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Abstract A facile and rapid approach for detecting low concentration of iron ion (Fe3?) with improved sensitivity was

developed on the basis of plasmon enhanced fluorescence and subsequently amplified fluorescence quenching.

Au1Ag4@SiO2 nanoparticles were synthesized and dispersed into fluorescein isothiocyanate (FITC) solution. The fluo-

rescence of the FITC solution was improved due to plasmon enhanced fluorescence. However, efficient fluorescence

quenching of the FITC/Au1Ag4@SiO2 solution was subsequently achieved when Fe3?, with a concentration ranging from

17 nM to 3.4 lM, was added into the FITC/Au1Ag4@SiO2 solution, whereas almost no fluorescence quenching was

observed for pure FITC solution under the same condition. FITC/Au1Ag4@SiO2 solution shows a better sensitivity for

detecting low concentration of Fe3? compared to pure FITC solution. The quantized limit of detection toward Fe3? was

improved from 4.6 lM for pure FITC solution to 20 nM for FITC/Au1Ag4@SiO2 solution.
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1 Introduction

Noble metal nanoparticles (NPs), such as Au and Ag, are

known to dramatically change the optical properties of

nearby fluorophores due to the localized surface plasmon

resonance (LSPR) at the surface of the metal NPs [1].

When fluorescent molecules are localized adjacent to metal

surface, their fluorescence emission intensity can be altered

enormously, forming the basis of plasmon enhanced fluo-

rescence (PEF) [2]. However, if fluorescent molecules are

directly in contact with the metal surface, fluorescence

quenching would be suffered due to the non-radiative

energy and/or charge transfer from molecules to the metal.

A nanometer-thin spacer layer, made of either polyelec-

trolytes or silica, is usually employed to separate the

molecules away from the metal surface to avoid fluores-

cence quenching [2–4]. The fluorescence of fluorophores

can make a continuous transition from fluorescence

quenching to fluorescence enhancement with increasing

thickness of the silica layer [5–9]. Great attentions have

been paid to prepare metal core-silica/fluorophore-shell

nanostructure for various applications, such as optical

property [7], cellular imaging [10], and photothermal

therapy [11]. The excited surface plasmon can deliver

significant control over the optical field and enhance the

light absorption or fluorescence emission of molecule,

which is critical to improving the sensitivity of fluores-

cence spectroscopy [12].

During the past couple of decades, fluorescence detec-

tion offers a promising approach for simple and rapid

tracking of heavy metal ions [13, 14]. Contamination of

water by metal ions (e.g., mercury, copper, iron) can cause

serious environmental and health problems because of

acute and/or chronic toxicity to biological organisms [15–

17]. Therefore, monitoring of metal ion levels in water is

very important for the environment or our health. The

conventional detection concentration of metal ion based on
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fluorophore or conjugated polymer is on the micromolar

(lM) level [12, 18]. Therefore, many AuNPs-based col-

orimetric, fluorescent or refractive index sensor have been

developed to detect lower concentration of metal ions

through utilizing fluorescent noble metal nanoclusters or

metal NPs fluorescently labeled DNA nanohybrids struc-

tures [9, 15–17, 19–23]. However, complicated processes

together with expensive fluorophores or coupling reagents

for labeling the probes and/or target analytes were involved

in the preparation of fluorophore conjugated AuNPs probes

[24]. Specialized synthetic skills and complicated purifi-

cation procedures are rather time-consuming and disad-

vantage for further practical application. Thus, developing

a facile, rapid, and label-free strategy for the detection of

metal ions is still highly desired.

Fluorescein isothiocyanate (FITC) has many reactive

groups, such as isothiocyanate group (–N=C=S), carbox-

ylic group, hydroxyl group, and carbonyl group (Fig. 1). It

has been widely used as a fluorescent label to attach to

proteins via the amine group or been tailored for various

chemical and biological applications due to different

attachment groups, high fluorescence intensity, and great

photostability [24–26]. FITC molecules can be readily

attached to the surface of AuNPs through their isothiocy-

anate group [25, 27] and the isothiocyanate group of FITC

can also be bond with iron ion (Fe3?) to form metal-iso-

thiocyanate complexes [28].

Herein, we developed a facile and rapid approach to

detecting low concentration of Fe3? with improved sensi-

tivity on the basis of plasmon enhanced fluorescence and

subsequently amplified fluorescence quenching. First, the

fluorescence of the FITC solution was greatly improved by

the addition of Au1Ag4@SiO2 NPs. And then, the fluo-

rescence of solution was dramatically quenched again

when Fe3? was added. The extent of fluorescence

quenching for the FITC/Au1Ag4@SiO2 solution toward

Fe3? is apparently larger than that for pure FITC solution,

which resulted in the improved sensitivity for detecting low

concentration of Fe3?.

2 Experimental Methods

Au1Ag4 alloy NPs were synthesized by reducing HAuCl4
and AgNO3 solution simultaneously with sodium citrate,

according to a reported procedure with slight modifications

[30]. 6 mL of HAuCl4 aqueous solution (0.01 mol/L) and

24 mL of AgNO3 aqueous solution (0.01 mol/L) were

added to 70 mL ultra-filtered water. The mixture was

heated to boiling, and then 6 mL of sodium citrate aqueous

solution (1 wt%) was injected quickly. The mixture was

further boiled for about 60 min and the color of the solu-

tion turned from colorless to yellow within 10 min. Sub-

sequently, 6 mL of sodium citrate aqueous solution was

injected again. The mixture was kept boiling for 60 min

and then cooled to room temperature.

100 mL of as-synthesized Au1Ag4 alloy NPs was cen-

trifuged at 6,500 rpm, and then was redispersed into 3 mL

of water. 1 mL of concentrated Au1Ag4 alloy NPs were

added into 30 mL of iso-propanol/9 mL of deionized water

mixture with vigorous stirring. Different volume of TEOS

(10 mM in iso-propanol) was added to the reaction mixture

immediately followed by the addition of 0.75 mL of 25 %

ammonium hydroxide. The Au1Ag4@SiO2 NPs with dif-

ferent silica thicknesses were made by tuning the volume

of TEOS to 1.6, 3.2, 4.8, and 6.0 mL. The reaction solution

was kept at 30 �C for 24 h under stirring.

In a typical process, 400 lL Au1Ag4@SiO2 solution was

added to 2.5 mL FITC aqueous solution (5 9 10-6 M),

then different volumes of Fe3? solutions were added. In

order to eliminate the possibility of contaminations, Fe3?

solutions were prepared by dissolving desired amount of

solid FeCl3 (AR) into ultra-filtered water. The mixture was

obtained by repeated gentle inversion for 10 s and then was

directly measured for fluorescence emission spectra. Ultra-

filtered water was used in all experiments.

Transmission electron microscope (TEM) was taken

with TecnaiG220, FEI company microscope operated

at 200 kV. Ultraviolet–visible spectroscopy (UV-Vis)

extinction spectra were measured with Shimadzu UV-3150

spectrophotometer. Fluorescence emission measurements

were recorded with a Horiba FluoroMax-4 spectrofluo-

rometer. Fluorescence lifetimes were performed on FL3-

TCSPC Fluorescence Spectroscopy (Horiba Jobin–Yvon

Inc., France).
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Fig. 1 Schematic illustration of the detection of Fe3? on the basis of

fluorescence enhancement and subsequently fluorescence quenching
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3 Results and Discussion

Our strategy for fluorescence enhancement was to disperse

as-synthesized Au1Ag4@SiO2 NPs into FITC solution. The

fluorescence of the FITC solution was improved with the

addition of Au1Ag4@SiO2 NPs due to PEF. However, the

field enhancement region of metal NPs are confined in

close vicinity to the surface of plasmonic metal NPs and

the fluorescence enhancement is very sensitive to the sur-

rounding environment of metal NPs [2], such as the space

between fluorescent molecule and metal NPs. Thus, the

previous enhanced fluorescence of FITC by the Au1-

Ag4@SiO2 NPs was dramatically quenched again when

Fe3? was dropped into the FITC/Au1Ag4@SiO2 solution.

The fluorescence quenching is possibly attributed to the

complexation action between the isothiocyanate group of

FITC and Fe3?, which resulted that FITC molecule was

away from the field enhancement region of Au1Ag4@SiO2

NPs (Fig. 1).

Note that the local electric field enhancement is

dependent on the plasmon resonance wavelength of metal

NPs. The fluorescence intensity reaches to the maximum

when the plasmon wavelength of the metal NPs is between

the absorption and emission peak of the fluorescent mole-

cules [29]. However, localized plasmonic resonances have

certain peak widths due to damping; the maximal effect is

also believed to occur when the emission or excitation peak

overlaps closely with the plasmon resonance peak [2]. Only

when a plasmon resonance is excited at its peak wave-

length can the maximal field enhancement be obtained [2].

We synthesized Au1Ag4 NPs with an extinction peak at

437 nm by the co-reduction of chlorauric acid (HAuCl4)

and silver nitrate (AgNO3) solution according to a reported

procedure with slight modifications [30]. The average

diameter of Au1Ag4 NPs is 35 ± 5 nm. The High-resolu-

tion TEM (HRTEM) images of the Au1Ag4 NPs showed

the d-spacing for lattice fringes and the corresponding

selected area matched well with that of the (111) and (200)
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planes of face-centered cubic Au and Ag (Fig. 2). High-

angle annular dark-field (HAADF) scanning transmission

electron microcopy (STEM) image with energy dispersive

X-ray spectroscopic (EDX) elemental line profiling and

TEM-EDS (TEM-energy dispersive spectrum) of single

NPs revealed the alloy structure and composition of NPs

(Fig. 2).

A SiO2 shell with variable thicknesses was coated on the

surface of Au1Ag4 NPs by a sol–gel reaction of TEOS

according to the reported process [24]. The fluorescent

molecule–metal distance was controlled by varying the

thickness of the SiO2 spacer shell. The surface plasmon

resonance peak of Au1Ag4@SiO2 NPs red-shifted from 445

to 458 nm as the thickness of the silica shell increased from

6 nm to 33 nm (Fig. 3a–e). The extinction peak of Au1-

Ag4@SiO2 NPs is close to the absorption peak of the FITC

solution (454–474 nm) (Fig. 3f). The silica layer not only

provided a distance-dependent PEF but also offered the

robustness, chemical inertness, and the versatility needed

for the conjugation of fluorescent molecule [4, 7, 31].

Subsequently, Au1Ag4@SiO2 NPs were directly dis-

persed into the FITC solution and the influence of Au1-

Ag4@SiO2 NPs on the fluorescence of the FITC

(1 9 10-5 M) were investigated. The emission spectra of

the FITC/Au1Ag4@SiO2 solution as well as pure FITC

solution are presented in Fig. 4a. The fluorescence of the

FITC solution increased greatly as the thickness of the

silica shell varied. Maximal fluorescence intensity (about

2.7 times) was observed when the thickness of silica shell

was 33 nm. Enhanced fluorescence is also easily discern-

ible to the naked eye under 365 nm irradiation (the photos

inset in Fig. 4a). The fluorescence enhancement can also be

achieved when decreasing the concentration of FITC

aqueous solution. The max fluorescence intensity of the

FITC/Au1Ag4@SiO2 solution is 1.9, 2.0, and 3.0 folds of

pure FITC solution, corresponding to the FITC solution

with a concentration of 5 9 10-6, 1 9 10-7, and

5 9 10-8 M, respectively (Fig. 4b–d).

In general, the field-enhanced fluorescence is very sen-

sitive to the surrounding environment of metal NPs. Note

that the fluorescence of the solution was varied as the

thickness of silica shell changed, we further investigated

the metal ion-responsive property of the FITC/Au1Ag4@-

SiO2 solution. The fluorescence response of the FITC and

FITC/Au1Ag4@SiO2 solution toward Fe3? with a concen-

tration ranging from 17 nM to 63 lM were compared and

their fluorescence spectra were recorded (Fig. 5). We found

that 34 nM Fe3? was enough to show efficient fluorescent

quenching (14 %) of the FITC/Au1Ag4@SiO2 solution,

whereas no fluorescence quenching was observed in pure
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FITC solution. An apparent fluorescence quenching of pure

FITC solution was found until Fe3? concentration reached

3.4 lM. The fluorescence intensity of the solution kept

decreasing as the concentration of Fe3? increased. About

32 and 68 % of quenching toward 3.4 and 32 lM of Fe3?

were achieved for FITC/Au1Ag4@SiO2 solution, but only

about 11 and 43 % of quenching were observed in pure

FITC solution under the same condition (Fig. 6). Relative

fluorescence intensity ((I0 - I)/I0) of the FITC solution and

FITC/Au1Ag4@SiO2 solution toward Fe3? with a concen-

tration ranging from 17 nM to 63 lM was shown in Fig. 6.

The relative fluorescence intensity displayed in Fig. 6,

indicated that the extent of fluorescence quenching of the

FITC/Au1Ag4@SiO2 solution upon Fe3? was apparently

larger than that in FITC solution and the sensitivity of

detecting low concentration of Fe3? was dramatically

improved.

The intensity ratio I0/I of pure FITC solution and FITC/

Au1Ag4@SiO2 solution displayed a good linear relation-

ship versus Fe3? concentration ranging from 3.4 to 63 lM,

which was easily described by the Stern–Volmer equation

(I0/I = 1 ? Ksv[Q]), where I0 and I are the fluorescence

intensity of the FITC solution in the absence and presence

of metal ion, Ksv is the Stern–Volmer fluorescence

quenching constant, and Q is the concentration of

metal ion. The resulting linear equations were I0/I =

1 ? 0.027[Fe3?] and I0/I = 1 ? 0.074[Fe3?], corre-

sponding to FITC solution and FITC/Au1Ag4@SiO2 solu-

tion, respectively. However, the intensity ratio I0/I for

FITC/Au1Ag4@SiO2 solution displayed a different

response versus lower concentration of Fe3? ranging

from 17 nM to 3.4 lM. A quantitative analysis of Fe3? at

the lower concentration was achievable (I0/I =

1 ? 2.84[Fe3?], R2 = 0.9498). The quantized limit of
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detection (LOD) toward Fe3? was calculated to be 20 nM,

whereas the LOD value for pure FITC solution toward

Fe3? is only 4.6 lM.

We preliminary investigated the possible reasons for

fluorescence enhancement and subsequently fluorescence

quenching in this system. Usually, the PEF arises from two

contributions. One is the increase in the radiative emission

rate, which leads to very short fluorescence lifetime. The

other is the increase in the excitation rate due to the local

electric field enhancement near the surfaces of metal NPs,

which result in surface plasmon enhanced absorption [1,

32, 33]. Figure 7a shows the time-resolved measurements

on the emission dynamics of the FITC solution without and

in the presence of Au1Ag4@SiO2 NPs. No notable decrease

of the fluorescence lifetimes were observed for pure FITC

solution and FITC/Au1Ag4@SiO2 solution. The addition of

Fe3? also has no influence on the fluorescent lifetimes.
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However, the absorption peak of FITC was greatly

improved when Au1Ag4@SiO2 NPs were added (Fig. 7b).

It is because that plasmonic metal NPs exhibit large

absorption and scattering cross sections. So the fluores-

cence emission from one fluorescence molecule-nanopar-

ticles hybrid nanostructures can be absorbed or scattered by

the other hybrid NPs in the solution if the fluorescence

emission peak overlaps with the plasmon resonance peak

[2]. The fluorescence lifetime data and absorption spectra

suggested that the electric field enhanced absorption is the

dominant factor in our system. Moreover, the absorption of

the FITC/Au1Ag4@SiO2 solution dramatically decreased

after the addition of Fe3? (Fig. 7b), indicating that the

aggregation status of FITC molecules changed after the

addition of Fe3?. The reason may be attributed to the

complexation between isothiocyanate group and Fe3?.

Isothiocyanate group of FITC can interact with the Fe3? to

form metal-isothiocyanate complexes [28]. When the Fe3?

was dropped into the FITC solution, bridges would be

formed between FITC molecules and possibly induced

FITC molecules to aggregate. The aggregation of FITC

results in the FITC molecule being dropped away from the

silica layer as well as the field enhancement region of NPs

and the previously enhanced fluorescence of FITC by

Au1Ag4@SiO2 NPs were greatly quenched again due to the

promoted distance between FITC molecule and metal NPs.

4 Conclusions

A facile and rapid approach for detecting low concentration

of Fe3? with improved sensitivity was developed through

plasmon enhanced fluorescence and subsequently amplified

fluorescent quenching. The fluorescence of the FITC solu-

tion was greatly improved by Au1Ag4@SiO2 due to the

plasmon enhanced fluorescence. The enhanced fluorescence

arises from surface plasmon enhanced absorption. However,

efficient fluorescent quenching of the FITC solution was

obtained when Fe3? with a concentration ranging from

17 nM to 3.4 lM was further added into the FITC/Au1-

Ag4@SiO2 mixture, whereas no fluorescence quenching was

observed for pure FITC solution. The amplified fluorescence

quenching results in a great increase of sensitivity for

detecting low concentration of metal ion. The quantized limit

of detection (LOD) was improved from 4.6 lM for pure

FITC solution to 20 nM for FITC/Au1Ag4@SiO2 solution.

We believe this work would provide a general approach for

preparing plasmonic chemsensor with high sensitivity for the

detection of low concentration of metal ions.
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