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Abstract
In this paper we study the problem of daily irrigation of an agricultural crop using optimal
control. The dynamics is amodel based on field capacitymodes, where the state, x , represents
the water in the soil and the control variable, u, is the flow rate of water from irrigation. The
variation ofwater in the soil depends on the field capacity of the soil, xFC , weather conditions,
losses due to deep percolation and irrigation. Our goal is to minimize the amount of water
used for irrigation while keeping the crop in a good state of preservation. To enforce such
requirement, the state constraint x(t) ≥ xmin is coupled with the dynamics, where xmin is the
hydrological need of the crop. Consequently, the problem under study is a state constrained
optimal control problem. Under some mild assumptions, we consider several basic profiles
for the optimal trajectories. Appealing to the Maximum Principle (MP), we characterize
analytically the solution and its multipliers for each case. We then illustrate the analytical
results running some computational simulations, where the analytical information is used to
partially validate the computed solutions. The need to study irrigation strategies is of foremost
importance nowadays since 80% of the fresh water used on our planet is used in agriculture.
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Introduction

As it is well-known, water is an essential asset for human life, but scarce. Climate change,
pollution and the inefficient use of water contribute to this scarcity. Bearing in mind that 80%
of the water use is for agriculture and that this implies a considerable waste, it is of foremost
importance to find strategies for a sustainable use of water. Not surprisingly, recently we
have witnessed an increasing interest in the study of water applications within the scope
of Mathematics field; see, for example, [1–3, 6, 8–11, 14, 16] and references cited therein.
Surprisingly, the literature relating schedules water problems and optimal control is scarce.

Stochastic dynamic programming have been applied to solve optimal scheduler’s prob-
lems in some works. For example, [6] proposes to identify a lumped-parameter model based
on the data produced via simulation with a distributed-parameter model. Brown et al. in [3]
present an irrigation scheduling decision support method. In [1] the authors center on the
study of optimal water reservoirs management using non-linear one-hidden-layer networks.

An optimal control is considered in [14] to study irrigation plans maximizing the farmers
profit, taking into account the cost of the water and the sale prize of the crop. In [8] the aim is
maximizing the biomass production at harvesting time, considering a constraint on the total
amount of water used. The problem studied is a singular optimal control problem and it is
based on a simple crop irrigation model. In a situation of water scarcity, the authors also show
that a strategy with a singular arc can be better than a simple bang-bang control. They illus-
trate their findings with numerical simulations. A different irrigation model is proposed in [2]
to study, via optimal control problem, the maximization of the biomass production at harvest-
ing time, when a quota on the water used for irrigation is imposed. An interesting feature of
this work is the introduction of a non-autonomous dynamical system with a state constraint
and a non-smooth right member which is given by threshold-based soil and crop water stress
functions. In [16], an optimal control problem for cascaded irrigation canals is considered.The
authors intend to ensure both the minimumwater levels for irrigation demands and avoidance
of water overflows and, even, dam collapse. In the scope of [16], the optimal control develop-
ment is not easy due to the structural complexities involving control gates and interconnected
long-distance water delivery reaches that are modeled by the Saint-Venant partial differential
equations with conservation laws, wave superposition effects, coupling effects and strong
non-linearities. In [11] a daily plan model to the irrigation of a crop field is developed with
the help of optimal control theory. Such model requires the knowledge about weather data
(temperature, rainfall andwind speed), the type of crop, the type of irrigation, the location, the
humidity in the soil at the initial time and the type of soil. Themain goal consists inminimizing
the irrigation water, guaranteeing that the field crop is kept in a good state of preservation.

In this paper our aim is to study irrigation policies minimizing the use of the water while
making sure that the crop is kept in healthy condition at all the time. We propose an opti-
mal control problem based on that developed in [9]. The aim is to minimize the amount
of water used for irrigation during a fixed time interval [0, T ]. The dynamics translates the
variation of the water in the soil, x , which equals the difference between water gains, due
to weather conditions and the flow rate of irrigated water, u, and and water losses. The dif-
ferential equation is written in modes, due the fact that losses depending on whether the soil
is at capacity field, or not. This equation is coupled with a state constraint x(t) ≥ xmin to
ensure the healthy growth of the crop; here xmin is the hydrological need of the crop. The
optimal control problem addressed is then a non-smooth optimal control problemwith a state
constraint. A remarkable feature of this problem is that different weather conditions produce
different solutions for such problem. Thus, and differing from [9], our aim is to study differ-
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ent profiles for the optimal trajectories, under some mild assumptions ((A) and (B) below).
Our starting point are eight different profile for optimal trajectories, here called scenarios,
capturing basic features for possible optimal trajectories in a time interval. Since our problem
is a singular optimal control with a state constraint, the study of optimal trajectories with and
without boundary intervals is a main concern. Observe that in contrast with [10], here we deal
with a non-smooth formulation of the optimal control problem. Appealing to the Maximum
Principle (e.g., [4, 15]) we study analytically the optimal solutions and their multipliers. A
remarkable feature of our study is the assertion that the Maximum Principle for our problem
holds in the normal form, i.e., the multiplier λ corresponding to the cost is not null; in this
respect we refer the reader to, e.g., [5, 13] and references within.

To avoid leaving out optimal trajectories with profiles that can be seen as concatenations
of those eight chosen ones, we also illustrate how such theoretical findings can be of help to
determine analytical solutions and multipliers for an extra scenario which is a composition
of two of the eight scenarios.

Finally, we solve the problem numerically. We do that via the direct method: we first
discretize the problem using the Euler method for the differential equation and we then solve
the large scale optimization problem obtained. Using three different sets of data for the pre-
dicted weather conditions, we present three cases with solutions exhibiting different profiles.
Moreover, we (partially) validate such numerical findings, using the theoretical characteri-
zation extracted from the Maximum Principle, illustrating the value of the analytical study
previously done.

Our study here is a first step towards the determination of implementable solutions for irri-
gation of healthy crops in agriculture that minimize this precious but scarce human resource
called water.

This paper is organized as follows. In “Irrigation Optimal Control Problem" Section, we
revisit the model proposed in [9], where the dynamics is written with field capacity modes.
We begin “Necessary conditions for (OCP)” Section showing some details associated with
the state inequality constraint, recalling some concepts and introducing some mild assump-
tions on our problem. Then, we analyse the conclusions of Theorem 9.3.1 in [15], when
applied to our optimal control problem. In “Eight Scenarios", we present eight scenarios
based on the type of optimal trajectories. For each scenario we apply the necessary condi-
tions of “Necessary conditions for (OCP)" Section, characterizing analytically the solution
and their multipliers. In “Approximation of Function g Values", our starting point is a table
with three sets of different function values, each set representing the difference between the
daily precipitation and the daily estimated evapotranspiration for the type of crop. Each set of
values corresponds to different weather conditions. Since each set of values only have daily
information and we need estimations of these values for mesh points in between to solve
computationally our optimal control problem, we approximate those sets of values using
computational tools. Such approximations are considered in “Validation" Section. We solve
numerically the optimal problem for each of the three cases, via the direct method, and we
present the computed solutions. We (partially) validate the numerical solutions for the three
considered cases, by comparing themwith the analytical ones computed in “Eight Scenarios"
Section. This paper finishes with a section devoted to conclusions and future work.

Irrigation Optimal Control Problem

Various and different approaches to improve the efficient use of irrigation in agriculture
have been proposed in the literature. Here we focus on the optimal approach proposed in
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[9]. The main idea of [9] is to determine the irrigation periods and the water’s amount used
so as to minimize the total amount of water used for irrigation over a certain period of
time T , taking into account the water in the soil. They consider that water’s variations in
the soil depends not only on the irrigation, but also on the evapotranspiration, water loss
and precipitation. Mathematically, this perspective leads to the following dynamics system
governing the variation of water in the soil:

{
ẋ(t) = u(t) + g(t) − loss(x(t)), for all t ≥ 0,
x(0) = x0,

(S)

where

� x(t) stands for the water in the soil at the instant t ;
� u(t) is the flow rate of water at the instant t ;
� g(t) is defined as

g(t) = r f all(t) − evtp(t), (1)

where r f all(t) is the daily precipitation and evtp(t) is the estimated evapotranspiration
for the type of crop, at the instant t ;

� loss(x) represents the losses due to deep percolation. In [9], function loss, which appears
in the dynamics of system (S), is considered to be defined as:

loss(x) =
{

βx, if xmin ≤ x ≤ xFC ,

x − xFC + βx, if x ≥ xFC ,
(2)

where xFC represents the water’s amount retained in the soil, after the soil was drained,
as well as β ∈ [0, βmax] is a constant that represents the percentage of water losses due
to the run-off and deep infiltration. Note that xFC depends on the type of soil.

We remark that the analytical expression of g is unknown. The precipitation data is col-
lected from aweather station and evapotranspiration is obtained from the product between the
crop’s coefficient and the referenced evapotranspiration. The latter is calculated according to
[17], using the data fromweather station.We emphasize that we will use weather predictions,
in the future.

In [9], the authors also argue that the amount of water in the soil x(t) needs to be kept
at, or above, a certain level xmin at all the instants of time in order to guarantee the crop’s
growth. Such requirement is translated by the state constraint:

xmin ≤ x(t), ∀t ≥ 0. (3)

It is no surprise that the control constraint

0 ≤ u(t) ≤ M, ∀t ≥ 0, (4)

for some M > 0, is also imposed. The main focus of the current research is to determine
the irrigation policy, i.e., the function u, such as to minimize the amount of water spent∫ T

0
u(t)dt over a time interval [0, T ] subject to (S) coupled with the constraints (3) and (4).

In this paper, we also intend to characterize analytically solutions under specific different
scenarios. We get such characterizations applying the well knownMaximum Principle. With
the purpose to simplify the analysis, we first reformulate the problem in the Mayer form
appealing to the usual state augmentation technique: we introduce a new variable z such that
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the cost function is now z(T ) leading directly to the following optimal control problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min z(T )

s. t. ẋ(t) = f
(
t, x(t), u(t)

)
, a.e. t ∈ [0, T ],

ż(t) = u(t), a.e. t ∈ [0, T ],
x(t) ≥ xmin, ∀t ∈ [0, T ],
u(t) ∈ [0, M], a.e. t ∈ [0, T ],
x(0) = x0,

z(0) = 0,

(OCP)

where
f (t, x, u) = u + g(t) − loss(x). (5)

Observe that z(T ) =
∫ T

0
u(t)dt . For convenience, we summarize the data of (OCP) in

Table 1.

Necessary Conditions for (OCP)

Before going any further, some words about the state constraint are called for. Observe
that the state constraint appearing in the definition of (OCP) can be written as h(x) ≤ 0,
where h(x) = xmin − x . It is a simple matter to see that the state constraint is of first order
(see [12]). Indeed,

dh

dt
= −ẋ(t) = −u − g(t) + loss(x) and

∂

∂u

dh

dt
= −1 �= 0.

Setting X = (x, z) ∈ R
2, we say that

(
X̄ , ū

)
is a strong local solution for (OCP) if

(
X̄ , ū

)
satisfies all the conditions of (OCP) and it minimizes the cost over all the admissible solutions
X for (OCP) such that

max
t∈[0,T ]

∣∣X(t) − X̄(t)
∣∣ ≤ ε

for some ε > 0.Consider now t ∈ [0, T ]when x̄ touches the boundary of the state constraints,
i.e., the instances t when x̄(t) = xmin. If x̄(t) ≡ xmin for all t ∈ [tin, tout], where there exists

Table 1 Description of data in problem (OCP)

Symbols Description

x State variable representing the quantity of water in the soil.

z Auxiliary variable for Mayer form: z(T ) = ∫ T
0 u(t)dt .

u Control variable representing the flow rate of water via irrigation.

f Hydrologic balance function of the soil, defined by (5), where g and loss

are as in (1) and (2), respectively.

x0 Fixed initial state.

xmin Hydrological need of the specific crop.

M Maximum flow rate of water entering the system.

T Fixed final time.
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a ε > 0 such that

x̄(tin) = xmin, x̄(tout) = xmin and x̄(t) > xmin for t ∈ ]tin − ε, tin[ ∪ ]tout, tout + ε[,
then [tin, tout] is aboundary interval and the corresponding sub-arc of x̄(t) is called aboundary
arc. The points tin and tout are denominated by entry time and exit time with respect to such
boundary arc. Furthermore, if there exists t̂ such that x̄

(
t̂
) = xmin and x̄(t) > xmin for

t ∈ ]
t̂ − ε, t̂

[ ∪ ]
t̂, t̂ + ε

[
, for some ε > 0, then t̂ is called a contact time. Note that entry,

exit and contact times are also called junction times. Here and throughout, we assume the
following assumptions Basic Hypotheses:

(A) There exist Cg ∈ ]0, M[ and Lg > 0 such that |g(t)| ≤ Cg for all t ∈ [0, T ] and
|g(t1) − g(t2)| ≤ Lg|t1 − t2| for all t1, t2 ∈ [0, T ];

(B) The state trajectory x̄(t) does not have any contact time for all t ∈ [0, T ].
In (A)we assume that g is Lipschitz continuous with respect to t . In (B)we assume that if the
water’s quantity in the soil achieves its minimum value, it will not immediately increase to a
greater value. Both hypotheses are then quite reasonable considering nature of the physical
meaning of the data of (OCP).

Observe that u → f (t, x, u) is a smooth function. On the other hand, from (2) it is an
easy task to see that x → f (t, x, u) is Lipschitz continuous with constant β + 1 (as shown
in [9]). If x → f (t, x, u) were continuously differentiable, (OCP) would fall in the category
of singular optimal control problems with a single first order state constraint. However, it
is a simple task to see from the Basic Hypotheses and the definition of f (see (5)) that
(t, x) → f (t, x, u) is merely Lipschitz continuous in [0, T ]×R for all u ∈ R (see also [9]).
It follows that (OCP) is indeed a non-smooth optimal control problem with a state constraint
to which Theorem 9.3.1 in [15] applies.

Next, we analyse the conclusions of Theorem 9.3.1 in [15], when applied to (OCP). Let
us also define the set of active constraints as

I (x) = {t ∈ [0, T ] : xmin − x(t) = 0} .

Consider the unmaximized Hamiltonian

H(t, x, z, px , pz, u) = px · f (t, x, u) + pzu.

If
(
X̄ , ū

)
is a strong local minimizer for (OCP), then Theorem 9.3.1 in [15] asserts the

existence of an absolutely continuous function p : [0, T ] → R
2, λ ≥ 0 and a measure

μ ∈ C⊕([0, T ]) such that
(i) (px , pz, μ, λ) �= 0;
(ii) − ṗx (t) ∈ ∂x H

(
t, x̄(t), z̄(t), qx (t), pz(t), ū(t)

)
and ṗz(t) = 0 a.e.;

(iii) qx (T ) = 0 and pz(T ) = −λ;
(iv) H

(
t, x̄(t), z̄(t), qx (t), pz(t), ū(t)

) = max
u∈[0,M] H

(
t, x̄(t), z̄(t), qx (t), pz(t), u

)
;

(v) supp{μ} ⊂ I (x̄), where supp is the support of the measure μ;

where

qx (t) =

⎧⎪⎪⎨
⎪⎪⎩

px (t) −
∫

[0,t[
μ(ds) for t ∈ [0, T [,

px (T ) −
∫

[0,T ]
μ(ds) for t = T .

(6)
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A remarkable feature of (OCP) is that (i)–(v) hold with λ > 0, as shown in [9]1. As it is
well known once we have the guarantee that λ �= 0, we can normalize all the multipliers and
proceed to work with λ = 1. For simplicity, this is the approach that we take next2.

Starting with (ii), it is straightforward to see from the above that pz(t) ≡ −1. Recalling
now the definition of Clarke sub-differential ∂x H (see, e.g., [15]) and that of f , we get, from
(ii),

ṗx (t) ∈
⎧⎨
⎩

{βqx (t)}, if xmin ≤ x̄(t) < xFC,

[β, β + 1] qx (t), if x̄(t) = xFC,

{(β + 1) qx (t)}, if x̄(t) > xFC,

(7)

The function qx is defined as a function of bounded variation. It follows from (v) that μ

is zero when the state constraint is not active, i.e., when h(x̄(t)) < 0. It is known that the
measure μ is defined by a monotone non-negative function ν of bounded variation with at
most a countable number of jumps. The Lebesgue Decomposition Theorem asserts that μ

can be written as
μ = μa + μsing + μd , (8)

where μa is an absolutely continuous measure with respect to the Lebesgue measure, μsing

is a singular measure with respect to the Lebesgue measure and μd is a discrete measure.
Although the presence of μsing can not be discarded in general, most practical problems
exhibit “well behaved” measures μ with μsing = 0 (see, e.g, [7, 12]). On the other hand,
Radon–Nikodym Theorem asserts the existence of an integral function νa such that

μa([0, t[) =
∫

[0,t[
μa(ds) =

∫ t

0
νa(s)ds. (9)

By assumption (B), the set I (x̄) does not include contact points. However, I (x̄) may
contain boundary intervals. If t ∈ [tin, tout] ⊂ I (x̄), then ˙̄x(t) = 0 for t ∈ ]tin, tout[ and the
corresponding optimal control satisfies

ū(t) = βxmin − g(t) (10)

for all t ∈ ]tin, tout[. Controls satisfying (10) may only appear when βxmin − g(t) ∈ [0, M].
Regarding the set control constraint ū(t) ∈ [0, M], some comments are called for. In most
scenarios, M may be considered to be very large so that u is always less than M . This is
the case in situations of “practical interest”. Even in cases of extreme drought, our choice of
the value M is such that βxmin − g(t) < M for all t ∈ [0, T ]. On the other hand, although
the case of boundary controls being 0, i.e., βxmin − g(t) = 0 for t ∈ ]tin, tout[, is not to be
overlooked, the case of interest is when the boundary control is itself a singular control with
βxmin −g(t) > 0. So, here we refrain from considering boundary controls being 0, since this
appears to be quite unreasonable, taking into account the physical meaning of our problem,
and this case has not come up in our simulations, covering different set of values for g. So,
we assume that

βxmin − g(t) ∈ ]0, M[ for all t ∈ ]tin, tout[. (11)

Let us now consider conclusion (iv) of the above necessary conditions. Recalling that pz(t) ≡
−1 and rewriting (iv) we deduce that

(qx (t) − 1)(ū(t) − u) ≥ 0, (12)

1 Alternatively, it is an easy task to see that (OCP) satisfies assumptions H1–H6, as well as the constraint
qualification (CQ), in [13].
2 It is worth mentioning here that numerical methods may compute values for λ that are not necessarily equal
to one and, consequently, the numerical multipliers may not be normalized.
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for all t ∈ [0, T ]. Set φ(t) = qx (t)−1. Then, from (12) we get the following characterization
of the optimal control ū:

ū(t) =
⎧⎨
⎩
0, if φ(t) < 0,
using(t), if φ(t) = 0,
M, if φ(t) > 0,

(13)

where using(t) ∈ ]0, M[. If the switching function φ is zero at isolated instants of time, then
ū is a bang-bang control switching values between 0 and M , when φ goes from negative
to positive values. Here, and since we choose a large M , optimal controls taking the value
M on some time interval are not to be expected. If the switching function is 0 on a time
interval, then ū is a singular control on this interval. However, the Maximum Principle does
not provide any further information about singular controls.

In the following section, we compute the analytical solutions of px (t), qx (t), ū(t) and
z̄(T ) for almost every t ∈ [0, T ] for the eight different scenarios that we describe next.

Before engaging into that discussion, it is worth mentioning that if the trajectory is above
xmin in [0, T ], then μ is zero, px (t) = qx (t) for all t and px (T ) = 0. Thus, necessarily,
qx (t) ≡ 0 and the switching function is always −1 (so, the trajectory does not have singular
arcs). This is in agreement with the physical interpretation of our problem: irrigation should
only be active (i.e., ū(t) �= 0) when x̄(t) = xmin and the weather conditions are not enough
to keep the state away from the boundary of the state constraint.

Eight Scenarios

In this section we propose eight profiles for the optimal trajectories, under the basic assump-
tions (A) and (B). To each of themwe apply the necessary conditions above in order to extract
information on the solution and their multipliers. To avoid leaving out optimal trajectories
with profiles that can be seen as concatenations of those eight chosen ones, we end this
section discussing a concatenation of two scenarios among the eight proposed: the trajectory
starts in between xmin and xFC , increases up to xFC , remains there for some time interval,
before dropping to xmin where, again, it remains for some time.

Let us denote by
(
X̄ , ū

) = (
x̄, z̄, ū

)
the optimal solution for (OCP). We assume that x̄

has at most a boundary arc in all the eight scenarios. Junctions times, as well as the instants
of time when the trajectory reaches, or drops from, the threshold xFC , are of importance:
0 < ta < tb < tc < td < te < T . Junctions points are easily recognised in the context. The
scenarios of interest here are the following:
� Scenario 1: for all t ∈ [0, T ], x̄(t) < xFC and{

∀t ∈ [0, ta[ ∪ ]tb, T ], x̄(t) > xmin,

∀t ∈ [ta, tb], x̄(t) = xmin;
� Scenario 2: for all t ∈ [0, T ], x̄(t) > xmin and{

∀t ∈ [0, ta[ ∪ ]tb, T ], x̄(t) < xFC ,

∀t ∈ [ta, tb], x̄(t) = xFC ;
� Scenario 3: for all t ∈ [0, T ], xmin ≤ x̄(t) ≤ xFC . More precisely,⎧⎪⎨

⎪⎩
∀t ∈ [0, ta[ ∪ ]tb, tc[ ∪ ]td , T ], xmin < x̄(t) < xFC ,

∀t ∈ [ta, tb], x̄(t) = xmin,

∀t ∈ [tc, td ], x̄(t) = xFC ;
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� Scenario 4: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀t ∈ [0, ta[, x̄(t) > xFC ,

x̄(ta) = xFC ,

∀t ∈ ]ta, tb[, xmin < x̄(t) < xFC ,

∀t ∈ [tb, tc], x̄(t) = xmin,

∀t ∈ ]tc, T ], xmin < x̄(t) < xFC ;
� Scenario 5: for all t ∈ [0, T ], x̄(t) > xmin and⎧⎪⎨

⎪⎩
∀t ∈ [0, ta[ ∪ ]tb, T ], x̄(t) < xFC ,

x̄(ta) = x̄(tb) = xFC ,

∀t ∈ ]ta, tb[, x̄(t) > xFC ;
� Scenario 6: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∀t ∈ [0, ta[ ∪ ]tb, tc[ ∪ ]td , T ], xmin < x̄(t) < xFC ,

∀t ∈ [ta, tb], x̄(t) = xmin,

x̄(tc) = xFC ,

∀t ∈ ]tc, td [, x̄(t) > xFC ,

x̄(td) = xFC ;
� Scenario 7: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∀t ∈ [0, ta], x̄(t) = xmin,

∀t ∈ ]ta, tb[, xmin < x̄(t) < xFC ,

x̄(tb) = xFC ,

∀t ∈ ]tb, T ], x̄(t) > xFC ;
� Scenario 8: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∀t ∈ [0, ta[, x̄(t) > xFC ,

x̄(ta) = xFC ,

∀t ∈ ]ta, tb[, xmin < x̄(t) < xFC ,

∀t ∈ [tb, T ], x̄(t) = xmin.

Sketches of all these eight scenarios appear in Fig. 1. The optimal state trajectory x is not
necessarily a composition of line segments. The plots are only schemes illustrating eight
possible behaviours of x .

As we have seen, the order of the state constraint is one. Recall that we consider here
cases where the optimal trajectories have at most one single boundary arc. For trajectories
with more than one boundary arc, we only have to do a composition of scenarios of “Eight
Scenarios" Section and proceed to a composed analytical study, possibly subjected to updates
of the transversality condition associated with the multiplier qx ; see an illustrative example
of this in “Concatenation of Scenarios-Example" Section.

Furthermore, in order to avoid repetitive calculations from now on, the trajectories of
Fig. 1 with similar analytical solutions, with respect to state variable x and to respective
adjoint function, as well as to control variable, are drawn with the same colour.

Recall that we do not consider scenarios where the initial and/or the final states touch
the boundary at isolated points. Those cases, specially when additionally the trajectory has
a boundary arc in ]0, T [, require a much demanding and longer analysis. In spite of the
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interest of such trajectory from a point of view of the Maximum Principle, we opt to keep
the focus on trajectories with boundary intervals satisfying assumption (B) since those are
the problematic ones as far as irrigation. The analysis of trajectories with contact points at
the initial and/or final points will be done elsewhere.

Analysis of the Scenarios

We now extract information from necessary conditions (i)–(v), presented in “Necessary
Conditions for (OCP)" Section, for all the eight scenarios of interest. Recall that Scenarios
1, 3, 4, 6, 7 and 8 have a boundary arc on the interval ]tin, tout[. On such interval, as seen
above, the optimal control is ū(t) = βxmin − g(t) ∈ ]0, M[ (see (11)). For each scenario
with a boundary interval [tin, tout], we extract the following information from the necessary
conditions (i)–(v) of “Necessary Conditions for (OCP)" Section :

1. whenever tin > 0, qx (t) = px (t) for all t ∈ [0, tin[, because x̄(t) > xmin for all t ∈ [0, tin[
and μ ([0, tin[) = 0;

2. qx (t) = 1 for all t ∈ ]tin, tout[, since the optimal control is a singular control in ]tin, tout[
(see (12) and (13));

3. whenever tout < T , μ (]tout, T ]) = 0, because x̄(t) > xmin for all t ∈ ]tout, T ];
4. the adjoint inclusion (ii) of “NecessaryConditions for (OCP)" Section reduces to ṗx (t) =

βqx (t) a.e. t ∈ [tin, tout].
It follows from 2. that qx is absolutely continuous on ]tin, tout[ and that the decomposition
of μ in (8) reduces to μ = μa + μd , where

μd(A) = ηinδtin(A) + ηoutδtout(A) for any measurable set A ⊂ [0, T ], (14)

x̄

xFC

xmin

ta tb T t

(a) Scenario 1

x̄

xFC

xmin

ta tb T t

(b) Scenario 2
t

x̄

xFC

xmin

ta tb tc td T

(c) Scenario 3

x̄

xFC

xmin

ta tb tc T t

(d) Scenario 4

x̄

xFC

xmin

ta tb T t

(e) Scenario 5
t

x̄

xFC

xmin

ta tb tc td T

(f) Scenario 6
ta tb T t

xmin

xFC

x̄

(g) Scenario 7

x̄

xFC

xmin

ta tb T t

(h) Scenario 8

Fig. 1 (Colour only in online version) Schemes of possible trajectories for eight different scenarios.
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where ηin, ηout ≥ 0 and

δt (s) =
{
1, if s = t,
0, if s �= t .

We know from (9) that
∫

[0,t[
μa(ds) =

∫ t

0
νa(s)ds for all t ∈ [0, T ] and, from (v) of

“Necessary Conditions for (OCP)" Section,

νa(t)
(
xmin − x̄(t)

) = 0 for all t ∈ [0, T ].
From now on, we use the following notation

γ
(
t̃−

) = lim
t→t̃−

γ (t) and γ
(
t̃+

) = lim
t→t̃+

γ (t),

where γ is a function and t̃ is an interior point of its domain. From (6) and (14), as well as
from items 1., 2. and 3. of the current section, it follows that

qx
(
t+in

) = qx
(
t−in

) − ηin, qx
(
t+out

) = qx
(
t−out

) − ηout (15)

and

1 = px (t) − ηin −
∫ t

tin
νa(s)ds for all t ∈ ]tin, tout[. (16)

Differentiating now (16), as well as taking into account 2. and 4. of the current section, we
conclude that

νa(t) = β, for all t ∈ ]tin, tout[.
Again from 2. and 4. of the current section, we obtain that

px (t) = px (tin) + β(t − tin) for all t ∈ ]tin, tout[. (17)

Furthermore, from (16) and (17), we also get that px (tin) = 1 + ηin.
The remarkable feature of this situation is we get the following characterization of μ: for

any measurable set A ⊂ [0, T ]

μ(A) = ηinδtin(A) + ηoutδtout(A) + β

∫
A
1]tin,tout[(t)dt, (18)

where 1A is the indicator function of the set A defined as

1A(t) :=
{
1, if t ∈ A,

0, if t /∈ A.

For t ∈ [0, T ], it implies that

∫
[0,t[

μ(ds) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if t ∈ [0, tin[,
ηin, if t = tin,
ηin + β(t − tin), if t ∈ ]tin, tout[,
ηin + ηout + β(tout − tin), if t = tout,
ηin + ηout + β(tout − tin), if t ∈ ]tout, T ].

It is important to emphasize that in Scenario 8 we have that tout = T . In this case, when
t = T , we obtain that ∫

[0,T ]
μ(ds) = ηin + ηout + β(tout − tin).
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Recalling the decomposition (8), this means that μsing vanishes on [0, T ] and that μd has
possibly two atoms, one at tin and another at tout. Moreover, taking into account (6) and the
properties of μa , we deduce that

ṗx (t) = q̇ x (t) + β1]tin,tout[(t) for a.e. t ∈ [0, T ]. (19)

Scenario 1

Let us assume that tin = ta and tout = tb. For Scenario 1, we have that loss(x) = βx for all
t ∈ [0, T ], since x̄(t) < xFC for all t ∈ [0, T ]. Thus, the adjoint inclusion (ii) of “Necessary
Conditions for (OCP)" Section reduces to

ṗx (t) = βqx (t) for a.e. t ∈ [0, T ]. (20)

The optimal control is defined as in (10) for t ∈ ]tin, tout[. Recall that x0 > xmin and that the
optimal control has one single boundary control. More specifically, we consider the situation
when

� there exist tin, tout ∈]0, T [ such that tin < tout and ū(t) = βxmin − g(t) > 0 for all
t ∈ ]tin, tout[;

� x̄(t) > xmin for all t ∈ [0, T ]\[tin, tout].
From (19) and (20), we get q̇ x (t) + β1]tin,tout[(t) = βqx (t) for almost every t ∈ [0, T ],
leading to the adjoint equation

q̇ x (t) = βqx (t) − β1]tin,tout[(t) for a.e. t ∈ [0, T ]. (21)

We now seek information on the optimal control on the intervals [0, tin[ and ]tout, T ]. Starting
with [0, tin[, recall that
� qx

(
t+in

) = 1 from item 2. of the current section;
� ηin ≥ 0;
� px (tin) = 1 + ηin ≥ 1;
� px is continuous on [0, tin[;
� px (t) = qx (t) = eβ(t−tin)(1 + ηin) for t ∈ [0, tin[ (see 1. and (21));
� φ(t) = qx (t) − 1.

If ηin > 0, then φ would be also positive on [0, tin[ and, consequently, we would have
ū(t) = M for t ∈ [0, tin[. Such situation is not realistic, since M is very large. Thus, we
deduce that ηin = 0. It then follows, from the adjoint equation, that px (t) = qx (t) = eβ(t−tin)

for t ∈ [0, tin[. If β > 0, it then follows that φ(t) < 0 and so ū(t) = 0 for t ∈ [0, tin[.
We now turn to ]tout, T ]. Recall that qx (T ) = 0 and that (21) holds on ]tout, T ]. Then, we

have qx (t) = 0 for all t ∈ ]tout, T ]. Since qx (
t+out

) = 0, we deduce from the second equation
in (15) that ηout = 1. Moreover, we have φ(t) = −1 < 0 and so ū(t) = 0 for almost every
t ∈ ]tout, T ]. Summarizing, we have the following:

◦ ηin = 0, ηout = 1;

◦ px (t) =
⎧⎨
⎩
eβ(t−tin), if t ∈ [0, tin[,
1 + β(t − tin), if t ∈ [tin, tout],
1 + β(tout − tin), if t ∈ ]tout, T ];

(22)

◦ qx (t) =
⎧⎨
⎩
eβ(t−tin), if t ∈ [0, tin[,
1, if t ∈ ]tin, tout[,
0, if t ∈ ]tout, T ];

(23)
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◦ ū(t) =
{
0, if t ∈ [0, tin[ ∪ ]tout, T [ a.e.,
βxmin − g(t), if t ∈ ]tin, tout[ a.e.; (24)

◦ z̄(T ) = βxmin(tout − tin) −
∫ tout

tin
g(s)ds. (25)

The optimal trajectory x̄(t) for all t ∈ [0, T ] can now easily be calculated solving the
respective differential equations.

Scenario 2

Here we have x̄(t) > xmin for all t ∈ [0, T ]. So, the state constraint is never active. Conse-
quently, we deduce that

μ(A) = 0 for any measurable set A ⊂ [0, T ]
and qx (t) = px (t) for all t ∈ [0, T ]. The special feature of this scenario is the fact that x̄
remains at the threshold xFC on some time interval. In this case the adjoint reduces to

ṗx (t) =
{

β px (t), if t ∈ [0, ta] ∪ [tb, T ] a.e.,
ζ(t)px (t), if t ∈ [ta, tb] a.e.,

where ζ is a measurable function such that β ≤ ζ(t) ≤ β + 1 for almost every t ∈ [ta, tb].
Recalling that qx (T ) = 0 (see item (iii) of “Necessary Conditions for (OCP)" Section), it is
then a simple matter to see that such implies that px (t) = qx (t) = 0 for all t ∈ [0, T ]. Taking
into account that, in this case, φ(t) = −1 < 0 on [0, T ]. It implies that the optimal control
is ū(t) = 0 almost everywhere on [0, T ] and so z̄(T ) = 0. The optimal trajectory x̄(t) for
all t ∈ [0, T ] can now easily be calculated solving the respective differential equations.

Scenario 3

Here set tin = ta and tout = tb. This scenario is a mix of the two previous ones: we have
first a boundary arc on [tin, tout] and we have another interval [tc, td ], with tout < tc, where
x̄(t) = xFC . However, it is hard to analyse this scenario due to the interval [tc, td ], as we
show next.

Observe that on ]tout, T ] we have
q̇ x (t) = ζ(t)qx (t) for a.e. t ∈ ]tout, T ],

where

ζ(t) = β for a.e. t ∈ ]tout, tc[ ∪ ]td , T ] and ζ(t) ∈ [β, β + 1] for a.e. t ∈ ]tc, td [.
Moreover, we know that qx (T ) = 0. Thus, we have

qx (t) = 0 for t ∈ ]tout, T ].
Consequently, as qx

(
t+out

) = 1−ηout ≤ 1, we have ηout = 1 and φ(t) = −1 for t ∈ ]tout, T ].
For t ∈ [0, tout[, px and qx are as defined in Scenario 1 with ηin = 0 and νa(t) = β.
Concluding, we have that px (t), qx (t), ū(t) and z̄(T ) are given by (22), (23), (24) and

(25), respectively, for all t ∈ [0, T ] with tin = ta and tout = tb. The optimal trajectory x̄(t)
for all t ∈ [0, T ] can now easily be calculated solving the respective differential equations.
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Scenario 4

Here we set tin = tb and tout = tc. Once more, we have a boundary interval. In contrast with
Scenario 3, here the optimal trajectory only takes the value xFC at a single point ta < tin.

The analysis for t ≥ tin follows exactly as in Scenario 1. Recall that we assume that
the boundary control on ]tin, tout[ is a singular control which takes values on ]0, M[. So, for
t ∈ ]tin, tout[ we have that μ, qx and px behave as in Scenario 1. Thus, we can write that
qx (t) = 1 for t ∈ ]tin, tout[ and (15)–(18) hold.Moreover, we have qx (t) = 0 for t ∈ ]tout, T ].
So, we also deduce that ηin = 0 and ηout = 1. Note that we also have that px (tin) = 1, as in
Scenario 1, since qx (t) = px (t) for t < tin. Thus, the behaviour of qx and px for t > tin is
exactly as in Scenario 1.

Let us now see what happens for t ≤ tin. It is a simple matter to see that the adjoint
inclusion (ii) leads to

ṗx (t) =
{

(β + 1)px (t), if t ∈ [0, ta] a.e.,
β px (t), if t ∈ [ta, tin[ a.e..

Solving the above differential equations in terms of px (tin) and recalling that px (tin) = 1,
we have

px (t) =
{
eβ(t−tin)et−ta , if t ∈ [0, ta],
eβ(t−tin), if t ∈ [ta, tin].

Since px (t) < 1 for t ∈ [0, tin[, we have that φ(t) < 0 and ū(t) = 0 for t ∈ [0, tin[. Also
qx (t) = px (t) on [0, tin[. We thus conclude that the optimal control and the optimal cost are
given by (24) and (25) for tin = tb and tout = tc. The optimal trajectory x̄(t) for all t ∈ [0, T ]
can now easily be calculated solving the respective differential equations. Summarizing, for
tin = tb and tout = tc, we have that

px (t) =

⎧⎪⎪⎨
⎪⎪⎩

eβ(t−tin)et−ta , if t ∈ [0, ta[,
eβ(t−tin), if t ∈ [ta, tin[,
1 + β(t − tin), if t ∈ [tin, tout],
1 + β(tout − tin), if t ∈ ]tout, T ],

and

qx (t) =

⎧⎪⎪⎨
⎪⎪⎩

eβ(t−tin)et−ta , if t ∈ [0, ta[,
eβ(t−tin), if t ∈ [ta, tin[,
1, if t ∈ ]tin, tout[,
0, if t ∈ ]tout, T ].

(26)

Scenario 5

In Scenario 5 we have that x̄(t) > xmin for all t ∈ [0, T ]. Then, μ = 0 and qx (t) = px (t)
for all t ∈ [0, T ]. It is a simple matter to see from (ii) and qx (T ) = px (T ) = 0 that
qx (t) = px (t) = 0 for all t ∈ [0, T ]. Thus, φ(t) = −1 < 0 and ū(t) = 0 for for all
t ∈ [0, T ]. We thus conclude that the cost, z̄(T ), is 0. The optimal trajectory x̄(t) for all
t ∈ [0, T ] can now easily be calculated solving the respective differential equations.

Scenario 6

In this scenario the optimal trajectory exhibits again a boundary arc. Once more, we set
tin = ta and tout = tb. On [0, tout[, the analysis is exactly as in Scenario 1. Moreover, we
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have

q̇ x (t) = ζ(t)qx (t) for a.e. t ∈ ]tout, T ],
where

ζ(t) = β for a.e. t ∈ ]tout, tc[ ∪ ]td , T ] and ζ(t) = β + 1 for a.e. t ∈ ]tc, td [.
Solving the differential equation and recalling that qx (T ) = 0, we have

qx (t) = 0 for t ∈ ]tout, T ].
From condition of item 2. of the current section, we know that qx

(
t−out

) = 1. Thus, it follows
from qx

(
t+out

) = 1 − ηout that ηout = 1. Then, we conclude that px (t), qx (t), ū(t) and
z̄(T ) are given by (22), (23), (24) and (25), respectively, for all t ∈ [0, T ] with tin = ta and
tout = tb. The optimal trajectory x̄(t) for all t ∈ [0, T ] can now easily be calculated solving
the respective differential equations.

Scenario 7

Observe that here tin = 0 and tout = ta . Analysis of qx on [0, ta] follows as the analysis on
[tin, tout] for Scenarios 1, 3, 4 and 6 with the exception that we cannot deduce that ηin is
zero. Moreover, we have

px (t) = 1 + ηin + βt for t ∈ [0, ta], px (0) = 1 + ηin,

and

px (t) = qx (t) + ηin + ηout + βta for t ∈ ]ta, T ].
Recall that qx (t) = 1 for t ∈ ]0, tout[ (see condition of item 2. of the current section).
Furthermore, from conditions (7) and (19), we know that

q̇ x (t) =
{

βqx (t) for a.e. t ∈ ]ta, tb[,
(β + 1)qx (t) for a.e. t ∈ ]tb, T [.

We also know that qx (T ) = 0. Thus, we get

qx (t) =
{
1, if t ∈ ]0, tout[
0, if t ∈ ]tout, T ].

Concluding, we obtain that ηout = 1,

ū(t) =
{

βxmin − g(t), if t ∈ ]0, tout[ a.e.,
0, if t ∈ ]tout, T [ a.e.,

and z̄(T ) is given by (25) for tin = 0 and tout = ta . The optimal trajectory x̄(t) for all
t ∈ [0, T ] can now easily be calculated solving the respective differential equations.

Scenario 8

Finally, for this scenario we have tin = tb and tout = T . The behaviour of qx and μ on ]tb, T [
is as in the previous scenarios with the exception that here we know that, due to qx (T ) = 0
and qx (t) = 1 for t ∈ ]tb, T [, that ηout = 1. As in Scenario 1, we have ηin = 0. Clearly, we
have

qx (t) = px (t) for all t ∈ [0, tb[.
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So, we have that

qx (t) =

⎧⎪⎪⎨
⎪⎪⎩

eβ(t−tin)et−ta , if t ∈ [0, ta],
eβ(t−tin), if t ∈ [ta, tin[,
1, if t ∈ ]tin, T [,
0, if t = T ,

, px (t) =
⎧⎨
⎩
eβ(t−tin)et−ta , if t ∈ [0, ta[,
eβ(t−tin), if t ∈ [ta, tin[,
1 + β(t − tin), if t ∈ [tin, T ].

It is however a simple matter to see that

ū(t) =
{
0, if t ∈ [0, tb[ a.e.,
βxmin − g(t), if t ∈ ]tb, T [ a.e., (27)

and that z̄(T ) is given by (25) for tin = tb and tout = T . The optimal trajectory x̄(t) for all
t ∈ [0, T ] can now easily be calculated solving the respective differential equations.

Concatenation of Scenarios - Example

The composition of two scenarios, from among the proposed in the beginning of “Eight
Scenarios" Section, can arouse differences in its analysis when compared with the individual
study of each scenario, whenever the last one has a boundary interval [tin, tout]. In order to
illustrate the previous comment we analyse a composition of Scenarios 1 and 2, where the
Scenario 2 happens earlier. Thus, let us study the scenario whose features are the following:⎧⎪⎨

⎪⎩
∀t ∈ [0, ta[ ∪ ]tb, td [ ∪ ]te, T ], xmin < x̄(t) < xFC ,

∀t ∈ [ta, tb], x̄(t) = xFC ,

∀t ∈ [td , te], x̄(t) = xmin.

Firstly, note that tin = td and tout = te. For all t ∈ [tc, T ], the analysis is exactly the same of
Scenario 1. Consequently, we have that

qx (t) =
⎧⎨
⎩
eβ(t−tin), if t ∈ [tc, tin[,
1, if t ∈ ]tin, tout[,
0, if t ∈ ]tout, T ],

which implies that

qx (tc) = eβ(tc−tin) �= 0.

However, the corresponding point in Scenario 2 is such that qx (T ) = 0. Here lies the main
difference that will originate others. Thus, now we have to follow the argument carried out in
the study of Scenario 2, but taking into account the update of the final condition of multiplier
qx : qx (tc) = eβ(tc−tin). Notice that μ ([0, tin[) = 0 and this implies that px (t) = qx (t) for
all t ∈ [0, tin[. So, for almost all t ∈ ]tb, tc] we get{

q̇ x (t) = βqx (t),
qx (tc) = eβ(tc−tin),

⇒ qx (t) = px (t) = eβ(t−tin).

For almost all t ∈ [ta, tb] we have{
q̇ x (t) = ζ(t)qx (t),
qx (tb) = eβ(tb−tin),

where ζ is a measurable function such that ζ(t) ∈ [β, β +1] for almost all t ∈ [ta, tb], which
implies that qx (t) = px (t) = eβ(tb−tin)−

∫ tb
t ζ(s)ds . Since ζ(t) ∈ [β, β + 1] for almost all
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t ∈ [ta, tb], then we get

0 < eβ(t−tin)+t−tb ≤ qx (t) = px (t) ≤ eβ(t−tin) < 1 for a.a. t ∈ [ta, tb]
⇔ φ(t) < 0 for a.a. t ∈ [ta, tb]
⇒ ū(t) = 0 for a.a. t ∈ [ta, tb].

Finally, for almost all t ∈ [0, ta[, we have that{
q̇ x (t) = βqx (t),
qx (ta) = Ka ∈ ]0, 1[, ⇒ qx (t) = px (t) = Kae

β(t−ta).

Again, we get qx (t) = px (t) ∈ ]0, 1[ which similarly implies that ū(t) = 0 for almost all
t ∈ [0, ta[. Summarizing,

qx (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kaeβ(t−ta), if t ∈ [0, ta[,
ζ̃ (t), if t ∈ [ta, tb],
eβ(t−tin), if t ∈ ]tb, tin[,
1, if t ∈ ]tin, tout[,
0, if t ∈ ]tout, T ],

⇒ (24)

and

px (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kaeβ(t−ta), if t ∈ [0, ta[,
ζ̃ (t), if t ∈ [ta, tb],
eβ(t−tin), if t ∈ ]tb, tin[,
1 + β(t − tin), if t ∈ [tin, tout],
1 + β(tout − tin), if t ∈ ]tout, T ],

where Ka, ζ̃ (t) ∈ ]0, 1[ for almost all t ∈ [ta, tb]. From analytical expression of qx , we
conclude that we only obtain a singular arc for t ∈ ]tin, tout[.

It is an easy task to see that the conclusions for multipliers and control hold, if x0 takes
any value equal or above xmin.

Before ending this example let us suppose that tout = T (the end state is on the boundary).
In this case we get qx (t) = 1 for t ∈ ]tin, T [, qx (T ) = 0 and px (t) = 1 + β(t − tin) for
t ∈ [tin, T ].
Remark 1 Observe that to concatenate scenarios the analysis applied to each one holds, but the
transversality condition associated with the multiplier qx for the case in study as to be taken
into account. In general, concatenations can not been analysed through a strict mathematical
composition; they should be carried out as a composed study, possibly subjected to updates,
like the one we illustrate above.

Approximation of Function g Values

In this section, we approximate the values of function g for three different cases. This is
needed, since we only have daily information with respect to function g. The results obtained
are then used in the numerical simulations reported in Sects. 6.1, 6.2 and 6.3.

Case 1

Consider that g takes the values of second column of Table 2. Using a TI-nspire CX II-T CAS
graphic calculator, we approximate these values through two different types of continuous
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functions: quartic polynomial and logistic (see Fig. 2). Since the error of the logistic regression
is smaller, we choose this one as an approximation of g in “Case 1" Section.

Case 2

Now, we assume that g takes the values of third column of Table 2. Using again a TI-nspire
CX II-T CAS graphic calculator, we approximate these values through two different types
of continuous functions: quartic polynomial and sinusoidal (see Fig. 3). Since the error of
the quartic regression is smaller, we choose this one as an approximation of g in “Case 2"
Section.
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Fig. 2 (Colour only in online version) Quartic and logistic values, as well as g values for case 1 (see second
column of Table 2)

Table 2 Function g values for
cases 1, 2 and 3

t g(t)

Case 1 Case 2 Case 3

0 −4.3415 −4.4840 3.6235

1 −3.3820 −5.1110 18.0500

2 −3.9805 −5.1395 3.0850

3 −4.3890 −5.5765 1.1090

4 −4.1230 −6.0040 −2.5365

5 −4.0565 −5.9850 −3.3820

6 −4.0090 −4.9685 −0.9880

7 11.0315 −4.4175 39.6050

8 10.1385 −4.2275 1.6040

9 11.5635 −4.1990 1.8840
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Case 3

Finally, suppose that g takes the values of fourth column of Table 2. Trying to approximate
these function g values, by regression, by different types of continuous functions, with the
help of a TI-nspire CX II-T CAS graphic calculator, we obtain high values for errors (see
an example in Fig. 4). Thus, we decide to do an interpolation of values of fourth column
of Table 2, using MATLAB function interp1, considering the method spline and the
vector xq = [

0 0.1 0.2 · · · 9]1×91 for the coordinates of the query points (see Fig. 4).

Validation

As in [9], we solve numerically (OCP) by the direct method. We first discretize the problem
using Euler method andwe then solve the finite dimensional non-linear optimization problem
given by (8) in Section “Approximation of Function gValues" of [9]. In all the current section,
the numerical solution of the optimization problem is obtained with the help of MATLAB
(version R2019a). TheMATLAB function fmincon is usedwith the following optimization
options:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� the termination tolerance on the function value is 10−9;
� the maximum number of iterations allowed is 106;
� the maximum number of function evaluations allowed is 3 × 106;
� the termination tolerance on state and control variables is 10−4;
� the optimization algorithm is active-set.

(28)

In what follows, we study three different cases. We consider the values of Table 3 and that
θ is the time step discretization for the three numerical studies.
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Fig. 3 (Colour only in online version) Quartic and sinusoidal values, as well as g values for case 2 (see third
column of Table 2)
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Fig. 4 (Colour only in online version) Quartic and spline values, as well as g values for case 3 (see fourth
column of Table 2)

Case 1

In numerical simulations of current subsection, we assume all values of Table 3. We also
consider that x0 = 44.2362 mm, β = 0.25 and function g takes the values of second column
of Table 2. Recall that we use the function g2, drawn in Fig. 2, as an approximation of g as
discussed in “Case 1 Section.

For the discretization of (OCP), we work with 91 grid points, corresponding to a step
size θ = 0.1. The numerical solutions we obtain using MATLAB function fmincon with
options (28) are presented in Fig. 5a. Notice that we also present the solutions when we use
the values of Table 2 instead of logistic function g2, in Fig. 5a. To do so we consider the step
size θ = 1.

This case is similar to Scenario 4. Consequently, for all t ∈ [0, T ], we know that the
analytical solutions of ū(t), qx (t) and x̄(t) with respect to (OCP) are, respectively, given by
(24), (26) and

x̄(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−(β+1)t
(
x0 +

∫ t

0
e(β+1)s(xFC + g(s)

)
ds

)
, if t ∈ [0, ta[,

e−βt
(
xFCeβta +

∫ t

ta
eβsg(s)ds

)
, if t ∈ [ta, tin[,

xmin, if t ∈ [tin, tout],
e−βt

(
xmineβtout +

∫ t

tout
eβs g(s)ds

)
, if t ∈ ]tout, T ].

Table 3 Common values for all
studied cases

Parameter T xmin M xFC

Value 9 18.72 1000 41.40

SI Unity (per m2) day mm mm/day mm
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Observe that the numerical multiplier associated with state variable x is not normalized (see
Fig. 5), when θ = 0.1. Numerically, we got tin = 2.2 and tout = 6.2, when θ = 0.1.
However, the precise value of ta , instant of time where the state trajectory is equal to xFC , is
unknown. We only know that ta ≤ ta ≤ ta < T , where ta = 0.1 and ta = 0.2, by Fig. 5a.
To get an approximate value for ta we search computationally for the minimum of

N∑
i=1

(
x̄
(
θ(i − 1)

) − xnum(i)
)2

for all ta ∈
{
ta + ε( j − 1) : j = 1, . . . , Ñ

}
, where xnum is the numerical solution for state

variable x provided by MATLAB, ε = 0.001 and Ñ = 101. Following this line of thought,
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(a) Numerical solutions with respect to trajectory associated with x, control
and multiplier associated with x, obtained from MATLAB for case 1 and
θ ∈ {0.1, 1}.
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(b) Comparison between numerical and analytical solutions with respect to
trajectory associated with x, control and numerical multiplier associated with
x for case 1 and θ = 0.1.

Fig. 5 (Colour only in online version) Numerical and analytical results associated with case 1.
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(a) Numerical solutions with respect to trajectory associated with x, control
and multiplier associated with x, obtained from MATLAB for case 2 and
θ ∈ {0.1, 1}.
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(b) Comparison between numerical and analytical solutions with respect to
trajectory associated with x, control and numerical multiplier associated with
x for case 2 and θ = 0.1.

Fig. 6 (Colour only in online version) Numerical and analytical results associated with case 2.

we determine that ta � 0.153. Thus, using these values, we are able to compare numerical
and analytical solutions, as one can see in Fig. 5b.

Case 2

In numerical simulations of current subsection, we assume all values of Table 3. We also
consider that x0 = 41.3485 mm, β = 0.0839 and function g takes the values of third column
of Table 2. Recall that we use the function g1, drawn in Fig. 3, as an approximation of g as
discussed in “Case 1" Section.

For the discretization of (OCP), we work with 91 grid points, corresponding to a step
size θ = 0.1. The numerical solutions we obtain using MATLAB function fmincon with
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options (28) are presented in Fig. 6a. In this figure we also present the solutions, when we
use the values of third column of Table 2 (θ = 1).

This case is similar to Scenario 8. Consequently, considering tout = T , we know that the
analytical solutions of ū(t), qx (t) and x̄(t) with respect to (OCP) are given by (27),

qx (t) =
⎧⎨
⎩
eβ(t−tin), if t ∈ [0, tin[,
1, if t ∈ ]tin, T [,
0, if t = T ,

and

x̄(t) =
⎧⎨
⎩
e−βt

(
x0 +

∫ t

0
eβsg(s)ds

)
, if t ∈ [0, tin[,

xmin, if t ∈ [tin, T ],

respectively, for all t ∈ [0, T ]. Numerically, we got tin = 3.0, when θ = 0.1. Observe that
the numerical multiplier associated with state variable x is not normalized (see Fig. 6), when
θ = 0.1. With all this information, we can compare numerical and analytical solutions, as
one can see in Fig. 6b.

Case 3

In the numerical simulations reported here, we assume all values of Table 3.We also consider
that x0 = 33.045 mm, β = 0.0997 and the function g takes the values of fourth column of
Table 2. Recall that we use the interpolation values, drawn in Fig. 4, as an approximation of
g as discussed in “Case 3" Section.

For the discretization of (OCP), we work with 91 grid points, corresponding to a step
size θ = 0.1. The numerical solutions we obtain using MATLAB function fmincon with
options (28) are presented in Fig. 7a. In this figure we also present the solutions, when we
use the values of fourth column of Table 2 (θ = 1).

This case is similar to Scenario 5. Following the same line of thought of Sect. 4.1.5, we
can state that x̄(t) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−βt
(
x0 +

∫ t

0
eβs g(s)ds

)
, if t ∈ [0, ta],

e−(β+1)t
(
xFCe(β+1)ta +

∫ t

ta
e(β+1)s(xFC + g(s)

)
ds

)
, if t ∈ ]ta, tb[,

e−βt
(
xFCeβtb +

∫ t

tb
eβs g(s)ds

)
, if t ∈ [tb, tc],

e−(β+1)t
(
xFCe(β+1)tc +

∫ t

tc
e(β+1)s(xFC + g(s)

)
ds

)
, if t ∈ ]tc, td [,

e−βt
(
xFCeβtd +

∫ t

td
eβsg(s)ds

)
, if t ∈ [td , T ],

and ū(t) = qx (t) = 0 for all t ∈ [0, T ]. We note that for the computed solutions with
θ = 0.1, we fail to obtain the exact instants of time where the state trajectory is equal to xFC .
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We only know that there are four such instants. Let us denote them by ta , tb, tc and td , where
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 < ta < tb < tc < td < T = 9,

0.8 = ta ≤ ta ≤ ta = 0.9,

2.8 = tb ≤ tb ≤ tb = 2.9,

7.0 = tc ≤ tc ≤ tc = 7.1,

8.5 = td ≤ td ≤ td = 8.6.

To get an approximate value for ta , tb, tc and td , we search computationally for the minimum
of

Uk∑
i=Lk

(
x̄
(
θ(i − 1)

) − xnum(i)
)2
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(a) Numerical solutions with respect to trajectory associated with x, control
and multiplier associated with x, obtained from MATLAB for case 3 and
θ ∈ {0.1, 1}.
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(b) Comparison between numerical and analytical solutions with respect to
trajectory associated with x, control and numerical multiplier associated with
x for case 3 and θ = 0.1.

Fig. 7 (Colour only in online version) Numerical and analytical results associated with case 3
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for all tk ∈
{
tk + ε( j − 1) : j = 1, . . . , Ñ

}
, where xnum is the numerical solution for state

variable x provided by MATLAB, ε = 0.001, Ñ = 101, k ∈ {a, b, c, d}, Lk = tk
θ

+ 1

and Uk = tk
θ

+ 1. Following this line of thought, we determine that ta � 0.800, tb �
2.877, tc � 7.058 and td � 8.577. Also for this case, we can observe that the numerical
multiplier associated with state variable x is not normalized when θ = 0.1 (see Fig. 7). Using
all this information, we are now able to compare numerical and analytical solutions, as one
can see in Fig. 7b.

Final Notes

Notice that the analytical expressions of Sects. 6.1, 6.2 and 6.3 depend on the weather
conditions, the switching times and the times where the trajectory changes the modes. It is
important to highlight that we can not obtain any analytical information about these time
values. Thus, to proceed with our study, we consider that these numerical times are correct.

Also observe that the analytical and the numerical solutions are very close in Figs. 5b, 6b
and 7b. Such closeness ensures the partial validation of the numerical solutions, through the
analytical ones.

Conclusions and FutureWork

The need to study irrigation strategies is of foremost importance nowadays since 80% of
the fresh water used on our planet is in agriculture. So, in this paper we studied the daily
irrigation problem of an agricultural crop, using optimal control.

We considered an optimal control problem whose dynamics is based on field capacity
modes and which includes a state constraint. When we study non-smooth state constrained
optimal control problems, it is very hard to get the analytical solution and this was the focus
of the current paper. To overcome this difficulty, we considered different basic profiles for the
optimal trajectories. Under some mild assumptions, we applied the Maximum Principle with
the purpose to get the analytical solution for each one of the profiles. We emphasize that we
could not obtain any analytical information on the switching times and the times where the
trajectory changes the modes. Since we intended to partially validate numerical solutions,
through the analytical ones, we assumed that these numerical times are correct.

With this paper, we were able to understand better the behaviour of trajectories and
controls. This work is a first step towards the definition of an automatic irrigation system,
guaranteeing the minimization of the water consumption. Our results are important to vali-
date our very simple model. To do that we need to confront our results with the experimental
data, what we hope to do in the very near future in collaboration with the Centre for the
Research and Technology of Agro–Environmental and Biological Sciences of Universidade
de Trás-os-Montes e Alto Douro (UTAD) – Portugal.

Our future work will also focus on the determination of sub-optimal control strategies
which can be experimentally implemented. We hope to test strategies based on model pre-
dictive control and robust control policies to enable us to deal with uncertainties due to
unpredictable weather conditions. One aspect that will also be the focus of our attention will
be the determination of the value function for our problem, using dynamic programming
techniques.
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