addition, due to the strong coupling effect intro-

duced by the subwavelength structure to the incident electro-

magnetic waves, there is no analytical relationship between the

structure parameters and the diffraction efficiency of each

order. A minor change to any of the structure parameters and

the incident parameters can lead to serious degradation of zero-

order-suppression, efficiency and uniformity. By varying the

parameters step-by-step to obtain the optimize values is a time-

consuming, low efficient and aimless process, which indicates

an infeasible method. A novel method is presented in this

paper to achieve even beam splitter based on a subwavelength

binary simple periodic rectangular structure by combining the

RCWA and the GA. A scientific and rational evaluation

function was established and the optimal values of the struc-

ture parameters were obtained.

According to the RCWA, first the parsing expressions of

electromagnetic field in both the incident medium and the

output medium were derived from the Maxwell equations and

Rayleigh expansion. By operating the Fourier expansion to the

dielectric constant and electromagnetic field of the grating area

as well as the substrate medium, and applying the boundary

conditions of electromagnetic fields for different boundaries, a

series of infinite dimension couple-wave differential equations

were obtained. Eigenvalue method were used to solve the

equations and numerical solutions to the diffraction efficiency

of each transmitted waves Pq were figured out [21], which are

sensitive to the profile parameters of the grating, such as duty

cycle f, period d, the grating depth h and the substrate thickness

H. Therefore, Pq can be numerically solved by the structure

parameters. In fact, the key to design an even beam splitter with

a subwavelength structure is how to find the optimal duty cycle

f, period d, the grating depth h and the substrate thickness H to

approach the minimum zero-order diffraction efficiency, the

maximum sum of each non-zero-order diffraction efficiency,

and uniform distribution. Considering these goals above, an

evaluation function can be established as follows:

Fðf ; d; h;HÞ ¼ a
XL

q¼�L;q 6¼0

Pq �
P

2L

����

����þ bU þ l 1� Pj j

þ mP0; ð1Þ

where 2L is the number of splitting beams, Pq is nu-

merically solved by the RCWA, P is the sum of each non-

zero-order diffraction efficiency (total efficiency), and U is

the error of uniformity defined by Expression 2 and 3 [9].
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Fig. 1 Model of a subwavelength binary simple periodic rectangular

structure
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P ¼
XL

q¼�L;q 6¼0

Pq; ð2Þ

U ¼ ðPmax � PminÞ=ðPmax þ PminÞ; ð3Þ

where Pmax and Pmin are, respectively, the maximum and

minimum diffraction efficiency of the non-zero-order. The

uniformity, the total diffraction efficiency and the sup-

pression of the zero-order are, respectively, considered in

each term in Expression 1. a, b, l, and m are the

weighting factor ranging from 0 to 1, with their total

equaling to 1, which can be set when necessary. There-

fore, the nature of the design is to find a set of optimal

parameters of the rectangular periodic grating in order to

get a minimum evaluated function F. However, Pq is a

multi-variables function and a numerical solution, which

could not be explicitly expressed as a function of the

parameters above. With the principle of jumping out of

local extreme point, GA is especially suitable for solving

multi-variable and discrete variable optimization prob-

lems [22, 23]. Therefore, GA was applied to optimize the

evaluation function F. First, initial values of the f, d, h,

and H were set and the initial population was produced.

Second, the efficiency of each diffraction order as well as

the evaluation function F is calculated. Third, if the

convergence conditions are not satisfied, selection, inter-

section, and mutation were done to the population. Then

the evaluation function F is recalculated and the conver-

gence conditions are rejudged. The optimized parameters

of f, d, h, and H are output until the convergence con-

ditions are satisfied. Then the optimal parameters of the

splitter can be obtained.

3 Optimization Example and Results

With the optimize method above, several even beam

splitters with subwavelength binary rectangular periodic

structure were designed to realize 2, 4, and 6 emergent

beams. The initial conditions were set as below: A

TE-polarized terahertz plane wave, with its frequency,

respectively, equal to 1, 1.40, 1.63, 1.89, 2.45, and

2.52 THz, is normally incident upon the beam splitter. The

incident medium is air with its refractive index n1 = 1.0,

and the material of the splitter is either silicon with its

refractive index n2 = 3.42 or polyethylene with its

refractive index n2 = 1.52. The optimal results are denoted

in Table 1. For even splitters with their numbers of split-

ting beams 2, 4, and 6, diffraction efficiency of each output

order are shown in Fig. 2.

In Fig. 2, zero-order elimination, high efficiency and

uniform beam splitting are effectively realized. The highest

total efficiency reaches to 99.50 % and the error ofT
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uniformity is better than 2.01 9 10-12. One of the designed

silicon-based four-beam splitters has total efficiency up to

92.23 % with a preferable result of reducing zero-order

diffraction efficiency to 0.192 % and an error of uniformity

down to 6.51 9 10-6, which indicates that the uniform

distribution of energy for each beam is implemented.

Similar results can be obtained while using polyethylene as

the substrate.

4 Influence of Incident Parameters on the Performance

of the Beam Splitter

The law of influence of incident parameters (k, W, h) on the

diffraction efficiency and its uniformity is exposed as

shown in Figs. 3, 4, 5.

According to the grating theories, diffraction efficiency

of each non-zero orders is symmetrically distributed when

concerning the zero-order. So only P0, P?1, and P?2 need

to be analyzed, as denoted in curves T0, T1, and T2 in

Fig. 3. Obviously, U decreases and P0 increases with a

deviation of k from its designed value. An error of uni-

formity lower than 18.81 % and total diffraction efficiency

higher than 71.69 % were achieved within a 1-lm incident

wavelength bandwidth.

Figure 4 shows that when polarizing angle W = 90�,

i.e., TE-polarized, diffraction efficiency of each non-zero

order are equal and P0 is near 0, which indicates a

high uniformity and total diffraction efficiency. With the
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decrease of W, P±2 decreases, while P±1 is little changed,

and P0 increases, which indicates a degradation of the

uniformity and zero-order suppression. When W = 0�, i.e.,

TM-polarized, the uniformity, diffraction efficiency and

zero-order suppression effect achieve at their worst level.

An error of uniformity lower than 1.84 % and total

diffraction efficiency higher than 88.35 % are achieved

with a deviation to the polarizing angle less than 25�.

Figure 5 shows that variation of h has a modest impact

on the suppression of P0 but a great impact on the effi-

ciency distribution of the non-zero order discussed above,

leading to P?q = P-q (q = 0), which degrades the uni-

formity. An error of uniformity lower than 17.34 % and a

total diffraction efficiency higher than 92.21 % were

achieved with a deviation to the incident angle less than 1�.

In conclusion, a relatively good uniformity and high

diffraction efficiency of the element can be maintained

with a deviation of wavelength less than 1 lm, a deviation

to the polarizing angle less than 25�, and a deviation to the

incident angle less than 1�.

5 Conclusion

In this paper, a novel method is presented to realize even

beam splitting based on a subwavelength binary simple

periodic rectangular structure. Even beam splitters in the

terahertz region were designed. The highest total efficiency

reaches to 99.50 % and the error of uniformity is better

than 2.01 9 10-12. One of designed silicon-based four-

beam splitters has total efficiency up to 92.23 % with a

preferable result of reducing zero-order diffraction effi-

ciency to 0.192 % and an error of uniformity down to

6.51 9 10-6, which indicates that the uniform distribution

of energy for each beam is implemented. Taking the sili-

con-based four-beam splitter for example, the influence of

the incident wavelength, the polarizing angle and the in-

cident angle on the diffraction efficiency and its uniformity

were investigated. It was found that the total diffraction

efficiency and the uniformity were sensitive to the incident

wavelength, that is, with reduction of the polarizing angle

the total diffraction efficiency decreased gradually,

whereas, the uniformity degraded. In addition, the incident

angle was found to have a modest impact on the suppres-

sion of P0, whereas, it has a great impact on the efficiency

distribution of the non-zero order. This will lead to a great

change on the uniformity. It can be said that we presented a

novel method to solve the problems of zero-order

elimination, diffraction efficiency and uniformity im-

provements of even beam splitting by applying the binary

simple periodical rectangular structure. Our results could

be expected to apply in fabrication of linearly chirped

phase mask for fiber grating, beam splitting in the optical

system of the lithography machine, and the denoising of

the digital holographic optical system function.
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