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Abstract
Dengue is a mosquito-borne disease which has continued to be a public health issue in
Malaysia. This paper investigates the impact of singular use of vaccination and its com-
bined effort with treatment and adulticide controls on the population dynamics of dengue in
Johor, Malaysia. In a first step, a compartmental model capturing vaccination compartment
with mass random vaccination distribution process is appropriately formulated. The model
with or without imperfect vaccination exhibits backward bifurcation phenomenon. Using the
available data and facts from the 2012 dengue outbreak in Johor, basic reproduction number
for the outbreak is estimated. Sensitivity analysis is performed to investigate how the model
parameters influence dengue disease transmission and spread in a population. In a second
step, a new deterministic model incorporating vaccination as a control parameter of distinct
constant rates with the efforts of treatment and adulticide controls is developed. Numerical
simulations are carried out to evaluate the impact of the three control measures by implement-
ing several control strategies. It is observed that the transmission of dengue can be curtailed
using any of the control strategies analysed in this work. Efficiency analysis further reveals
that a strategy that combines vaccination, treatment and adulticide controls is most efficient
for dengue prevention and control in Johor, Malaysia.
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Introduction

Dengue Fever (DF) is the most rapidly emerging mosquito-borne viral infection worldwide
[1, 2]. The disease is a major public health concern throughout tropical and sub-tropical
regions of the world [1, 3, 4], in more than 100 countries in South-East Asia, the Western
Pacific and South and Central America [1]. Nowadays, dengue is endemic in most tropical
and sub-tropical areas of the globe [3], and its transmission has increased predominantly
in urban and semi-urban areas recently [2]. Up to 2.5 billion people worldwide live under
the threat of DF and its severe forms–Dengue Haemorrhagic Fever (DHF) or Dengue Shock
Syndrome (DSS) [1]. The World Health Organisation (WHO) estimated that, annually, 9
million symptomatic cases and 0.5 million severe episodes of dengue occur globally [3].

Moreover, while dengue is a worldwide health issue, with a consistent increment in the
number of nations announcing the disease, presently near 75% of the worldwide population
at dengue risk are in Asia-Pacific region [2]. Since the 1950s, dengue has become a serious
health issue in South-East Asia region [5]. In recent decades, DHF has become a significant
reason for hospitalisations and deaths among children in the greater part of theAsian countries
[6], includingMalaysia. InMalaysia, dissemination of dengue cases vary considerably among
states and districts where dengue cases are more pronounced in urban and suburban areas
[7, 8]. The first dengue outbreak in Malaysia occurred in 1902. Since then, the nation has
progressively well-known for ceaseless dengue endemic cases as a result of the continual
increase in reported cases of DF [5].

DF is transmitted by dengue viruses that are members of the genus Flavivirus and family
Flaviviridae [1]. There are four immunologically distinct but antigenically similar dengue
virus (DENV) serotypes, namely DENV-1, DENV-2, DENV-3 and DENV-4, causing dengue
disease [3, 4, 9]. The viruses are transmitted to humans by the bites of infected female
mosquitoes of the genusAedes [3, 4].Aedes aegyptimosquito is the primary vector of dengue
[4]. Dengue infection can cause a spectrum of clinical outcomes ranging from completely
asymptomatic, undifferentiated viral syndrome, DF, DHF to DSS [3, 10]. A person can be
infectedwith dengue virus up to four distinct timeswith an infection connecting to a particular
virus serotype. An individual that gets infected by any of the four virus serotypes develops
lifelong immunity to it, but just an impermanent cross-insusceptibility to the other virus
serotypes [3, 8].

There is no particular treatment for dengue disease [11]. Clinical management depends on
supportive therapy, mainly cautious monitoring of intravascular volume replacement [11].
Lately, dengue vaccine development has dramatically accelerated as a result of the increase in
the number of dengue infections, just as the prevalence of everyone of the circulating DENV-
1,2,3,4 serotypes [12]. The recently licensed dengue vaccine, Dengvaxia (CYD-TDV) made
by Sanofi Pasteur has been approved by regulatory authorities in more than twenty countries
[11], including Indonesia and Mexico [13]. The vaccine protects against DENV-1, DENV-3
and DENV-4 but only imperfectly against DENV-2 [13]. Thus, it may or may not be possible
to have any future perfect dengue vaccine that protect against the four virus serotypes [14].

Until Dengvaxia vaccine was licensed, dengue prevention and control rely on interven-
tions targeting the vector, for which WHO recommends integrated vector management [11].
Some basic control strategies intend to keep mosquitoes from getting to egg-laying habitats,
using ecological management interventions such as removal of artificial man-made habitats
for mosquitoes, application of suitable insecticides or predators to outdoor water storage con-
tainers, use of personal and household protection (like window screens, long-sleeved clothe,
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insecticide or mosquito repellents, vaporizers and coils) and open space spray of insecticide
during dengue outbreak [11].

Mathematical models describing the dynamics of interactions between host and vector
go back to Lotka [15] and Ross [16], first used to study vector-host dynamics in the context
of Malaria. Variations of such framework have been applied to dengue [8, 14, 17–25]. In
many previous studies, several authors have used compartmental deterministic models to
investigate the transmission dynamics of dengue disease in general [17–21]. Similarly, many
previous authors have used compartmental deterministic models to examine the dynamics of
dengue disease spread in specific regions or countries [14, 22–24].

In particular, mathematical study of the epidemiology of dengue disease in Malaysia has
been studied by many previous researchers. For instance, Side and Noorani [26] used a
mathematical model based on SEIR (Susceptible-Exposed-Infectious-Recovered) structure
to analyse dengue disease spread in Selangor state of Malaysia. Later, the work of Side and
Noorani [26] was revisited by Side and Noorani [27] to propose a new compartmental model
which excludes intrinsic and extrinsic incubation periods in human and mosquito, respec-
tively. The model was simulated for the 2008 dengue outbreaks in Selangor, Malaysia and
South Sulewesi, Indonesia. Recently, Hamdan and Kilicman [8] developed a mathematical
model involving fractional order differential equations to investigate the dynamical behaviour
of dengue disease transmission in Selangor, Malaysia. The model was analysed to derive the
basic reproduction number (R0) for it, which was used to carry out sensitivity analysis of the
model parameters and discuss the global stability of the equilibrium points. Liang et al. [25]
constructed a compartmental mathematical model based on the classical SIR model structure
to investigate the impact of auto-dissemination trap on dengue disease transmission using
Shah Alam city in Selangor state of Malaysia as a case study.

Until now, there is no licensed vaccine for dengue in Malaysia. Dengue prevention and
control primarily depends on vector control or host-vector contacts interruption [8, 28]. In
Malaysia, vector control is mainly based on passive case surveillance which relies on health-
care professionals to notify public health authorities of all suspected or laboratory-confirmed
dengue cases [29]. Then, open space spray of insecticides is administered to kill adult Aedes
mosquitoes in the dengue hotspot zone to accomplish quick control of the new outbreak [28].
However, this responsive method of surveillance with the health specialists holding up until
the medical community recognises dengue cases before responding to actualize control mea-
sures is very unresponsive owing to the fact that doctors have low index for diagnosing dengue
during inter-epidemic periods [10]. In most cases, dengue outbreaks are possibly recognised
when the transmission is at its peak duringwhich it is past the point where the implementation
of effective preventive measures that halt the disease spread is possible [30]. Another signifi-
cant thought is that the use of surveillance alone likewise disregards the patients who present
with undifferentiated febrile illness or viral syndrome. This group of patients speaks to a huge
extent of those with symptomatic dengue disease, contingent upon the age of the patient and
the strain of infecting virus [10]. Also, vector control has been shown to be only partially
effective in reducing disease burden [31]. At last, the prevention of dengue in Malaysia may
rely upon the accessibility of an effective vaccine in the country. Hence, there is the need for
a reliable deterministic model to better understand the mechanism of dengue disease spread
and control by incorporating vaccination into the present day control strategies for dengue
in Malaysia.

In this paper, our interest is to develop a compartmental deterministic model that creates
a framework for integrated vector management in order to examine the impact of separate
use of vaccine and efforts of combining vaccine with treatment and insecticide controls on
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the dynamics of dengue disease spread in Malaysia. The model is parameterized using data
from the 2012 dengue outbreak in Johor, Malaysia.

The remainder of this paper is organised as follows: Second section presents the devel-
opment of a mathematical model describing the dynamical behaviour of dengue disease
transmission between the interacting host and vector populations with effect of randommass
vaccination. In third section, theoretical analysis of the model is carried out. Fourth sec-
tion discusses the parameter estimation and model fitting. Sensitivity analysis of the model
parameters is discussed in fifth section. This is followed up by the formulation of a new
model incorporating triplet controls that are vaccination, treatment and adulticide control
measures in sixth section. Qualitative analysis of the basic properties of the model is also
discussed. Numerical simulation of the models and discussion of results are presented in
seventh section. Conclusion is finally drawn in last section.

Model Formulation

In this section, we formulate a mathematical dengue model including vaccination compart-
ment with consideration of the pre-intervention model presented in a previous work [21].

Model Assumptions

Depending on the epidemiological status of individuals, the total human population is divided
into susceptible (Sh), vaccinated (Vh), exposed (Eh), infectious (Ih) and recovered individuals
(Rh). In a similar manner, the aquatic mosquitoes are described by a compartmental class Av ,
the total population of female mosquitoes is grouped into susceptible (Sv), exposed (Ev) and
infectious (Iv)mosquitoes. It is assumed that there is no human andmosquitomigration, so the
population is constant. It is assumed that standard (or proportional) incidence is appropriate
for a large population (state). Human and mosquito populations are homogeneously mixing,
implying that every mosquito has equal probability of biting any host. The virus can only
be transmitted by infectious humans (Ih) and mosquitoes (Iv). Only one strain of dengue
virus is present in the population, and responsible for all the dengue infections. Primary
infections are generally asymptomatic and non-fatal [32], thus it is assumed that there is no
dengue-related deaths. Also, it is assumed that an imperfect vaccine with up to 90% efficacy
is administered in the human population with randommass vaccination scenario. There is no
consideration for vertical transmission in both human and mosquito populations. Mosquitoes
lack an adaptive immune response, hence they cannot form resistance to a pathogen.

TheModel and Its Parameters

The total human population at any time t , denoted as Nh(t), is assumed to be constant, and
is given as

Nh(t) = Sh(t) + Vh(t) + Eh(t) + Ih(t) + Rh(t). (1)

Similarly, the size of total female mosquito at any time t is assumed to be constant and given
as

Nv(t) = Sv(t) + Ev(t) + Iv(t). (2)
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Let � be the constant recruitment rate of human population, which enters the susceptible
population. Individuals in the vaccinated class Vh with waning immunity join Sh class at rate
ω. This population is decreased either by natural death at rate μh , or following the infection
through an effective contact with an infected mosquito at the rate given as

λh = bβh
Nv

Nh

Iv
Nh

= bβh Iv
Nh

, (3)

where b is the biting rate per Sv , βh is the transmission probability of dengue virus from Iv
to Sh . Class Sh is further decreased by vaccination at constant rate ν.

Thevaccinated classVh is populatedby the fractionνSh . Since it is assumed that the dengue
vaccine is not 100% efficacious but highly effective, then the vaccinated class Vh decreases
by infection at the rate (1− ε)λh for 0 ≤ ε ≤ 1, where ε is the vaccine efficacy. For instance,
ε = 0 measures zero efficacy of the vaccine, while the vaccine is 100% efficacious at ε = 1.
The class is further decreased either by the fractionωVh whose vaccine has waned out, where
ω is the vaccine waning rate, or by natural death at rate μh .

When individuals in both classes Sh and Vh are infected, they progress to the exposed class
Eh . Class Eh is reduced either when individuals in the class developed clinical symptoms of
dengue and move to class Ih at rate ηh or individuals die naturally at rate μh .

Individuals in Ih class may recover at the rate ξh or die at natural death rate μh . The
population of recovered individuals is reduced by natural death at rate μh .

The aquatic mosquito population is generated via the logistic oviposition function

μb

(
1 − Av

K

)
assumed to be proportional to the total number of female mosquitoes, so that

the aquatic mosquito is recruited at rate μb

(
1 − Av

K

)
(Sv + Ev + Iv), where K is the larvae

carrying capacity and μb is the mosquito oviposition rate. The population is reduced either
by the progression of larva to female mosquito at rate ηa or natural mortality of larva at rate
μa .

The class Sv is populated by the larvae mosquitoes emerging as female mosquitoes at rate
ηa . The population of susceptible mosquito is decreased either following an infection as a
result of the effective contact between Ih and Sv at rate

λv = bβv

Ih
Nh

Nh

Nh
= bβv Ih

Nh
(4)

where, b is the biting rate per susceptible mosquito and βv is the transmission probability of
dengue infection from Ih to Sv , or as a result of natural death of the susceptible mosquitoes
at rate μv .

The population of mosquitoes in class Ev is increased by the contact rate bβv between Ih
ans Sv . It is decreased either as a result of exposed mosquitoes being moved to the infectious
class at rate ηv or they die naturally at rate μv .

Infectious mosquitoes do not recover, and they may die naturally at rate μv .
In Eqs. (3) and (4) respectively, λh and λv are the forces of infection in humans and

mosquitoes. The expression for λh can be interpreted as follows: the probability that a
mosquito chooses a specific human to bite is assumed to be 1

Nh
so that a human receives, on

average, b Nv

Nh
bites per unit of times such that the infection rate per Sh is given by bβh

Nv

Nh

Iv
Nv

.
In a similar manner, the expression for λv can be interpreted as well.

Thus, the vaccinated denguemodel consisting of nine time-dependent ordinary differential
equations (ODEs) given by Eq. (5) as

dSh
dt

= � − λh(t)Sh(t) − μh Sh(t) − νSh(t) + ωVh(t), (5a)
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Table 1 Description of the
variables of model (5)

Variable Description

Sh Susceptible individuals

Vh Vaccinated individuals

Eh Exposed individuals

Ih Infectious individuals

Rh Recovered individuals

Av Aquatic mosquitoes

Sv Susceptible mosquitoes

Ev Exposed mosquitoes

Iv Infectious mosquitoes

dVh
dt

= νSh(t) − (1 − ε)λh(t)Vh(t) − ωVh(t) − μhVh(t), (5b)

dEh

dt
= λh(t)Sh(t) + (1 − ε)λh(t)Vh(t) − ηh Eh(t) − μh Eh(t), (5c)

d Ih
dt

= ηh Eh(t) − ξh Ih(t) − μh Ih(t), (5d)

dRh

dt
= ξh Ih(t) − μh Rh(t), (5e)

d Av

dt
= μb

(
1 − Av(t)

K

)
(Sv(t) + Ev(t) + Iv(t)) − ηa Av(t) − μa Av(t), (5f)

dSv

dt
= ηa Av(t) − λv(t)Sv(t) − μvSv(t), (5g)

dEv

dt
= λv(t)Sv(t) − ηvEv(t) − μvEv(t), (5h)

d Iv
dt

= ηvEv(t) − μv Iv(t), (5i)

along with the initial conditions (ICs):

Sh(0) = S0h, Vh(0) = V0h, Eh(0) = E0h, Ih(0) = I0h, Rh(0) = R0h,

Av(0) = A0v, Sv(0) = S0v, Ev(0) = E0v, Iv(0) = I0v.
(6)

Tables 1 and 2 give the description of the state variables and parameters of model (5)
respectively. The scheme of model (5) describing the vector-host interactions for dengue is
presented by Fig. 1.

Qualitative Analysis of theModel

Qualitative Properties of Solutions

Positivity of Solutions

This subsection establishes that the solution of each of the state variables of model (5) with
non-negative initial data remains non-negative for all time t for the model to be biologically
meaningful since it describes the human and mosquito population dynamical behaviours.
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Table 2 Description of the
parameters of model (5)

Parameter Description

� Recruitment rate of humans

μh Humans natural mortality rate

βh Transmission probability per contact of Sh with Iv

ν Rate of vaccination

ω Waning rate of vaccine

ε Efficacy of vaccine

ηh Infectiousness rate of individuals

ξh Recovery rate of individuals

b Biting rate of mosquitoes

μb Per capita oviposition rate of mosquitoes

K Carrying capacity of larvae

μv Natural mortality rate of female mosquitoes

μa Natural mortality rate of aquatic mosquitoes

ηa Maturation rate of aquatic mosquitoes

βv Transmission probability per contact of Sv with Ih
ηv Rate of infectiousness of mosquitoes

ℎ ℎ ℎℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ ℎ ℎ ℎ

ℎ

1 − ε ℎ
ℎ

ℎ

ℎℎ

Fig. 1 Scheme of the SVEIR + ASEI dengue model (5)

Lemma 3.1 Suppose that X(t) = (
Sh(t), Vh(t), Eh(t), Ih(t), Rh(t), Av(t), Sv(t), Ev(t),

Iv(t)
)T

. Suppose further that the initial data given in (6) are non-negative. Then, the solutions
X(t) of the vaccination dengue model (5) remain non-negative for all t > 0. Furthermore,

lim sup Nh(t)
t→∞

≤ �

μh
and lim sup Nv(t)

t→∞
≤ ηaK

μv

where, Nh(t) and Nv(t) are as expressed by Eqs. (1) and (2), respectively.
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Proof Let t∗ = sup
{
t > 0 : Sh ≥ 0, Vh ≥ 0, Eh ≥ 0, Ih ≥ 0, Rh ≥ 0, Av

≥ 0, Sv ≥ 0, Ev ≥ 0, Iv ≥ 0
}
. Thus t∗ > 0. Equation (5a) gives rise to

dSh
dt

+ λh(t)Sh(t) + μh Sh(t) + νSh(t) ≥ 0, where λh(t) = bβh Iv(t)

Nh(t)
. (7)

Equation (7) implies that

d

dt

[
Sh(t) exp

{∫ t

0
λh(
)d
 + (μh + ν)t

}]
≥ 0. (8)

Integrating Eq. (8) over time interval t ∈ [0, t∗] yields

Sh(t∗) exp
{∫ t∗

0
λh(
)d
 + (μh + ν)t∗

}
− Sh(0) ≥ 0.

Consequently,

Sh(t∗) ≥ Sh(0) exp

{
−
(∫ t∗

0
λh(
)d
 + (μh + ν)t∗

)}
> 0 ∀t > 0. (9)

It can be shown by the similar approach that Vh ≥ 0, Eh(t) ≥ 0, Ih(t) ≥ 0, Rh(t) ≥ 0,
Av(t) ≥ 0, Sv(t) ≥ 0, Ev(t) ≥ 0 and Iv(t) ≥ 0.

For the second part of the proof, the time derivative of the total human population at time
t , Nh(t) in Eq. (1), along the solutions of the dengue model (5) for humans is expressed as

dNh(t)

dt
= ∂Nh

∂Sh

dSh
dt

+ ∂Nh

∂Vh

dVh
dt

+ ∂Nh

∂Eh

dEh

dt
+ ∂Nh

∂ Ih

d Ih
dt

+ ∂Nh

∂Rh

dRh

dt
,

dNh(t)

dt
= � − μh Nh(t),

so that

lim sup Nh(t)
t→∞

≤ �

μh
.

Similarly, the time derivative of the total mosquito population at any time t , Nv(t) defined in
Eq. (2), along the solutions of the dengue model (5) for mosquitoes is given as

dNv(t)

dt
= ∂Nv

∂Sv

dSv

dt
+ ∂Nv

∂Ev

dEv

dt
+ ∂Nv

∂ Iv

d Iv
dt

,

dNv(t)

dt
= ηa Av − μvNv(t),

so that

lim sup Nv(t)
t→∞

≤ ηa Av

μv

,

= ηaK

μv

(since Av ≤ K )

as required. 	
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Invariant Region

Analysis of the dengue model (5) is carried out in a biologically feasible region D given by
the set

D = Dh × Dv ⊂ R5+ × R4+ (10)

with

Dh =
{
(Sh, Vh, Eh, Ih, Rh) ∈ R5+ : Sh + Vh + Eh + Ih + Rh ≤ �

μh

}
,

Dv =
{
(Av, Sv, Ev, Iv) ∈ R4+ : Av ≤ K , Sv + Ev + Iv ≤ ηaK

μv

}
.

The positivity of region D is claimed in the following result.

Lemma 3.2 The region D ⊂ R9+ in Eq. (10) is positively invariant relative to the dengue
model (5) with positive initial conditions inR9+.

Proof We follow the idea in Abidemi et al. [24] and Ndii et al. [33] to verify that the feasible
region D is positively invariant. Model (5) is expressed as

dX

dt
= M(X)X + G (11)

where,

X = (Sh, Vh, Eh, Ih, Rh, Av, Sv, Ev, Iv)
T ,

M(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−m1,1 ω 0 0 0 0 0 0 0
ν −m2,2 0 0 0 0 0 0 0

bβh Iv
Nh

(1 − ε)
bβh Iv
Nh

−ηh − μh 0 0 0 0 0 0
0 0 ηh −ξh − μh 0 0 0 0 0
0 0 0 ξh −μh 0 0 0 0
0 0 0 0 0 −m5,5 m5,6 m5,7 m5,8

0 0 0 0 0 ηa −m6,6 0 0
0 0 0 0 0 0 bβhv Ih

Nh
−ηv − μv 0

0 0 0 0 0 0 0 ηv −μv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with m1,1 = μh + ν + bβh Iv
Nh

, m2,2 = μh + ω + (1 − ε)
bβh Iv
Nh

, m5,5 = ηa + μa +
μb

Sv+Ev+Iv
KL

, m5,6 = m5,7 = m5,8 = μb

(
1 − Av

KL

)
, m6,6 = μv + bβhv Ih

Nh
, and G =

(�, 0, 0, 0, 0, 0, 0, 0, 0).
It is clear that all the off-diagonal entries of M(X) are non-negative. Therefore, it is a

Metzler matrix. Based on the fact that G ≥ 0, then system (11) is positively invariant in
R9+, which implies that any trajectory of the system (11) starting from an initial state in the
positive orthant R9+ remains in R9+ forever. Therefore, all feasible solutions of the dengue
model (5) enter the region D given in Eq. (10). 	
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Qualitative Analysis of the Basic Properties

Existence of Disease-Free Equilibria

In this section, the steady state solutions (equilibrium points) of the dengue model (5) when
there are no variations in the state variables Sh(t), Vh(t), Eh(t), Ih(t), Rh(t), Av(t), Sv(t),
Ev(t), Iv(t), Nh(t) and Nv(t) in respect of time t are discussed.

Let λ∗
h and λ∗

v denote the human and mosquito forces of infection at the steady state,
respectively, and be given by

λ∗
h = bβh I ∗

v

N∗
h

, (12a)

λ∗
v = bβv I ∗

h

N∗
h

. (12b)

Then, setting the right-hand sides of the equations in model (5) to zero, the solutions of the
state variables at a steady state (S∗

h , V
∗
h , E

∗
h , I

∗
h , R

∗
h , A

∗
v , S

∗
v , E

∗
v , I

∗
v ) in terms of the associated

form of force of infection are obtained as follows. Solving Eqs. (5a)–(5e) yields

S∗
h = �((1 − ε)λ∗

h + ω + μh)

(λ∗
h + ν + μh)((1 − ε)λ∗

h + ω + μh) − ων
, (13a)

V ∗
h = �ν

(λ∗
h + ν + μh)((1 − ε)λ∗

h + ω + μh) − ων
, (13b)

E∗
h = [((1 − ε)λ∗

h + ω + μh) + (1 − ε)ν]�λ∗
h

(ηh + μh)
[
(λ∗

h + ν + μh)((1 − ε)λ∗
h + ω + μh) − ων

] , (13c)

I ∗
h = [((1 − ε)λ∗

h + ω + μh) + (1 − ε)ν]�ηhλ
∗
h

(ηh + μh)(ξh + μh)
[
(λ∗

h + ν + μh)((1 − ε)λ∗
h + ω + μh) − ων

] , (13d)

R∗
h = [((1 − ε)λ∗

h + ω + μh) + (1 − ε)ν]�ηhξhλ
∗
h

μh(ηh + μh)(ξh + μh)
[
(λ∗

h + ν + μh)((1 − ε)λ∗
h + ω + μh) − ων

] . (13e)

Next, we solve for S∗
v , E

∗
v and I ∗

v in system (5). It follows from (5g)–(5i) that

S∗
v = ηa A∗

v

(λ∗
v + μv)

, (14a)

E∗
v = ηa A∗

vλ
∗
v

(ηv + μv)(λ∗
v + μv)

, (14b)

I ∗
v = ηaηvA∗

vλ
∗
v

μv(ηv + μv)(λ∗
v + μv)

. (14c)

Using the results in (14), we have

S∗
v + E∗

v + I ∗
v = ηa A∗

v

(λ∗
v + μv)

+ ηa A∗
vλ

∗
v

(ηv + μv)(λ∗
v + μv)

+ ηaηvA∗
vλ

∗
v

μv(ηv + μv)(λ∗
v + μv)

,

= (ηaμv(ηv + μv) + ηaμvλ
∗
v + ηvηaλ

∗
v)A

∗
v

μv(ηv + μv)(λ∗
v + μv)

,

=
[
ηaμv(ηv + μv) + ηa(μv + ηv)λ

∗
v

]
A∗

v

μv(ηv + μv)(λ∗
v + μv)

. (15)
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Thus, plugging the result in (15) into (5f) and simplifying lead to

μb

(
1 − A∗

v

K

)[
ηaμv(ηv + μv) + ηa(μv + ηv)λ

∗
v

μv(ηv + μv)(λ∗
v + μv)

]
A∗

v − (ηa + μa)A
∗
v = 0,

{
μbηa

μv(ηv + μv)

(
1 − A∗

v

K

)[
μv(ηv + μv) + (μv + ηv)λ

∗
v

λ∗
v + μv

]
− (ηa + μa)

}
A∗

v = 0. (16)

In (16), A∗
v has a trivial solution

A∗
v = 0.

Putting A∗
v = 0 in Eq. (14) yields

S∗
v = E∗

v = I ∗
v = 0.

Furthermore, we also have λ∗
h = 0 when I ∗

v = 0. Thus, the solutions in (13) reduce to

E∗
h = I ∗

h = R∗
h = 0, S∗

h = (ω + μh)�

(ν + μh)(ω + μh) − ων
, V ∗

h = �ν

(ν + μh)(ω + μh) − ων
.

Hence, dengue model (5) has a trivial equilibrium (TE), denoted as E0, obtained as

E0 =
(

(ω + μh)�

(ν + μh)(ω + μh) − ων
,

�ν

(ν + μh)(ω + μh) − ων
, 0, 0, 0, 0, 0, 0, 0

)
. (17)

Next, we consider a non-trivial solution of A∗
v (A

∗
v �= 0) in (16). Then, the possible solution

of A∗
v can be obtained from

μbηa

μv(ηv + μv)

(
1 − A∗

v

K

)(
μv(ηv + μv) + (ηv + μv)λ

∗
v

λ∗
v + μv

)
− (ηa + μa) = 0. (18)

Resolving (18) for A∗
v , we have

− A∗
v

K

(
μbηa

(ηv + μv)μv

(ηv + μv)μv + (ηv + μv)λ
∗
v

λ∗
v + μv

)

+ μbηa

(ηv + μv)μv

(
(ηv + μv)μv + (ηv + μv)λ

∗
v

λ∗
v + μv

)

− (ηa + μa) = 0,

A∗
v

K

[
μbηa((ηv + μv)μv + (ηv + μv)λ

∗
v)

μv(ηv + μv)(λ∗
v + μv)

]

= μbηa[(ηv + μv)μv + (ηv + μv)λ
∗
v]

μv(ηv + μv)(λ∗
v + μv)

− (ηa + μa).

So,

A∗
v =

{
μbηa [(ηv + μv)μv + (ηv + μv)λ

∗
v]

μv(ηv + μv)(λ∗
v + μv)

− (ηa + μa)

}
Kμv(ηv + μv)(λ

∗
v + μv)

μbηa [(ηv + μv)μv + (ηv + μv)λ∗
v]

,

A∗
v =

(
μbηaμv(ηv + μv) + (ηv + μv)μbηaλ

∗
v − (ηa + μa)(ηv + μv)μvλ

∗
v − (ηa + μa)(ηv + μv)μ

2
v

μbηa [(ηv + μv)μv + (ηv + μv)λ∗
v]

)
K ,

A∗
v =

⎡
⎣ (ηv + μv)μbμvηa

(
1 − (ηa+μa )μv

μbηa

)
+ [(ηv + μv)μbηa − (ηa + μa)(ηv + μv)μv]λ∗

v

μbηa [(ηv + μv)μv + (ηv + μv)λ∗
v]

⎤
⎦ K ,

A∗
v =

⎡
⎣μbμvηa(ηv + μv)

(
1 − 1

G
)

+ [μbηa(ηv + μv) − μv(ηa + μa)(ηv + μv)]λ∗
v

μbηa [(ηv + μv)μv + (ηv + μv)λ∗
v]

⎤
⎦ K , (19)
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where G = μbηa
(ηa+μa)μv

.
To derive the equilibrium without dengue disease in the system, we set λ∗

h = λ∗
v = 0 or

Eh = Ih = Ev = Iv = 0. Hence, we have from (19) that

A0
v =

(
1 − (ηa + μa)μv

μbηa

)
K =

(
1 − 1

G

)
K . (20)

Consequently, the threshold G regulates the existence of mosquito. So, if G ≤ 1, then A∗
v = 0

in (19). It follows that dengue model (5) corresponds to free-mosquito human population and
the equilibrium in this scenario is the TE E0 given in (17).

If, on the other hand, G > 1, then the non-trivial biologically realistic disease-free equi-
librium (BRDFE), denoted as E1, is obtained from (13), (14) and (20) with λ∗

h = λ∗
v = 0

as

E1 = (S0h , V 0
h , 0, 0, 0, A0

v, S
0
v , 0, 0

)
,

=
(

�(ω + μh)

(ν + μh)(ω + μh) − ων
,

�ν

(ν + μh)(ω + μh) − ων
, 0, 0, 0,

(
1 − 1

G

)
K ,

ηa

μv

(
1 − 1

G

)
K , 0, 0

)
.

(21)

We then claim the following result.

Theorem 3.1 LetD be as defined by (10) and G = μbηa
μv(ηa+μa)

, where G is the net reproduction
number. Then, the dengue model (5) admits at most two disease-free equilibrium (DFE)
points:

(i) If G ≤ 1, then there exists a DFE, called TE given as

E0 =
(

(ω + μh)�

(ν + μh)(ω + μh) − ων
,

�ν

(ν + μh)(ω + μh) − ων
, 0, 0, 0, 0, 0, 0, 0

)
;

(ii) If G > 1, then there is a BRDFE defined as

E1 = (S0h , V 0
h , 0, 0, 0, A0

v, S
0
v , 0, 0

)

=
(

(ω + μh)�

(ν + μh)(ω + μh) − ων
,

�ν

(ν + μh)(ω + μh) − ων
, 0, 0, 0,

(
1 − 1

G

)
K ,

ηa

μv

(
1 − 1

G

)
K , 0, 0

)
.

Reproduction Number

It is necessary to derive the effective (or control) reproduction number, denoted asRc, for the
dengue model (5). According to Hethcote [34], “the basic reproduction number is defined
as the average number of secondary infections that occur when one infective is introduced
into a completely susceptible host population”. The thresholdRc gives an invasion criterion
for the initial virus spread in a susceptible population. For this reason, Rc for model (5)
is computed using the BRDFE E1 (which describes the coexistence of both the human and
mosquito without dengue infections in the interacting populations). The result is presented
in Theorem 3.2.
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Theorem 3.2 If G > 1, then the effective reproduction number Rc related to the dengue
model (5) is expressed as

R2
c =

b2βhηhμ
2
h((1 − ε)ν + ω + μh)βvηaηv

(
1 − 1

G
)
K

�(ηh + μh)(ξh + μh)((ν + μh)(ω + μh) − ων)μ2
v(ηv + μv)

(22)

where, G = μbηa
μv(ηa+μa)

.

Proof We adopt the notation of next generation matrix (NGM) method in [35, 36] to prove
Theorem 3.2. Now, note from model (5) that

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eh

Ih
Ev

Iv
Sh
Vh
Rh

Av

Sv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bβh Iv Sh
Nh

+ (1−ε)bβh Iv Sh
Nh

0
bβv Ih Sv

Nh

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ηh + μh)Eh

(ξh + μh)Ih − ηh Eh

(ηv + μv)Ev

μv Iv − ηvEv(
μh + ν + bβh Iv

Nh

)
Sh − (� + ωVh)(

μh + ω + (1−ε)bβh Iv
Nh

)
Vh − νSh

μh Rh − ξh Ih
(ηa + μa)Av − μb

(
1 − Av

K

)
(Sv + Ev + Iv)(

μv + bβv Ih
Nh

)
Sv − ηa Av

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

Then, the infection matrix F and transition matrix V , respectively, are obtained from Eq.
(23) as

F =

⎛
⎜⎜⎜⎜⎝

0 0 0
bβh [S0h+αV 0

h ]
N0
h

0 0 0 0

0 bβv S0v
N0
h

0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

V =

⎛
⎜⎜⎝

ηh + μh 0 0 0
−ηh ξh + μh 0 0
0 0 ηv + μv 0
0 0 −ηv μv

⎞
⎟⎟⎠ .

Thus,

V−1 =

⎛
⎜⎜⎜⎝

1
ηh+μh

0 0 0
ηh

(ηh+μh)(ξh+μh )
1

ξh+μh
0 0

0 0 1
ηv+μv

0

0 0 ηv

μv(ηv+μv)
1

μv

⎞
⎟⎟⎟⎠ .

According to [35],Rc = ρ(FV−1), where ρ(A) is the spectra radius (maximum eigenvalue)
of matrix A. Therefore, Rc is computed as

Rc =
√√√√ b2S0vβvηvβhηh(S0h + (1 − ε)V 0

h )

(ηh + μh)(ξh + μh)(ηv + μv)μv(N 0
h )

2 .
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The expressionRc in (22) is the number of secondary infections in completely susceptible
population due to infections from one introduced infectious individual with dengue.

Existence of Endemic Equilibrium

This section explores the existence of endemic equilibrium (EE) of model (5). In this case,
the components of infected variables are non-zero, and consequently λ∗

h �= 0 and λ∗
v �= 0 in

(12). Then, we assume that G > 1. Let the EE of the system (5) be represented by

E2 = (S∗
h , V

∗
h , E∗

h , I
∗
h , R∗

h , A
∗
v, S

∗
v , E∗

v , I ∗
v

)
. (24)

At equilibrium, it follows from Eq. (5f) that

S∗
v + E∗

v + I ∗
v = K (ηa + μa)A∗

v

μb(K − A∗
v)

. (25)

Similarly, summing up the terms in Eqs. (5g) to (5i) at equilibrium gives

S∗
v + E∗

v + I ∗
v = ηa

μv

A∗
v. (26)

Equating Eqs. (25) and (26), and simplifying yields like before:

A∗
v =

(
1 − μv(ηa + μa)

μbηa

)
K =

(
1 − 1

G

)
K = A0

v. (27)

Thus, the components of EE (E2) in (24) are defined by

S∗
h = �((1 − ε)λ∗

h + ω + μh)

(λ∗
h + ν + μh)((1 − ε)λ∗

h + ω + μh) − ων
,

V ∗
h = �ν

(λ∗
h + ν + μh)((1 − ε)λ∗

h + ω + μh) − ων
,

E∗
h = [((1 − ε)λ∗

h + ω + μh) + (1 − ε)ν]�λ∗
h

(ηh + μh)
[
(λ∗

h + ν + μh)((1 − ε)λ∗
h + ω + μh) − ων

] ,

I ∗
h = [((1 − ε)λ∗

h + ω + μh) + (1 − ε)ν]�ηhλ
∗
h

(ηh + μh)(ξh + μh)
[
(λ∗

h + ν + μh)((1 − ε)λ∗
h + ω + μh) − ων

] ,

R∗
h = [((1 − ε)λ∗

h + ω + μh) + (1 − ε)ν]�ηhξhλ
∗
h

μh(ηh + μh)(ξh + μh)
[
(λ∗

h + ν + μh)((1 − ε)λ∗
h + ω + μh) − ων

] ,

A∗
v =

(
1 − 1

G

)
K ,

S∗
v =

(
1 − 1

G

)
K

ηa

(λ∗
v + μv)

,

E∗
v =

(
1 − 1

G

)
K

ηaλ
∗
v

(ηv + μv)(λ∗
v + μv)

,

I ∗
v =

(
1 − 1

G

)
K

ηaηvλ
∗
v

μv(ηv + μv)(λ∗
v + μv)

.

(28)

Next, the appropriate solutions from Eq. (28) are plugged into λ∗
h and λ∗

v in Eq. (12). After
rigorous calculation, the endemic equilibria of the dengue model (5) satisfies the polynomial
obtained as

f (λ∗
h) := A4

(
λ∗
h

)4 + A3
(
λ∗
h

)3 + A2
(
λ∗
h

)2 + A1λ
∗
h + A0 = 0 (29)
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where,

A4 = �μv(ηv + μv)(1 − ε)2(ηh + μh)(ξh + μh)[bβvμhηh + μv(ηh + μh)(ξh + μh)],
A3 = �μv(ηv + μv)(1 − ε)(ηh + μh)(ξh + μh)[(1 − ε)μh + ((1 − ε)ν + ω + μh)]

[bβvμhηh + μv(ηh + μh)(ξh + μh)] + �μv(ηv + μv)(1 − ε)(ηh + μh)(ξh + μh)

× {bβvμhηh((1 − ε)ν + ω + μh) + μv(ηh + μh)(ξh + μh)[(1 − ε)μh + ((1 − ε)ν

+ ω + μh)]
}− b2βhηh(1 − ε)2μ2

h(ηh + μh)(ξh + μh)βvηaηv

(
1 − 1

G

)
K ,

A2 = �μhμv(1 − ε)(ηh + μh)(ξh + μh)(ηv + μv)(ν + ω + μh)[bβvμhηh

+ μv(ηh + μh)(ξh + μh)] + �μhμ
2
v(1 − ε)(ηh + μh)

2(ξh + μh)
2(ηv + μv)(ν

+ ω + μh) + �μv(ηv + μv)(ηh + μh)(ξh + μh)[(1 − ε)μh + ((1 − ε)ν + ω + μh)]
× {bβvμhηh((1 − ε)ν + ω + μh) + μv(ηh + μh)(ξh + μh)[(1 − ε)μh

+ ((1 − ε)ν + ω + μh)]
}
,

A1 = �μvμ
2
h(ηh + μh)(ξh + μh)(ν + ω + μh)((1 − ε)ν + ω + μh)(ηv + μv)

[bβvηh + μv(1 − ε)(ηh + μh)
2(ξh + μh)

2]
+ �μhμ

2
v(ν + ω + μh)(ηh + μh)

2(ξh + μh)
2(ηv + μv)[(1 − ε)μh

+ ((1 − ε)ν + ω + μh)] − b2βhμ
2
hηh(ηh + μh)(ξh + μh)βvηaηv

(
1 − 1

G

)
K

× [((1 − ε)(ν + μh) + ω + μh)((1 − ε)ν + ω + μh)

+ (1 − ε)((ν + μh)(ω + μh) − ων)],
A0 = �(ηh + μh)

2(ξh + μh)
2((ν + μh)(ω + μh) − ων)2(ηv + μv)μ

2
v

(
1 − R2

c

)
.

Therefore, the positive EE E2 is obtained by solving for λ∗
h in Eq. (29).

Remark 3.1 WheneverRc > 1 (Rc < 1), the coefficient A4 in (29) is always positive and the
coefficient A0 is negative (positive). So, the signs of coefficients A3, A2 and A1 determine
the number of possible positive real roots of polynomial f (λ∗

h) in (29). This is investigated
by employing Descarte’s rule of signs. Table 3 presents the various possibilities for the roots
of f (λ∗

h) when Rc > 1 and Rc < 1.

A look at Table 3, we deduce the following result summarizing the various possibilities
of positive solutions of f (λ∗

h) in Eq. (29).

Theorem 3.3 Suppose G > 1. Then, the vaccination dengue model (5) has

(i) a unique EE whenever case 2 in Table 3 holds and Rc > 1;
(ii) more than one EE whenever Rc > 1 and case 4 in Table 3 is satisfied;
(iii) more than one EE when Rc < 1 and cases 3 and 5 in Table 3 hold;
(iv) no EE whenever Rc < 1 and case 1 of Table 3 is satisfied.

In Theorem 3.3, it is clear from case (i) that model (5) has a unique EE wheneverRc > 1.
In addition, case (iii) of the theorem suggests the possibility of the coexistence of DFE and
EE for the vaccination dengue model (5), and hence the potential of the model exhibiting the
phenomenon of backward bifurcation when Rc < 1.
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Existence of Backward Bifurcation

Here, the center manifold theory (CMT) is used to explore the existence of backward bifur-
cation in model (5). CMT was popularized by Castillo-Chavez and Song [37] and has been
applied to epidemiological models by many other researchers [14, 38, 39]. For convenience,
we make changes in the state variables of the vaccination model (5) by setting Sh = x1,
Vh = x2, Eh = x3, Ih = x4, Rh = x5, Av = x6, Sv = x7, Ev = x8 and Iv = x9.
Let X = (x1, x2, x3, x4, x5, x6, x7, x8, x9)T . Then, model (5) can be rewritten in the form
dX/dt = G(X), where G(X) = (g1, g2, g3, g4, g5, g6, g7, g8, g9)T , as follows:

dx1
dt

= � − bβhx1x9
Nh

− μhx1 − νx1 + ωx2 := g1, (30a)

dx2
dt

= νx1 − bβh(1 − ε)x2x9
Nh

− ωx2 − μhx2 := g2, (30b)

dx3
dt

= bβhx1x9
Nh

+ bβh(1 − ε)x2x9
Nh

− ηhx3 − μhx3 := g3, (30c)

dx4
dt

= ηhx3 − ξhx4 − μhx4 := g4, (30d)

dx5
dt

= ξhx4 − μhx5 := g5, (30e)

dx6
dt

= μb

(
1 − x6

K

)
(x7 + x8 + x9) − ηax6 − μax6 := g6, (30f)

dx7
dt

= ηax6 − bβvx4x7
Nh

− μvx7 := g7, (30g)

dx8
dt

= bβvx4x7
Nh

− ηvx8 − μvx8 := g8, (30h)

dx9
dt

= ηvx8 − μvx9 := g9, (30i)

with Nh =
5∑

i=1
xi and Nv =

9∑
i=7

xi . Take βh = β∗
h as a bifurcation parameter. Then, atRc = 1

from Eq. (22), βh = β∗
h is calculated as

βh := β∗
h = �(ηh + μh)(ξh + μh)((ν + μh)(ω + μh) − ων)μ2

v(ηv + μv)

b2ηhμ2
h((1 − ε)ν + ω + μh)βvηaηv

(
1 − 1

G
)
K

.

The Jacobian of system (30), evaluated at the BRDFE E1 and β∗
h denoted by J (E1, β∗

h ), is
obtained as

J (E1, β∗
h ) =

(J1 J2

J3 J4

)
, (31)

where

J1 =

⎛
⎜⎜⎜⎜⎝

−(ν + μh) ω 0 0 0
ν −(ω + μh) 0 0 0
0 0 −(ηh + μh) 0 0
0 0 ηh −(ξh + μh) 0
0 0 0 ξh −μh

⎞
⎟⎟⎟⎟⎠

,
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J2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − bβ∗
hμh(ω+μh )

(ν+μh )(ω+μh )−ων

0 0 0 − bβ∗
h (1−ε)μhν

(ν+μh )(ω+μh )−ων

0 0 0
bβ∗

hμh(ω+μh+ν(1−ε))

(ν+μh )(ω+μh )−ων

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

J3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 − bβvμhηa K
(
1− 1

G
)

�μv
0

0 0 0
bβvμhηa K

(
1− 1

G
)

�μv
0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

J4 =

⎛
⎜⎜⎝

−μbηa
μv

μv(ηa+μa)
ηa

μv(ηa+μa)
ηa

μv(ηa+μa)
ηa

ηa −μv 0 0
0 0 −(ηv + μv) 0
0 0 ηv −μv

⎞
⎟⎟⎠ .

The characteristic equation associated with Eq. (31), given by |J (E1, β∗
h ) − λI9×9| = 0,

gives a simple zero eigenvalue with other eight eigenvalues having negative real part. Thus,
CMT can be used to analyze the dynamics of the vaccination dengue model (5) near βh =
β∗
h [37]. Furthermore, a right eigenvector, w = (w1, w2, w3, w4, w5, w6, w7, w8, w9)

T ,
corresponding to the simple zero eigenvalue of J (E1, β∗

h ) can be determined by solving
J (E1, β∗

h )w = 0. Consequently,

w1 = −bβ∗
hμh[νω(1 − ε) + (ω + μh)

2]
[(ν + μh)(ω + μh) − ων]2 w9,

w2 = −bβ∗
hμhν[(1 − ε)(ν + μh) + ω + μh]

[(ν + μh)(ω + μh) − ων]2 w9,

w3 = bβ∗
hμh((1 − ε)ν + ω + μh)

(ηh + μh)((ν + μh)(ω + μh) − ων)
w9,

w4 = bβ∗
hμhηh((1 − ε)ν + ω + μh)

(ηh + μh)(ξh + μh)((ν + μh)(ω + μh) − ων)
w9,

w5 = bβ∗
hηhξh((1 − ε)ν + ω + μh)

(ηh + μh)(ξh + μh)((ν + μh)(ω + μh) − ων)
w9,

w6 =
{

b2β∗
hμ2

hηh[(1 − ε)ν + ω + μh]βvμv(ηa + μa)K

�(ηh + μh)(ξh + μh)[(ν + μh)(ω + μh) − ων]μbηa

(
1

ηv + μv

− 1

μv

)

+ μ2
v(ηa + μa)

μbη2a

(
1 − 1

G
)
⎫⎬
⎭w9,

w7 =
{

b2β∗
hμ2

hηh[(1 − ε)ν + ω + μh]βvηaK

�(ηh + μh)(ξh + μh)[(ν + μh)(ω + μh) − ων]μbηa

(
(ηa + μa)

(ηv + μv)
− ηaμb

μ2
v

)
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+ μv(ηa + μa)

μbηa

(
1 − 1

G
)
⎫⎬
⎭w9,

w8 = b2β∗
hμ2

hηh((1 − ε)ν + ω + μh)βvηaK (1 − 1
G )

�(ηh + μh)(ξh + μh)((ν + μh)(ω + μh) − ων)μv(ηv + μv)
w9,

w9 > 0. (32)

Similarly, a left eigenvector, v = (v1, v2, v3, v4, v5, v6, v7, v8, v9), associated with the
simple zero eigenvalue of J (E1, β∗

h ) can be obtained in terms of v9 from vJ (E1, β∗
h ) = 0 as

v1 = v2 = v5 = v6 = v7 = 0, v3 = μv[(ν + μh)(ω + μh) − ων]
bβ∗

hμh[(1 − ε)ν + ω + μh] v9,

v4 =
bβvηvηaμhK

(
1 − 1

G
)

�(ξh + μh)μv(ηv + μv)
v9,

v8 = ηv

(ηv + μv)
v9,

v9 > 0.

(33)

Using the result by Castillo-Chavez and Song [37] (see Theorem 4.1), we calculate the
bifurcation coefficients a and b whose their signs determine the direction of bifurcation at
Rc = 1 as

a =
9∑

k,i, j=1

vkwiw j
∂2gk

∂xi∂x j
(E1, β∗

h ),

a = A∗
0(A

∗
1 + A∗

2)

�2(ηh + μh)2(ξh + μh)2[(ν + μh)(ω + μh) − ων]2μbηaμ2
v(ηv + μv)2

(
1 − 1

G
)v9w

2
9

− A∗
3A

∗
4 + 2b4

(
β∗
h

)2
μ4
hη

2
h[(1 − ε)ν + ω + μh]2β2

v ηvηaK [(1 − ε)ν + ω + μh]
�2(ηh + μh)2(ξh + μh)2[(ν + μh)(ω + μh) − ων]2μ2

v(ηv + μv)[(1 − ε)ν + ω + μh]v9w
2
9,

where

A∗
0 = 2b2β∗

hμ2
hηh[(1 − ε)ν + ω + μh]βvηvμ

2
v(ηa + μa),

A∗
1 = β∗

hμ2
hηh[(1 − ε)ν + ω + μh]βvηaK

(
1 − 1

G

)
,

A∗
2 = �(ηh + μh)(ξh + μh)[(ν + μh)(ω + μh) − ων]μv(ηv + μv),

A∗
3 = 2bβ∗

hμh�μ3
v(ηv + μv)(ηh + μh)

2(ξh + μh)
2[(ν + μh)(ω + μh) − ων],

A∗
4 = [(ω + μh)(ω + μh + (1 − ε)ν) + (1 − ε)ν(ω + (1 − ε)(ν + μh))],

and

b =
9∑

k,i=1

vkwi
∂2gk

∂xi∂βh
(E1, β∗

h ),

b = μv

β∗
h

v9w9.
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It follows, by making use of the property v.w = 1, that

v9 = 1

�(ξh + μh)
2[(ν + μh)(ω + μh) − ων]μv(ηv + μv)

2[μv + (ηh + μh)]
+ b2β∗

hμ2
hηh[(1 − ε)ν + ω + μh]βvηvηaK

(
1 − 1

G
)

[(ηv + μv) + (ξh + μh)]
,

w9 = �(ηh + μh)(ξh + μh)
2[(ν + μh)(ω + μh) − ων]μv(ηv + μv)

2.

Obviously, the coefficient b is positive since the model parameters are non-negative. Conse-
quently, according to Theorem 4.1 in [37], the vaccination dengue model (5) will undergo
backward bifurcation if the bifurcation coefficient a is positive. This implies that model (5)
will exhibit backward bifurcation if the following inequality holds:

A∗
0(A

∗
1 + A∗

2)

�2(ηh + μh)2(ξh + μh)2[(ν + μh)(ω + μh) − ων]2μbηaμ2
v(ηv + μv)2

(
1 − 1

G
)v9w

2
9

>
A∗
3A

∗
4 + 2b4

(
β∗
h

)2
μ4
hη

2
h[(1 − ε)ν + ω + μh]2β2

v ηvηaK [(1 − ε)ν + ω + μh]
�2(ηh + μh)2(ξh + μh)2[(ν + μh)(ω + μh) − ων]2μ2

v(ηv + μv)[(1 − ε)ν + ω + μh]v9w
2
9 .

(34)

In addition, if the inequality (34) is reversed, then the model exhibits a forward bifurcation
phenomenon. Hence, the result in Theorem 3.4 holds.

Theorem 3.4 The vaccination denguemodel (5) undergoes a backward bifurcation atRc = 1
whenever

A∗
0(A

∗
1 + A∗

2)

�2(ηh + μh)2(ξh + μh)2[(ν + μh)(ω + μh) − ων]2μbηaμ2
v(ηv + μv)2

(
1 − 1

G
)v9w

2
9

>
A∗
3A

∗
4 + b3β∗

hμ3
hη

2
h[(1 − ε)ν + ω + μh]2β2

v ηvηaK [(1 − ε)ν + ω + μh]
�2(ηh + μh)2(ξh + μh)2[(ν + μh)(ω + μh) − ων]2μ2

v(ηv + μv)[(1 − ε)ν + ω + μh]v9w
2
9 .

If the reversed inequality holds, then the model exhibits a forward bifurcation at Rc < 1.

In a case when model (5) exhibits backward bifurcation, a stable DFE coexists with a
stable EE atRc < 1. So, there exists a critical value ofRc, (sayR∗

c ) as indicated in Fig. 2a,
such that forR∗

c < Rc < 1, the solution trajectories either attain the stable DFE or stable EE
depending on the initial data. If it attains the stable DFE dengue disease will be eradicated,
and if it attains the stable EE dengue will persist in the society. The epidemiological insight
from the existence of backward bifurcation is that the well-known necessary requirement of
Rc < 1 is not sufficient for an effective control of the spread of dengue in the community.

The backward and forward bifurcation diagrams associated with Theorem 3.4 are illus-
trated in Fig. 2. Figure 2a shows the existence of backward bifurcation using the parameter
values given in Table 4, except ν = 0.5, ε = 0.7. The result indicates that during the era of
backward bifurcation, reducing the control reproduction number, Rc, below one will not be
sufficient to eradicate the disease and that control measures should be applied to make Rc

be far below the critical point as shown in Fig. 2a. Figure 2b shows the existence of forward
bifurcation by making use of the parameter values in Table 4, except b = 0.25272, ν = 0.5,
ε = 0.7. The result obtained indicates that during the era of forward bifurcation, reducing
the control reproduction number, Rc, below unity will be sufficient to eradicate the disease
in the population.
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Stable EE

Unstable DFE

Unstable EE

Critical
Point

Stable DFE

(a) Backward bifurcation

Stable EE

Unstable DFEStable DFE

(b) Forward bifurcation

Fig. 2 Bifurcation diagrams for the vaccination model (5)

Analysis of the DengueModelWithout Vaccination

To study the worst-case scenario where public health interventions such as vaccination are
not implemented in the community, the reduced version of the vaccination dengue model (5)
is given as

dSh
dt

= � − bβh
Iv(t)

Nh(t)
Sh(t) − μh Sh(t), (35a)

dEh

dt
= bβh

Iv(t)

Nh(t)
Sh(t) − ηh Eh(t) − μh Eh(t), (35b)

d Ih
dt

= ηh Eh(t) − ξh Ih(t) − μh Ih(t), (35c)

dRh

dt
= ξh Ih(t) − μh Rh(t), (35d)

d Av

dt
= μb

(
1 − Av(t)

K

)
(Sv(t) + Ev(t) + Iv(t)) − ηa Av(t) − μa Av(t), (35e)

dSv

dt
= ηa Av(t) − bβv

Ih(t)

Nh(t)
Sv(t) − μvSv(t), (35f)

dEv

dt
= bβv

Ih(t)

Nh(t)
Sv(t) − ηvEv(t) − μvEv(t), (35g)

d Iv
dt

= ηvEv(t) − μv Iv(t), (35h)

subject to initial conditions at time t = 0. The flow diagram describing the vector-host
interactions for dengue disease transmission in the community is shown in Fig. 3.

The dynamics of the dengue model (35) is analysed in the feasible region D0 defined as

D0 =
{
(Sh, Eh, Ih, Rh, Av, Sv, Ev, Iv) ∈ R8+ : Sh + Eh + Ih + Rh ≤ �

μh
, Av ≤ K ,

Sv + Ev + Iv ≤ ηaK

μv

}
.

(36)
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ℎ

ℎ

ℎ
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ℎ

ℎ ℎ ℎ ℎ

Fig. 3 Scheme of the SEIR + ASEI dengue model (35)

It can be shown that D0 is a positive invariant set in respect of model (35).

Existence of Equilibria and Basic Reproduction Number

Considering the scenario of no control interventions for the steady state solutions of the
dengue model studied in [23], it follows that the basic dengue model (35) has BRDFE, E3,
given by

E3 = (S0h , 0, 0, 0, A0
v, S

0
v , 0, 0

) =
(

�

μh
, 0, 0, 0,

(
1 − 1

G

)
K ,

ηa

μv

(
1 − 1

G

)
, 0, 0

)

(37)

provided that G > 1.
Also, following the standard notation of NGM method, it can be shown that the basic

reproduction number of the basic dengue model (35), represented by R0, is

R0 =

√√√√ b2βhηhμhβvηvηa

(
1 − 1

G
)
K

�(ηh + μh)(ξh + μh)μ2
v(ηv + μv)

(38)

where, G = μbηa
μv(ηa+μa)

.
It is easy to deduce from (22) and (38) that

Rc = R0

√
μh(ν(1 − ε) + ω + μh)μh

((ν + μh)(ω + μh) − ων)
. (39)

Clearly, the effective reproduction numberRc reduces to the basic reproduction numberR0

when vaccination is not administered in the human population (i.e., ν = 0) or when there
is a very low level of vaccine efficacy (ε → 0) as indicated in (39). Contrarily, the basic

reproduction numberR0 is decreased by a factor of
√

μh(αν+ω+μh )
((ν+μh )(ω+μh )−ων)

< 1 in the presence
of vaccination.

In addition to BRDFE E3, the dengue model (35) has a unique endemic equilibrium
represented by

E4 = (S∗∗
h , E∗∗

h , I ∗∗
h , R∗∗

h , A∗∗
v , S∗∗

v , I ∗∗
v

)
. (40)
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Let the respective human and mosquito forces of infection in model (35) at the steady state
be defined by

λ∗∗
h = bβh I ∗∗

v

N∗∗
h

(41)

and

λ∗∗
v = bβv I ∗∗

h

N∗∗
h

. (42)

Then, the components of E4 in Eq. (40) are obtained as follows: Setting the right-hand sides
of the equations in model (35) to zero, and solving (35a)–(35d) for S∗∗

h , E∗∗
h , I ∗∗

h and R∗∗
h

yields

S∗∗
h = �

(λ∗∗
h + μh)

, (43a)

E∗∗
h = λ∗∗

h

(ηh + μh)
S∗∗
h , (43b)

I ∗∗
h = ηhλ

∗∗
h

(ηh + μh)(ξh + μh)
S∗∗
h , (43c)

R∗∗
h = ηhξhλ

∗∗
h

μh(ηh + μh)(ξh + μh)
S∗∗
h . (43d)

In a similar manner, the solutions of (35f)–(35h) at a steady state for S∗∗
v , E∗∗

v and I ∗∗
v

respectively are given by

S∗∗
v = ηa

(λ∗∗
v + μv)

A∗∗
v , (44a)

E∗∗
v = ηaλ

∗∗
v

(ηv + μv)(λ∗∗
v + μv)

A∗∗
v , (44b)

I ∗∗
v = ηaηvλ

∗∗
v

μv(ηv + μv)(λ∗∗
v + μv)

A∗∗
v . (44c)

Substituting (44) into (35e) and simplifying leads to the non-trivial solution for A∗∗
v given

by

A∗∗
v =

(
1 − 1

G

)
K , (for G > 1). (45)

Next, the results from (43)–(45) are substituted into the human force of infection expressed
by (41) and simplified as follows:

N∗∗
h = S∗∗

h + E∗∗
h + I ∗∗

h + R∗∗
h = S∗∗

h + λ∗∗
h

(ηh + μh)
S∗∗
h + ηhλ

∗∗
h

(ηh + μh)(ξh + μh)
S∗∗
h

+ ηhξhλ
∗∗
h

μh(ηh + μh)(ξh + μh)
S∗∗
h ,

N∗∗
h =

(
(ηh + μh)(ξh + μh)μh + (ξh + μh)μhλ

∗∗
h + μhηhλ

∗∗
h + ηhξhλ

∗∗
h

μh(ηh + μh)(ξh + μh)

)
�

(λ∗∗
h + μh)

,

N∗∗
h = [μh(ηh + μh)(ξh + μh) + (μh(ξh + μh) + μhηh + ηhξh)λ

∗∗
h ]�

μh(ηh + μh)(ξh + μh)(λ
∗∗
h + μh)

. (46)
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Now, using (44c) and (46) in (41), we have

λ∗∗
h = bβhηaηvλ

∗∗
v A∗∗

v

μv(ηv + μv)(λ∗∗
v + μv)

÷ N∗∗
h

λ∗∗
h = λ∗∗

v

(λ∗∗
v + μv)

bβhηaηv

μv(ηv + μv)

(
1 − 1

G
)
K

μh(ηh + μh)(ξh + μh)(λ
∗∗
h + μh)

�[μh(ηh + μh)(ξh + μh) + (μh(ξh + μh) + μhηh + ηhξh)λ
∗∗
h ] ,

λ∗∗
h = λ∗∗

v

(λ∗∗
v + μv)

bβhηaηvμh(ηh + μh)(ξh + μh)
(
1 − 1

G
)
K

(ηv + μv)μv�

× (λ∗∗
h + μh)

[μh(ηh + μh)(ξh + μh) + (μh(ξh + μh) + μhηh + ηhξh)λ
∗∗
h ] ,

λ∗∗
h = K1

(λ∗∗
h + μh)λ

∗∗
v

[μh(ηh + μh)(ξh + μh) + (μh(ξh + μh) + μhηh + ηhξh)λ
∗∗
h ](λ∗∗

v + μv)
,

λ∗∗
h = K1

(λ∗∗
h + μh)λ

∗∗
v

[μh(ηh + μh)(ξh + μh) + (ηh + μh)(ξh + μh)λ
∗∗
h ](λ∗∗

v + μv)
,

where K1 = bβhηaηvμh(ηh+μh)(ξh+μh)
(
1− 1

G
)
K

(ηv+μv)μv�
. So,

K1(λ
∗∗
h + μh)λ

∗∗
v =

[
μh(ηh + μh)(ξh + μh)λ

∗∗
h + (ηh + μh)(ξh + μh)

(
λ∗∗
h

)2]
(λ∗∗

v + μv),

(47)

The two forces of infections are perturbed by using (42) in (47) to obtain the quadratic
polynomial governing the existence of the dengue-present equilibria as follows:

K1(λ
∗∗
h + μh)

bβv I ∗∗
h

N∗∗
h

=
(
μh(ηh + μh)(ξh + μh)λ

∗∗
h + (ηh + μh)(ξh + μh)

(
λ∗∗
h

)2)

[
bβv I ∗∗

h

N∗∗
h

+ μv

]
, (48)

with

bβv I ∗∗
h

N∗∗
h

=
bβv

ηhλ∗∗
h

(ηh+μh )(ξh+μh )
�

(λ∗∗
h +μh )

N∗∗
h

,

bβv I ∗∗
h

N∗∗
h

= bβvηh�λ∗∗
h

(ηh + μh)(ξh + μh)(λ
∗∗
h + μh)

μh(ηh + μh)(ξh + μh)(λ
∗∗
h + μh)

(μh(ηh + μh)(ξh + μh) + (ηh + μh)(ξh + μh)λ
∗∗
h )�

,

bβv I ∗∗
h

N∗∗
h

= bβvηhμhλ
∗∗
h

μh(ηh + μh)(ξh + μh) + (ηh + μh)(ξh + μh)λ
∗∗
h

(49)

and

bβv I ∗∗
h

N∗∗
h

+ μv = (bβvηhμh + μvK2)λ
∗∗
h + μhμv(ηh + μh)(ξh + μh)

μh(ηh + μh)(ξh + μh) + (ηh + μh)(ξh + μh)λ
∗∗
h

. (50)

Using (49) and (50) in (48) gives

K1(λ
∗∗
h + μh)

bβvηhμhλ
∗∗
h

(μh(ηh + μh)(ξh + μh) + (ηh + μh)(ξh + μh)λ
∗∗
h )

= λ∗∗
h (μh(ηh + μh)(ξh + μh) + (ηh + μh)(ξh + μh)λ

∗∗
h )

×
⎡
⎢⎣

(bβvηhμh + μv(ηh + μh)(ξh + μh))λ
∗∗
h+ μhμv(ηh + μh)(ξh + μh)

(μh(ηh + μh)(ξh + μh) + (ηh + μh)(ξh + μh)λ
∗∗
h )

⎤
⎥⎦ ,
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implying that

K1(λ
∗∗
h + μh)bβvηhμh = (μh(ηh + μh)(ξh + μh) + (ηh + μh)(ξh + μh)λ

∗∗
h )((bβvηhμh

+ μv(ηh + μh)(ξh + μh))λ
∗∗
h + μhμv(ηh + μh)(ξh + μh)).

Thus,

(ηh + μh)(ξh + μh)(bβvηhμh + μv(ηh + μh)(ξh + μh))
(
λ∗∗
h

)2

+ (bβvηhμ
2
h(ηh + μh)(ξh + μh) + 2μhμv(ηh + μh)

2(ξh + μh)
2 − bβvηhμhK1)λ

∗∗
h

+ (ηh + μh)
2(ξh + μh)

2μ2
hμv − bβvηhμ

2
hK1 = 0.

It follows that

p0
(
λ∗∗
h

)2 + p1λ
∗∗
h + p2 = 0 (51)

where,

p0 = (ηh + μh)(ξh + μh)(bβvηhμh + μv(ηh + μh)(ξh + μh)),

p1 = bβvηhμ
2
h(ηh + μh)(ξh + μh) + 2μhμv(ηh + μh)

2(ξh + μh)
2 − bβvηhμhK1,

p2 = (ηh + μh)
2(ξh + μh)

2μ2
hμv − bβvηhμ

2
hK1,

p2 = (ηh + μh)
2(ξh + μh)

2μ2
hμv

(
1 − bβvηhμ

2
hK1

(ηh + μh)2(ξh + μh)2μ
2
hμv

)
,

p2 = (ηh + μh)
2(ξh + μh)

2μ2
hμv

⎛
⎝1 −

b2βhβvηhηaηvμh

(
1 − 1

G
)
K

�(ηh + μh)(ξh + μh)μ2
v(ηv + μv)

⎞
⎠ ,

p2 = (ηh + μh)
2(ξh + μh)

2μ2
hμv

(
1 − R2

0

)
.

In Eq. (51), it is clear that p0 > 0, and p2 is positive whenever R0 < 1 and negative
when R0 > 1. Thus, the positive solution of Eq. (41) depends on the value p1 and p2.
Consider the case R0 > 1. Then, Eq. (51) has two roots; positive and negative. If R0 = 1,
then p2 = 0, so there exists a unique non-zero solution obtained as λ∗

h = − p1
p0

for p1 < 0.
From this discussion, it can be deduced that the equilibria continuously depend on the basic
reproduction number, R0, which gives the possibilities of existence of an interval to the left
of R0 on which two positive equilibria exist, and are obtained as

λ∗
h,1 =

−p1 −
√
p21 − 4p0 p2

2p0
, λ∗

h,2 =
−p1 +

√
p21 − 4p0 p2

2p0
.

Moreover, there is no positive solution for Eq. (51) if p2 > 0 and either p1 ≥ 0 or p21 <

4p0 p2. So, no EE exists. Hence, we summarize the above discussion in the following result:

Theorem 3.5 The pre-intervention dengue model (35) has

(i) a unique EE if and only if p2 < 0 and R0 > 1;
(ii) a unique EE if p1 < 0 and p2 = 0, or p21 − 4p0 p2 = 0;
(iii) two EE if p2 > 0, p1 < 0 and p21 − 4p0 p2 > 0;
(iv) otherwise, no EE.

In Theorem 3.5, case (i) clearly shows that model (35) has a unique EE wheneverR0 > 1.
Furthermore, case (iii) of the theorem indicates the possibility of the co-existence of DFE
and EE for the dengue model (35), and hence the potential of the model exhibiting backward
bifurcation whenever R0 < 1.
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Existence of Backward Bifurcation

Again, CMT [37] is employed to explore the possibility of the uncontrolled dengue model
(35) exhibiting the phenomenon of backward bifurcation. For this purpose, consider the
change in the variables of model (35) as Sh = z1, Eh = z2, Ih = z3, Rh = z4, Av = z5,
Sv = z6, Ev = z7, Iv = z8. Let Z = (z1, z2, z3, z4, z5, z6, z7, z8)T , so that model (35) can
be rewritten in the form dZ/dt = H(Z), where H(Z) = (h1, h2, h3, h4, h5, h6, h7, h8)T ,
as follows:

dz1
dt

= � − bβhz1z8
Nh

− μhz1 := h1, (52a)

dz2
dt

= bβhz1z8
Nh

− ηhz2 − μhz2 := h2, (52b)

dz3
dt

= ηhz2 − ξhz3 − μhz3 := h3, (52c)

dz2
dt

= ξhz3 − μhz4 := h4, (52d)

dz5
dt

= μb

(
1 − z5

K

)
(z6 + z7 + z8) − ηaz5 − μaz5 := h5, (52e)

dz6
dt

= ηaz5 − bβvz3z6
Nh

− μvz6 := h6, (52f)

dz7
dt

= bβvz3z6
Nh

− ηvz7 − μvz7 := h7, (52g)

dz8
dt

= ηvz7 − μvz8 := h8, (52h)

with Nh =∑4
i=1 zi and Nv =∑8

i=6 zi . Take βh = β∗∗
h as a bifurcation parameter. Then, at

R0 = 1 from Eq. (38), βh = β∗∗
h is calculated as

βh := β∗∗
h = �(ηh + μh)(ξh + μh)μ

2
v(ηv + μv)

b2ηhμhβvηvηaK
(
1 − 1

G
) . (53)

The Jacobian of system (52), evaluated at the BRDFE E3 and β∗∗
h denoted by J(E3, β∗∗

h ), is
obtained as

J(E3, β∗∗
h ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μh 0 0 0 0 0 0 −bβ∗∗
h

0 −(ηh + μh) 0 0 0 0 0 bβ∗∗
h

0 ηh −(ξh + μh) 0 0 0 0 0
0 0 ξh −μh 0 0 0 0
0 0 0 0 − μbηa

μv

μv(ηa+μa )
ηa

μv(ηa+μa )
ηa

μv(ηa+μa )
ηa

0 0 − bβvμhηa K
(
1− 1

G
)

�μv
0 ηa −μv 0 0

0 0
bβvμhηa K

(
1− 1

G
)

�μv
0 0 0 −(ηv + μv) 0

0 0 0 0 0 0 ηv −μv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(54)

The characteristic equation associatedwith Eq. (54), given by |J(E3, β∗∗
h )−λI8×8| = 0, gives

a simple zero eigenvalue with other seven eigenvalues having negative real part. Thus, CMT
can be used to analyze the dynamics of the uncontrolled dengue model (35) near βh = β∗∗

h
[37]. Further, the right eigenvector of (54), w = (w1, w2, w3, w4, w5, w6, w7, w8)

T , is
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determined from

J(E3, β∗∗
h )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

w4

w5
w6

w7

w8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

implying that

− μhw1 − bβ∗∗
h w8 = 0, (55a)

− (ηh + μh)w2 + bβ∗∗
h w8 = 0, (55b)

ηhw2 − (ξh + μh)w3 = 0, (55c)

ξhw3 − μhw4 = 0, (55d)

− μbηa

μv

w5 + μv(ηa + μa)

ηa
w6 + μv(ηa + μa)

ηa
w7 + μv(ηa + μa)

ηa
w8 = 0, (55e)

−
bβvμhηaK

(
1 − 1

G
)

�μv

w3 + ηaw5 − μvw6 = 0, (55f)

bβvμhηaK
(
1 − 1

G
)

�μv

w3 − (ηv + μv)w7 = 0, (55g)

ηvw7 − μvw8 = 0. (55h)

Solving (55) for w1, w3, w4, w5, w6, w7 and w8 in terms of w2 yields

w1 = − (ηh + μh)

μh
w2,

w2 = w2 > 0,

w3 = ηh

(ξh + μh)
w2,

w4 = ηhξh

μh(ξh + μh)
w2,

w5 =
�(ηh + μh)(ξh + μh)μ

2
v(ηv + μv)(ηa + μa) − b2β∗∗

h μhηhβvηvηa(ηa + μa)K
(
1 − 1

G
)

�bβ∗∗
h (ξh + μh)ηa(μbηa − μv(ηa + μa))

w2,

w6 = −
bβvμhηhηaK

(
1 − 1

G
)

�μ2
v(ξh + μh)

w2 + ηa

μv

w5,

w7 =
bβvμhηhηaK

(
1 − 1

G
)

�(ξh + μh)μv(ηv + μv)
w2,

w8 = (ηh + μh)

bβ∗∗
h

w2.

(56)
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Similarly, a left eigenvector v = (v1, v2, v3, v4, v5, v6, v7, v8) corresponding to the simple
zero eigenvalue of J(E3, β∗∗

h ) is obtained from

(
v1 v2 v3 v4 v5 v6 v7 v8

)
J(E3, β∗∗

h ) = ( 0 0 0 0 0 0 0 0
)T

. (57)

Solving the resulting system of equations from (57) for v1, v3, v4, v5, v6, v7 and v8 in terms
of v2 gives

v1 = v4 = v5 = v6 = 0, v2 = v2 > 0, v3 = (ηh + μh)

ηh
v2,

v7 = �μv(ηh + μh)(ξh + μh)

bβvμhηhηaK
(
1 − 1

G
) v2,

v8 = bβ∗∗
h

μv

v2.

(58)

By making use of the result of Theorem 4.1 in [37], the bifurcation coefficients A and B
whose their signs determine the direction of bifurcation at R0 = 1 are computed as

A =
8∑

k,i, j=1

vkwiw j
∂2hk
∂zi z j

(E3, β∗∗
h ),

A = 2(ηh + μh)
2μ2

v(ηa + μa)

bβ∗∗
h η2aK

(
1 − 1

G
)

(μbηa − μv(ηa + μa))
v2w

2
2

− 2(ηh + μh)

�
v2w

2
2⎧⎪⎨

⎪⎩

(ηh + μh)(ξh + μh)μv(ηv + μv)(μbηa − μv(ηa + μa))+ bβvμhηh[μvηv(ηa + μa) + (ηv + μv)(μbηa − μv(ηa + μa))]
(ξh + μh)μv(ηv + μv)(μbηa − μv(ηa + μa))

⎫⎪⎬
⎪⎭

and

B =
8∑

k,i=1

vkwi
∂2hk

∂zi∂βh
(E3, β∗

h ),

B = (ηh + μh)

β∗
h

v2w2.

It follows, using the identity v.w = 1, that

v2 = 1

μv(ηv + μv)(ξh + 2μh + ηh) + (ηh + μh)(ξh + μh)(ηv + 2μv)
,

w2 = (ξh + μh)μv(ηv + μv).

Clearly, the coefficient B is positive since the parameters of model (35) are non-negative.
It follows from Theorem 4.1 in [37] that the dengue model (35) will undergo backward
bifurcation if the bifurcation coefficient A is positive. Alternatively, model (35) will exhibit
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Stable DFE

Unstable EE

Critical
Point Unstable DFE

Stable EE

(a) Backward bifurcation

Stable EE

Stable DFE Unstable DFE

(b) Forward bifurcation

Fig. 4 Bifurcation diagrams for the vaccination-free model (35)

backward bifurcation if the following inequality holds:

2(ηh + μh)
2μ2

v(ηa + μa)

bβ∗∗
h η2aK

(
1 − 1

G
)

(μbηa − μv(ηa + μa))
v2w

2
2

>
2(ηh + μh)

�
v2w

2
2⎧

⎪⎨
⎪⎩

(ηh + μh)(ξh + μh)μv(ηv + μv)(μbηa − μv(ηa + μa))+ bβvμhηh[μvηv(ηa + μa) + (ηv + μv)(μbηa − μv(ηa + μa))]
(ξh + μh)μv(ηv + μv)(μbηa − μv(ηa + μa))

⎫
⎪⎬
⎪⎭

.

(59)

If the inequality in (59) is reversed, then the model exhibits a forward bifurcation phe-
nomenon. Hence, Theorem 3.6 gives the summary of the foregoing analysis.

Theorem 3.6 The dengue vaccination-free model (35) undergoes a backward bifurcation at
R0 = 1 whenever

2(ηh + μh)
2μ2

v(ηa + μa)

bβ∗∗
h η2aK

(
1 − 1

G
)

(μbηa − μv(ηa + μa))
v2w

2
2

>
2(ηh + μh)

�
v2w

2
2⎧

⎪⎨
⎪⎩

(ηh + μh)(ξh + μh)μv(ηv + μv)(μbηa − μv(ηa + μa))+ bβvμhηh[μvηv(ηa + μa) + (ηv + μv)(μbηa − μv(ηa + μa))]
(ξh + μh)μv(ηv + μv)(μbηa − μv(ηa + μa))

⎫
⎪⎬
⎪⎭

.

If the reversed inequality holds, then the model exhibits a forward bifurcation at R0 = 1.

From epidemiological point of view, the implication of the existence of backward bifur-
cation is that the classical necessary requirement of the threshold inequality R0 < 1 is
not sufficient to effectively control the spread of dengue in the community. The bifurcation
diagrams associated with Theorem 3.6 are demonstrated in Fig. 4.
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Figure 4a shows the graphical illustration of the existence of backward bifurcation with
the use of parameter values seen in Table 4, except βh = 0.5221. The result indicates that
during the era of backward bifurcation, reducing the basic reproduction number, R0, below
one will not be sufficient to eradicate dengue disease and that much more control measures
should be put in place to makeR0 be far below the critical point as shown in Fig. 4a. Figure
4b shows the existence of forward bifurcation by making use of the parameter values given
in Table 4, except b = 0.49972. A look at Fig. 4b indicates that during the era of forward
bifurcation, reducing the basic (uncontrolled) reproduction number,R0, below unity will be
sufficient to eradicate the disease in the community.

Parameter Estimation andModel Fitting

This section is concerned with the estimation of parameters of the basic dengue model
(35) without vaccination based on the weekly reported data of 2012 dengue cases in Johor,
Malaysia [40]. In this paper, the values for parameters such as recruitment rate of humans
(�), effective transmission probability per contact of susceptible humans with infectious
mosquitoes (βh), effective transmission probability per contact of susceptible mosquitoes
with infectious humans (βv), infectiousness rate of humans (ηh), recovery rate of humans
(ξh), maturation rate of aquatic mosquitoes (ηa) and rate of infectiousness of mosquitoes
(ηv) are estimated, while the values of other parameters are chosen from the literature. To
estimate the parameters, we employ the least squares method with a view to minimizing
the sum of squared errors defined by

∑
(y(t, θ) − ỹ)2 subject to model (35), where ỹ is

the reported data, and y(t, θ) denotes the model solution corresponding to the cumulative
number of reported cases over time t with the set of estimated parameters θ [41–43].

In 2012, the total population of Johor state of Malaysia was estimated as 3,247,700 [44–
46]. Thus, the initial total population is taken as Nh(0) = 3,247,700. The human natural
death rate is estimated as μh = 1

74 per year [44], so that μh = 1
74×52 per week. Since

Nh(0) = 3,247,700, it is assumed that the limiting total human population when there is no
disease is �

μh
= 3,247,700, so that � = 843.99688 per week. Moreover, the model is fitted

to the real data along with the following ICs: Sh(0) = 3247543, Eh(0) = 120, Ih(0) = 37,
Rh(0) = 0, Av(0) = 3 × Nh(0), Sv(0) = 12,990,600, Ev(0) = 100 and Iv(0) = 100.
The model fitting with cumulative reported number of cases is depicted in Fig. 5, while the
corresponding values of the estimated parameters are given in Table 4. Consequently, the
basic reproduction number value for the 2012 Johor dengue outbreak, using the expression
R0 in (38) alongwith the parameter values defined in Table 4, is approximatelyR0 = 2.1144.
From biological point of view, this estimated threshold value implies that dengue epidemic
will invade the population.

Sensitivity Analysis

To determine the model parameters most responsible for dengue disease transmission and
spread in the interacting human andmosquito populations, this section explores the sensitivity
analysis of models (5) and (35).
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Fig. 5 Fitting of the dengue model (35) with the cumulative number of weekly reported dengue cases in Johor
from January to December 2012

Table 4 Parameter values of the
dengue model (35) and sources as
applied to Johor 2012 dengue
outbreak

Parameter Value Source

� 843.99688 Estimated

μh
1

74×52 [44]

b 0.66272 [23]

βh 0.31890 Fitted

βv 0.29294 Fitted

ηh 0.12899 Fitted

ξh 0.54116 Fitted

μb 3.01766 [23]

ηa 0.08056 Fitted

μa 0.20174 [23]

μv
1
42 [47]

ηv 0.00396 Fitted

K 3 × 3,247,700 [23]
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Table 5 Sensitivity analysis of
the parameters of models (5) and
(35)

Parameter Sensitivity index

b +1

ηa +0.510160

μh +0.500048

βh +0.5

βv +0.5

K +0.5

ηv +0.428699

ω +0.248921

μb +0.014217

ηh +0.001005

ε −1.494820

μv −1.442916

� −0.5

ξh −0.499760

ν −0.250215

μa −0.010160

LoCal Sensitivity Analysis

According to [24, 42, 43, 48], local sensitivity analysis, based on the normalised sensitivity
index of the effective reproduction number Rc of model (5) is defined as

S� = ∂Rc

∂�
× �

Rc
,

where � is a generic parameter of the vaccinated dengue model (5). The sensitivity index
S� is useful to measure the relative change in the response function Rc when the parameter
� changes.

In particular, the computed analytical expression of the sensitivity index forRc in respect
of the transmission probability of dengue from an infectious mosquito to susceptible human
(βh), which is a constant value, is given as

Sβh = ∂Rc

∂βh
× βh

Rc
= +1

2
.

In a similar manner, the sensitivity indices for the parameters of dengue models (5) and
(35) using Rc and R0 respectively as response functions are computed and evaluated at the
baseline parameter values given in Table 6. The results of the computation are presented in
Table 5.

It is observed from Table 5 that the sensitivity index is positive for some parameters of
models (5) and (35), while it is negative for the other parameters of the models. The positive
sign of the sensitivity index of Rc and R0 to the parameters of the corresponding models
suggests that an increase in the value of each of the parameter in this class will result in an
increase in the reproduction numbers (Rc and R0), and vice versa. For instance, Sb = +1
indicates that decreasing the parameter b (mosquito biting rate) by 10% will increase the
reproduction numbers, Rc and R0, by 10%, and the other way round. The negative sign of
the sensitivity index, on the other hand, indicates that when the value of each parameter in this
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category is increased (or decreased), the basic reproduction numbers, Rc and R0, decrease
(or increase). Thus, sensitivity analysis of models (5) and (35) provides a very good insight
into the dynamics of transmission, prevention and control of dengue disease. In particular,
effort should be made to reduce the value of parameter with positive sensitivity index, while
the value of parameter with negative sensitivity index should be increased at all cost when
focusing on an appropriate intervention strategy for the prevention and control of dengue
disease spread.

GlobAl Sensitivity Analysis

The input parameters govern the outputs of the compartmental mathematical models, which
may possess some uncertainty in their selection or determination. Thus, using the idea in
[14, 42, 43], global sensitivity analysis is carried out to examine the effect of uncertainty
and the sensitivity of the numerical simulation outcomes to changes in each parameter of the
dengue models (5) and (35). To do this, Latin Hypercube Sampling (LHS) and partial rank
correlation coefficients (PRCC) are employed.

LHS is a statistical technique which obeys a stratified sampling without replacement. It
is suitable for an efficient analysis of parameter variations across simultaneous uncertainty
ranges in each parameter [14]. PRCC measures the strength of the relationship between the
model outcome and the parameters, stating the degree of the effect that each parameter has
on the outcome [14]. LHS matrices are generated by assuming that all the parameters of
models (5) and (35) are uniformly distributed. A total of 1000 simulations of the models per
LHS run are performed with reference to the baseline values of parameters defined in Table
6 and the ranges as 20% in either direction from the baseline values.

Figure 6 presents the PRCC values for the parameters of models (5) and (35) using the
respective reproduction numbersRc andR0 as the response functions. The parameters with
highest PRCC values most impact the reproduction numbers as shown in Fig. 6. In agreement
with the results obtained from the local sensitivity analysis of model parameters, the key
parameters that influenceRc andR0 are categorized into two; those that have positive PRCC
values and those that have negative sensitivity indices. An increase (or decrease) in each
parameter value in the first category causes Rc and R0 to increase (or decrease), while Rc

and R0 increase (or decrease) due to a decrease (or increase) in each parameter value in the
second category.

It follows from Fig. 6a and b that the parameters that have negative influence on the
dynamics of dengue disease transmission in the population are themosquito natural death rate
(μv), vaccine efficacy (ε), human recovery rate (ξh), vaccination rate (ν), human recruitment
rate (�) and larva naturalmortality rate (μa).While themosquito biting rate (b), larvamaturity
rate (ηa), human natural death rate (μh), probability of dengue virus transmission per contact
of an infectious mosquito with susceptible human (βh), transmission probability of dengue
virus per contact of an infectious human with susceptible mosquito (βv), larvae carrying
capacity (K ), progression rate of dengue disease in mosquitoes (ηv), vaccine waning rate
(ω), oviposition rate of mosquitoes (μb) and progression rate of dengue infection in humans
(ηh) are the parameters that positively impact the reproduction numbersRc andR0 of models
(5) and (35) respectively. This is consistent with the results of local sensitivity analysis as
summarized in Table 5.
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(a) Global sensitivity indices for Rc against the parame-
ter values in Table 6
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(b) Global sensitivity indices for R0 against the param-
eter values in Table 6

Fig. 6 PRCC values for the parameters of model (5) and model (35) usingRc andR0 as response functions
respectively

Model with Multiple Interventions

Since the proposed vaccine in this study is imperfect (with assumed 90%maximum efficacy),
then combining vaccinationwith other controlmechanisms ismore suitable. It is evident from
the results of sensitivity analysis (as shown in Table 5) that a control intervention strategy
that inhibits the host-vector contact, decreases the probability of dengue virus transmission
per contact of Iv with Sh (βh), probability of dengue virus transmission per contact of Ih
with Sv (βv), vaccine waning rate (ω), and increases the vaccination rate (ν), vaccine efficacy
(ε), natural mosquito death rate (μv) and human recovery rate (ξh) will significantly reduce
dengue disease spread, or even lead to dengue-free population, in the community. Hence,
three different control parameters are considered as follows:

(i) The vaccination rate ν inmodel (5) is considered as 0 ≤ uV ≤ 1 to represent vaccination
control.

(ii) 0 ≤ uT ≤ 1 represents the rate of treatment of infectious humans (symptomatic
patients). It consists of the use of paracetamol, corticosteroids and non-steroidal
anti-inflammatory drugs. Depending on the human immune response, the efficacy of
symptomatic treatments varies from one person to the other. The essence of this con-
trol is to enhance the infectious patients recovery rate. Suppose that the fraction uT Ih
of infectious individuals are given a timely supportive treatment so that they recover
quickly at an incremental rate σuT . Then, the enhanced recovery rate of infectious
individuals becomes ξ ch = ξh + σuT , where σ accounts for the proportion of effective
treatment [49].

(iii) 0 ≤ uA ≤ 1 accounts for the effort of mosquitoes adulticiding. The control focuses
on the reduction of the size of female mosquito population. Thus the mosquito natural
mortality rate becomes μc

v = μv + uA.

Note that the bounds: 0 ≤ uV ≤ 1, 0 ≤ uT ≤ 1, 0 ≤ uA ≤ 1 imposed on the three controls
indicate that when ui = 0 (for i = (uV , uT , uA)), it means that no effort is invested on the
control ui . Also, ui = 1 implies that maximum effort is invested on the control ui .

Therefore, the three control parameters described above are incorporated into the dengue
vaccinationmodel (5), and the autonomous systemdescribing the dynamics of dengue disease
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transmission with effect of multiple control interventions is given as

dSh
dt

= � − bβh
Iv(t)

Nh(t)
Sh(t) − μh Sh(t) − uV Sh(t) + ωVh(t), (60a)

dVh
dt

= uV Sh(t) − (1 − ε)bβh
Iv(t)

Nh(t)
Vh(t) − ωVh(t) − μhVh(t), (60b)

dEh

dt
= bβvh

Iv(t)

Nh(t)
Sh(t) + (1 − ε)bβh

Iv(t)

Nh(t)
Vh(t) − ηh Eh(t) − μh Eh(t), (60c)

d Ih
dt

= ηh Eh(t) − (ξh + σuT )Ih(t) − μh Ih(t), (60d)

dRh

dt
= (ξh + σuT )Ih(t) − μh Rh(t), (60e)

d Av

dt
= μb

(
1 − Av(t)

K

)
(Sv(t) + Ev(t) + Iv(t)) − ηa Av(t) − μa Av(t), (60f)

dSv

dt
= ηa Av(t) − bβhv

Ih(t)

Nh(t)
Sv(t) − (μv + uA)Sv(t), (60g)

dEv

dt
= bβhv

Ih(t)

Nh(t)
Sv(t) − ηvEv(t) − (μv + uA)Ev(t), (60h)

d Iv
dt

= ηvEv(t) − (μv + uA)Iv(t), (60i)

subject to suitable ICs given at time t = 0.

Existence of Equilibria and Reproduction Number

In line with the steady-state solutions of the dengue model (5), it is easy to show that model
(60) has, in addition to a TE which coincides with E0 of model (5) except that ν = uV , a
BRDFE (E4) expressed as

E4 =
(

(ω + μh)�

(uV + μh)(ω + μh) − ωuV
,

�uV
(uV + μh)(ω + μh) − ωuV

, 0, 0, 0,

(
1 − 1

W

)
K ,

ηa

(μv + uA)

(
1 − 1

W

)
K , 0, 0

)
(61)

if W > 1, where W = μbηa
(μv+uA)(ηa+μa)

.
Also, it can be shown that the effective reproduction number of the dengue model (60),

denoted as R, is

R =
√

b2βhηhμ
2
h(uV (1 − ε) + (ω + μh))βvηvηa

(
1 − 1

W
)
K

�(ηh + μh)(ξh + σuT + μh)((uV + μh)(ω + μh) − ωuV )(ηv + μv + uA)μv(μv + uA)
,

(62)

whereW = μbηa
(μv+uA)(ηa+μa)

. The thresholdR given in (62) can be used to evaluate the impact
of implementing the three controls uV , uT and uA in the bid to curtail dengue disease spread
in the community.
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Table 6 Other parameter values
of models (5) and (60)

Parameter Value Source

ω 0.05 week−1 [20]

ν 0.25 week−1 Assumed

ε 0.90 (90%) Assumed

σ 0.30 [20]

Numerical Simulations, Results and Discussion

Numerical Simulations

To illustrate the impacts of vaccination (uV ), treatment (uT ) and adulticide (uA) controls on
the dynamics of dengue disease population using different control combination strategies,
the autonomous system (60) is numerically solved in MATLAB with ode45 solver based
on the fourth-order Runge-Kutta method.

Initial conditions for the state variables of the dengue model (60) are taken to mimic
the 2012 dengue outbreak in Johor. Keeping in mind that the total population of Johor,
Malaysia is estimated at Nh = 3,247,700 people in 2012 [44–46], we assume that no
individual was vaccinated initially so that Vh(0) = 0. Other initial conditions are taken
as Sh(0) = 3,247,543, Eh(0) = 120, Ih(0) = 37, Rh(0) = 0, Av(0) = 3 × Nh(0),
Sv(0) = 12,990,600, Ev(0) = 100 and Iv(0) = 100 [23]. In addition to the parameter
values depicted in Table 4, the other parameter values used for the numerical simulations of
model (60) is presented in Table 6. The simulation period is considered up to the final time
tend = 156 weeks.

In the absence of control intervention implementation, the value of the basic reproduction
number estimated in fourth section suggests that the threshold value, R0 = 2.1144 > 1, is
beyond the acceptable level. However, the implementation of different control strategies for
the combination of vaccination, treatment and adulticide controls can help in lowering the
epidemiological threshold R0 to the acceptable value (R0 < 1).

Results

Impact of Vaccination, Treatment and Adulticide Controls onR

The numerical values of the expression R in (62) is computed to evaluate the significance
of implementing vaccination (uV ), treatment (uT ) and adulticide (uA) control measures in
the bid to curtail or eradicate dengue disease in the community. Figure 7 demonstrates the
impacts of three different control combination strategies on R.

It is observed that it is possible to putR0 below the invasion level of dengue disease in the
population (i.e.,R0 < 1), if about 90% of the symptomatic infectious individuals get timely
treatment support and adulticiding is carried out at about 3% of the residential areas in the
community (as shown in Fig. 7a). Figure 7b reveals that it is possible to reduce R0 below
one, if vaccination is administered on about 30% of the population and adulticide control is
implemented in about 3% of the residential areas in the community. Further, the application
of combined efforts of vaccination (uV ) and treatment (uT ) controls can help to reduce the
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Fig. 7 Contour plots ofR

R0 value below unity, if about 90% of the symptomatic infectious individuals receive timely
treatment support and about 32% of the population are vaccinated (see Fig. 7c).

Impact of Controls on the Population Dynamics

Here, seven different control strategies are used to analyse the efficacies of vaccination,
treatment and adulticide control measures (uV , uT and uA, respectively) implementation on
the dynamics human population and infectious mosquito subpopulation.

Strategy 1: Use of Vaccination Control (uV ) Only

Figure 8 illustrates the results of the simulation of model (60) when only vaccination control
intervention at different proportions is in use.With the implementation of vaccination control
strategy, most of the susceptible individuals are either protected or vaccinated against dengue
infection (as shown in Fig. 8a and b) thereby resulting into a fewer number of individuals at
the risk of dengue infection (see Fig. 8c and d). Consequently, the numbers of individuals
recovering from the disease infection drastically reduced as depicts in Fig. 8e. It is seen from
Fig. 8f that the number of infectious mosquitoes reduced drastically with control implemen-
tation. This control strategy indicates that it is possible to achieve a dengue infection-free
population if about 80% of the susceptible population is consistently vaccinated against the
disease over the simulation period.
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Fig. 8 Dynamics of dengue model (5) with and without vaccination control (uV ) implementation

Strategy 2: Use of Treatment Control (uT ) Only

Figure 9 shows the effects of the application of various proportions of only treatment control
(uT ) on the dynamics of dengue disease transmission and spread between the interacting
human and mosquito populations. With the application of treatment control, the number of
susceptible individuals considerably increases with an increasing level of control implemen-
tation between the 35th week and 156th week as reveals in Fig. 9a, the peak of infection
reduces (see Fig. 9b and c), and the number of individuals recovering from the disease infec-
tion reduces (Fig. 9d). Figure 9e depicts that the number of dengue infections in mosquito
population reduces when control is implemented. Overall, the results of simulations indi-

123



Int. J. Appl. Comput. Math (2022) 8 :45 Page 39 of 51 45

Fig. 9 Dynamics of dengue model (5) with and without treatment control (uT ) implementation

cate that the use of only treatment control strategy may help in reducing dengue burden in
the population (particularly if about 80% of infected individuals receive a timely treatment
support), but only the effort is insufficient to eliminate dengue disease from the population.

Strategy 3: Use of Adulticide Control (uA) Only

Furthermore, the effects of application of only adulticide control strategy (uA) on the pop-
ulation dynamics of dengue disease is illustrated in Fig. 10. It is seen that with control
implementation, the numbers of susceptible and recovered individuals are consistently held
almost at the initial conditions over the simulation period (as shown in Fig. 10a and b), and
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Fig. 10 Dynamics of dengue model (5) with and without adulticide control (uA) implementation

the number of dengue-infected individuals diminishes to zero after about 20 weeks count-
ing from the commencement of the control implementation (as shown in Fig. 10c and d)
when compare with the case of no control implementation. Also, the number of infectious
mosquitoes with control drastically diminishes to zero as against the number without control
(see Fig. 10e). Therefore, this control intervention strategy suggests that, if about 10% of
the residential areas in the community are covered with adulticide per week during a dengue
outbreak, then it is possible to eradicate dengue in the population.
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Strategy 4: Use of Vaccination and Treatment Controls (uV , uT ) Only

The effects of implementing a control strategy which combines the efforts of vaccination and
treatment interventions on the dynamics of dengue disease transmission in the interacting
populations is demonstrated in Fig. 11. The results obtained are similar to those when only
vaccination intervention is put in place (Fig. 8). It is shown that with the use of the present
control strategy, most of the susceptible individuals are either protected or vaccinated against
dengue infection (see Fig. 11a and b) thereby leading to a fewer number of dengue infections
in the population (see Fig. 11c and d), which eventually leads to fewer number of humans
recovering from the disease infection as depicts in Fig. 11e when compare with no control
implementation case. Also, it is observed from Fig. 11f that the size of infectious mosquito
sub-population with control diminishes rapidly to zero in comparison with the situation of no
control implementation. Hence, This control intervention strategy indicates that dengue-free
population is possible if about 80% of the susceptible population is vaccinated against the
disease and timely treatment support is given to about 80% of the symptomatic infectious
individuals in the population on aweekly basis throughout the control implementation period.

Strategy 5: Use of Vaccination and Adulticide Controls (uV , uA) Only

Figure 12 presents the results of simulations of model (60) with the effects of combination
of vaccination and adulticide control measures on the transmission and spread dynamics of
dengue in the interacting human andmosquito populations. It is observed that with the imple-
mentation of this control strategy, most of the susceptible individuals are either protected or
vaccinated against dengue infection (as shown in Fig. 12a and b) thereby putting the numbers
of exposed and infectious individuals to zero (see Fig. 12c and d) and constantly keeps the
size of recovered individuals almost at the initial condition (Fig. 12e) when compare with
the case without any control intervention. For the mosquito population, the size of infectious
mosquito sub-population with control decreases to zero after about 5 weeks counting from
the beginning of control intervention period. Thus, the control strategy reveals that if about
10% of the susceptible population is vaccinated and adulticiding is conducted in about 10%
of the residential areas per week during dengue outbreak, then eradication of the disease in
the population is possible.

Strategy 6: Use of Treatment and Adulticide (uT , uA) Only

To illustrate the effects of treatment control intervention combinedwith the effort of adulticide
controlmeasure,model (60) is numerically simulated, and the results are given inFig. 13.With
control implementation, it is revealed that the sub-populations of susceptible and recovered
individuals are constantly maintained close to the initial data (see Fig. 13a and b) leading to
a drastic diminishing of the numbers of exposed and infectious individuals, and infectious
mosquitoes to zero (as seen in Fig. 13c–e). It follows from the simulated results for this
control strategy that a dengue-free population can be achieved by continuously giving a timely
treatment support to about 10% of the symptomatic infectious individuals and carrying out
adulticiding in about 10% of the residential areas of the community when a dengue outbreak
occurs.
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Fig. 11 Dynamics of dengue model (5) with and without combined use of vaccination (uV ) and treatment
(uT ) controls

Strategy 7: Use of Vaccination, Treatment and Adulticide Controls (uV , uT , uA)

Figure 14 demonstrates the results of the simulation of (60) with the effects of simultaneous
implementation of vaccination, treatment and adulticide control interventions on the trans-
mission and spread dynamics of dengue disease. It is seen that with the implementation of
this control strategy, most of the susceptible individuals are either protected or vaccinated
against dengue infection (as shown in Fig. 14a and b) thereby resulting into the numbers of
exposed and infectious individuals being diminished to zero (see Fig. c and d), while a few
number of individuals get recovered from the infection (Fig. 14e) in comparison with the case
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Fig. 12 Dynamics of dengue model (5) with and without combined application of vaccination (uV ) and
adulticide (uA) controls only

of no control application. Further, Fig. 14f shows that the number of infectious mosquitoes
is held at zero from about 5th week after the commencement of control intervention till the
end of intervention period when compare with the no control application scenario. Hence,
this control strategy suggests that, if vaccination is administered on about 10% of the sus-
ceptible population, a timely treatment support is given to about 10% of the symptomatic
infectious individuals and adulticiding is carried out in about 10% of the residential areas of
the community per week, then it is possible to eradicate dengue in the population.
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Fig. 13 Dynamics of dengue model (5) with and without the combination of treatment (uT ) and adulticide
(uA) controls implementation only

Efficiency Analysis

In the current section, efficiency analysis is conducted in order to compare the control inter-
ventions Strategies 1 to 7 evaluated on the dynamics of dengue disease transmission and
spread between the two interacting populations in this study. This helps us in our decision
making on the best control intervention strategy for an effective control of dengue transmis-
sion and spread in the population. Following [21, 50, 51], we compare the effects of various
possible strategies in reducing the size of symptomatic infectious individual subpopulation
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Fig. 14 Dynamics of dengue model (5) with and without the combination of vaccination (uV ), treatment (uT )
and adulticide (uA) controls implementation only

(Ih). To this aim, the efficiency index, denoted as E, is defined as [21, 50, 51]:

E =
(
1 − P(S)

P(0)

)
× 100 (63)

where, P(S) = ∫ tend
0 Ih(t)dt and P(0) = ∫ tend

0 Ih(t)dt measure the cumulative number of
symptomatic infectious individuals in the population over the time interval t ∈ [0, tend ] with
and without any control intervention strategies respectively, and tend = 156 weeks. Thus,
the best control intervention strategy is the one with the biggest E value.
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Table 7 Efficiency index

Strategy Cumulative number of Ih E (%)

P(0) P(S)

In absence of all the controls 1.7418 × 104 − 0

Strategy 2: uT − 6.6915 × 103 61.5828

Strategy 1: uV − 8.5582 × 102 95.0866

Strategy 4: uV , uT − 5.4194 × 102 96.8886

Strategy 3: uA − 3.5601 × 102 97.9561

Strategy 5: uV , uA − 3.3544 × 102 98.0742

Strategy 6: uT , uA − 2.5319 × 102 98.5464

Strategy 7: uV , uT , uA − 2.3894 × 102 98.6282

Using the simulated results for the implementation of Strategies 1–7 in subsection “Impact
of Controls on the Population Dynamics” and setting all the control parameters uV , uT and
uA at 0.8(80%) and considering 90% vaccine efficacy (i.e., ε = 0.9), the results obtained
from the efficiency analysis are given in Table 7.

It is shown inTable 7 that Strategy 7 (which combines vaccination, treatment and adulticide
controls) most averts or reduces the number of symptomatic infectious individuals in the
population, followed by Strategy 6 (combination of treatment and adulticide controls only),
Strategy 5 (combination of vaccination and adulticide controls only), Strategy 3 (use of
adulticide control only), Strategy 4 (which combines vaccination and treatment controls
only), Strategy 1 (application of vaccination control only), and lastly Strategy 2 (the use of
treatment control only).

Discussion

Dengue is the most prevalent viral infection transmitted principally via the bite of infected
females Aedes aegypti mosquito leading to either a mild DF or DHF [14]. There are four
distinct DENV serotypes (DENV-1, DENV-2, DENV-3 and DENV-4), which are all circu-
lating in Malaysia [52]. Dengue is endemic in Malaysia, and has become a significant public
health issue [52]. Since 2010, the number of reported dengue cases has continued to increase
in the country [8], whereby Johor, Selangor, Kuala Lumpur and Putrajaya have been part of
the mostly affected populations [40].

Malaysia has no licensed vaccine for dengue currently [8, 23]. To combat dengue epidemic
in the country, the government of Malaysia has invested many efforts on vector control, case
management and public enlightenment. It was reported that the government spent US$175.7
million on preventive activities and national dengue vector control program in 2010 [29].
However, there was a sudden rise in cases recently [53], indicating the ineffective of these
intervention strategies.

In this study, we propose an appropriate deterministic model governed by an autonomous
system of ODEs given in (5) to gain insightful information about the impact of administering
an imperfect vaccine with waning immunity based on random mass vaccination scenario on
the dynamics of dengue population in Johor, Malaysia. Qualitative analysis of the model
suggests that the model with or without imperfect vaccination exhibits backward bifurcation
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phenomenon. This occurrence of backward bifurcation in the dynamics of dengue transmis-
sion makes the disease control more taxing.

We further perform both the local and global sensitivity analyses on model (5) and (35)
(using the respective reproduction numbers Rc and R0 as response functions) to identify
the key parameters that most influence the transmission and spread of dengue in the popula-
tion. The results obtained from the analyses suggest that the most significant parameter that
contributes to the transmission and spread of dengue disease among the positive sensitive
parameters is mosquito biting rate (b). While the vaccine efficacy (ε) and mosquito mortality
rate (μv) are themost significant negative sensitive parameters that influence the reproduction
numbers Rc and R0.

In particular, the spread of dengue in a population can be effectively curtailed by enhanc-
ing the human recovery rate and increasing the mortality rate of female mosquito. Thus,
model (60) involving triplet controls (uV , uT and uA accounting for vaccination, treatment
and adulticide controls) with constant rates is proposed. The associated reproduction number
R is computed. Using R, it is graphically demonstrated that it is sufficient to put the basic
reproduction number R0 of model (35) below unity in the long run by continuously imple-
menting a control strategy that combines any two of vaccination, treatment and adulticide
interventions (see Fig. 7).

By investigating the effect of implementing the separate use and different combined efforts
of the three control interventions in controlling the transmission of dengue in the population,
it is found that the number of infectious (exposed and infected) considerably reduced in
the population by implementing any of the seven strategies considered in this paper. Our
results agree with the previous results reported in [14], which revealed that the use of optimal
vaccination combined with the effort of optimal adulticide can reduce dengue prevalence in
the community.

However, the results of efficacy analysis suggest that a strategy that combines the three
control interventions (that is Strategy 7) is considered most effective, followed by Strategy
6 (the use of treatment and adulticide controls), Strategy 5 (simultaneous implementation
implementation of vaccination and adulticide controls), Strategy 3 (implementation of adul-
ticide control only), Strategy 4 (combined efforts of vaccination and treatment controls),
Strategy 1 (administration of vaccination control only) and Strategy 2 (use of treatment con-
trol only), which is the least effective control (as shown in Table 7). Consequently, Strategy
7 indicates that if about 10% of the susceptible individuals is continuously vaccinated with
about 10% of the symptomatic infectious individuals receiving timely treatment and open
space spray of adulticide is carried out in about 10% of the residential areas in the community,
then it is possible to eliminate dengue in the population. This shows that, even with low vac-
cination coverage, it is possible to quickly eliminate dengue in the population by combining
vaccination with treatment and adulticide controls, which is an improvement over the result
of the singular use of vaccination reported in [22], whereby the continuous administration of
an imperfect vaccine on 80% of the population only reduces but insufficient to eliminate the
susceptibility to dengue infection.

Conclusion

This section summarizes some of the major theoretical and epidemiological findings of
this work. In this paper, an appropriately developed compartmental deterministic model
governing a system of eight ODEs describing the vector-host interactions in the presence
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of vaccination for dengue disease transmission has been proposed and analysed. The pre-
intervention version of the model has also been presented and some basic properties of
it have been discussed. Furthermore, the vaccination dengue model has been modified to
assess the impact of different strategies involving the use of at least one of the three control
parameters accounting for vaccination, treatment and adulticide controls with constant rates
on the dynamics of dengue disease population based on the 2012 dengue outbreak in Johor,
Malaysia. From the theoretical analysis and numerical simulations, the following results are
observed:

(i) It was shown that the dengue model exhibits backward bifurcation whether imperfect
vaccination property is present or not as both the dengue models with and without
vaccination undergo the backward bifurcation phenomenon. Thus, bringing the basic
reproduction number, R0, below unity is insufficient to secure an effective control or
elimination of dengue disease in the community.

(ii) Sensitivity analysis of themodels suggests thatmosquito biting rate (b), vaccine efficacy
(ε) and mosquito mortality rate (μv) among other parameters are the most significant
parameters that influence the epidemiological thresholds Rc and R0.

(iii) By investigating the impact of vaccination (uV ), treatment (uT ) and adulticide (uA)
control measures (based on the sensitivity analysis result) on the disease transmission
and spread in the population, it is observed that

(a) Combining any two of controls uV , uT and uA reduces the reproduction numberR
considerably below unity.

(b) The most efficient control strategy among the various control strategies analysed
in this work is the strategy that combines vaccination, treatment and adulticide
controls.

Therefore, the results of this study suggest that the Malaysian government and any other
concerned authority should consider the implementation of a control strategy combining
vaccination (when it becomes available) with the efforts of treatment and adulticide control
to effectively control the transmission and spread of dengue and prevent the future occurrence
of disease outbreak in Johor, Malaysia.

In the present work, we have used an autonomous system of ODEs to assess the impacts
of different control strategies involving the use of at least one of the three control parameters
(uV , uT and uA) with constant rates on the dynamics of dengue disease transmission and
spread in the population. However, further study can be conducted by analysing the impact
of time-dependent controls uV (t), uT (t) and uA(t) based on some combination strategies
using optimal control theory, and determination of the most cost-effective strategy is also of
future interest by performing cost-effective analysis on the control strategies.
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