Skip to main content
Log in

On Symmetries and Conservation Laws of Einstein–Maxwell Equations for Non-static Cylindrical Symmetric Metric

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, Einstein–Maxwell equations for non-static cylindrical symmetric metric are investigated to find Lie’s infinitesimal symmetries. The new conservation theorem with nonlinear self-adjointness and direct method of multipliers are utilized to obtain the conservation laws. The system of Einstein–Maxwell equations has also been proved to be nonlinear self-adjoint by using criterion given by Ibragimov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Not applicable.

References

  1. Ali, A.T.: New exact solutions of the Einstein vacuum equations for rotating axially symmetric fields. Phys. Scr. 79(3), 035006 (2009)

    Article  Google Scholar 

  2. Anco, S.C., Bluman, G.: Direct construction method for conservation laws of partial differential equations Part I: examples of conservation law classifications. Eur. J. Appl. Math. 13(5), 545–566 (2002)

    Article  Google Scholar 

  3. Cheviakov, A.F.: Gem software package for computation of symmetries and conservation laws of differential equations. Comput. Phys. Commun. 176(1), 48–61 (2007)

    Article  MathSciNet  Google Scholar 

  4. Eddington, A.S.: The Mathematical Theory of Relativity. Cambridge University Press (1924)

  5. Einstein, A., Rosen, N.: On gravitational waves. J. Frankl. Inst. 223(1), 43–54 (1937)

    Article  Google Scholar 

  6. Goyal, N., Gupta, R.K.: A class of exact solutions to the Einstein field equations. Phys. Scr. 85(5), 055011 (2012)

    Article  Google Scholar 

  7. Goyal, N., Gupta, R.K.: New exact solutions of the Einstein–Maxwell equations for magnetostatic fields. Chin. Phys. B 21(9), 090401 (2012)

    Article  Google Scholar 

  8. Gross, D.J.: The role of symmetry in fundamental physics. Natl. Acad. Sci. 93(25), 14256–14259 (1996)

    Article  MathSciNet  Google Scholar 

  9. Gupta, R.K., Bansal, A.: Painlevé analysis, Lie symmetries and invariant solutions of potential Kadomstev–Petviashvili equation with time dependent coefficients. Appl. Math. Comput. 219(10), 5290–5302 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Gupta, R.K., Singh, K.: Symmetry analysis and some exact solutions of cylindrically symmetric null fields in general relativity. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4189–4196 (2011)

    Article  Google Scholar 

  11. Gupta, R.K., Singh, M.: On group classification and nonlocal conservation laws for a multiphase flow model. Int. J. Appl. Comput. Math. 3(4), 3925–3935 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ibragimov, N.H.: A new conservation theorem. J. Math. Anal. Appl. 333(1), 311–328 (2007)

    Article  MathSciNet  Google Scholar 

  13. Ibragimov, N.H.: Nonlinear self-adjointness and conservation laws. J. Phys. A Math. Theor. 44(43), 432002 (2011)

    Article  Google Scholar 

  14. Ibragimov, N.H.: Nonlinear self-adjointness in constructing conservation laws. arXiv preprint arXiv:1109.1728 (2011)

  15. Ibragimov, N.H., Ibragimov, R.N.: Bifurcation of nonlinear conservation laws from the classical energy conservation law for internal gravity waves in cylindrical wave field. Math. Model. Nat. Phenom. 8(5), 119–130 (2013)

    Article  MathSciNet  Google Scholar 

  16. Kader, A.H.A., Latif, M.S.A., Nour, H.M.: Some new exact solutions of the modified KdV equation using Lie point symmetry method. Int. J. Appl. Comput. Math. 3(1), 1163–1171 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kara, A.H., Mahomed, F.M.: Noether-type symmetries and conservation laws via partial Lagrangians. Nonlinear Dyn. 45(3), 367–383 (2006)

    Article  MathSciNet  Google Scholar 

  18. Kaur, B., Gupta, R.K.: Multiple types of exact solutions and conservation laws of new coupled (2+ 1)-dimensional Zakharov–Kuznetsov system with time-dependent coefficients. Pramana 93(4), 1–19 (2019)

    Article  Google Scholar 

  19. Kaur, B., Gupta, R.K.: Dispersion and fractional Lie group analysis of time fractional equation from Burgers hierarchy. J. Appl. Anal. Comput. 11(1), 1–22 (2021)

    MathSciNet  Google Scholar 

  20. Kaur, B., Gupta, R.K.: Invariance properties, conservation laws, and soliton solutions of the time-fractional (2+1)-dimensional new coupled ZK system in magnetized dusty plasmas. Comput. Appl. Math. 37(5), 5981–6004 (2018)

    Article  MathSciNet  Google Scholar 

  21. Kaur, B., Gupta, R.K.: Dispersion analysis and improved F-expansion method for space-time fractional differential equations. Nonlinear Dyn. 96(2), 837–852 (2019)

    Article  Google Scholar 

  22. Kaur, B., Gupta, R.K.: Time fractional (2+ 1)-dimensional Wu–Zhang system: Dispersion analysis, similarity reductions, conservation laws, and exact solutions. Comput. Math. Appl. 79(4), 1031–1048 (2020)

    Article  MathSciNet  Google Scholar 

  23. Kaur, L., Gupta, R.K.: On certain new exact solutions of the Einstein equations for axisymmetric rotating fields. Chin. Phys. B 22(10), 100203 (2013)

    Article  Google Scholar 

  24. Kaur, L., Gupta, R.K.: On symmetries and exact solutions of the Einstein–Maxwell field equations via the symmetry approach. Phys. Scr. 87(3), 035003 (2013)

    Article  Google Scholar 

  25. Liang, C.: A family of cylindrically symmetric solutions to Einstein–Maxwell equations. Gen. Relativ. Gravit. 27(6), 669–677 (1995)

    Article  MathSciNet  Google Scholar 

  26. Majumdar, S.D.: A class of exact solutions of Einstein’s field equations. Phys. Rev. 72(5), 390 (1947)

  27. McVittie, G.C.: Solution with axial symmetry of Einstein’s equations of teleparallelism. Proc. Edinb. Math. Soc. 2(3), 140–150 (1931)

  28. Misra, M., Radhakrishna, L.: Some electromagnetic fields of cylindrical symmetry. Proc. Nat. Inst. Sci. India A 28, 632–645 (1962)

    MathSciNet  MATH  Google Scholar 

  29. Naz, R.: Conservation laws for a complexly coupled KdV system, coupled Burger’s system and Drinfeld–Sokolov–Wilson system via multiplier approach. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1177–1182 (2010)

  30. Noether, E.: Invariante variationsprobleme. Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math-phys. Klasse 1(3), 235–257 (1918)

  31. Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics, vol. 107. Springer, Berlin (1993)

    Book  Google Scholar 

  32. Pirani, F.A.E.: Invariant formulation of gravitational radiation theory. Phys. Rev. 105(3), 1089 (1957)

    Article  MathSciNet  Google Scholar 

  33. Rao, J.K.: Radiating Levi–Civita metric. J. Phys. A Gen. Phys. 4(1), 17 (1971)

    Article  MathSciNet  Google Scholar 

  34. Sahoo, S.M., Raja Sekhar, T., Raja Sekhar, G.: Optimal classification, exact solutions, and wave interactions of Euler system with large friction. Math. Methods Appl. Sci. 43(9), 5744–5757 (2020)

    Article  MathSciNet  Google Scholar 

  35. Satapathy, P., Raja Sekhar, T.: Nonlocal symmetries classifications and exact solution of Chaplygin gas equations. J. Math. Phys. 59(8), 081512 (2018)

    Article  MathSciNet  Google Scholar 

  36. Satapathy, P., Sekhar, T.R.: Optimal system, invariant solutions and evolution of weak discontinuity for isentropic drift flux model. Appl. Math. Comput. 334, 107–116 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Sekhar, T.R., Satapathy, P.: Group classification for isothermal drift flux model of two phase flows. Comput. Math. Appl. 72(5), 1436–1443 (2016)

    Article  MathSciNet  Google Scholar 

  38. Sil, S., Sekhar, T.R.: Nonlocally related systems, nonlocal symmetry reductions and exact solutions for one-dimensional macroscopic production model. Eur. Phys. J. Plus 135(6), 1–23 (2020)

    Article  Google Scholar 

  39. Sil, S., Sekhar, T.R., Zeidan, D.: Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation. Chaos Solitons Fract. 139, 110010 (2020)

    Article  MathSciNet  Google Scholar 

  40. Singh, M., Gupta, R.K.: Explicit exact solutions for variable coefficient Gardner equation: an application of Riccati equation mapping method. Int. J. Appl. Comput. Math. 4(5), 114 (2018)

    Article  MathSciNet  Google Scholar 

  41. Singh, M., Gupta, R.K.: On Painlevé analysis, symmetry group and conservation laws of Date–Jimbo–Kashiwara–Miwa equation. Int. J. Appl. Comput. Math. 4(3), 88 (2018)

    Article  Google Scholar 

  42. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press (2003)

  43. Weber, J., Wheeler, J.A.: Reality of the cylindrical gravitational waves of Einstein and Rosen. Rev. Mod. Phys. 29(3), 509 (1957)

    Article  MathSciNet  Google Scholar 

  44. Weyl, H.: Zur gravitationstheorie. Ann. Phys. 359(18), 117–145 (1917)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both the author’s have equally contributed in this paper.

Ethics declarations

Conflict of interest

There is no conflicts of interest in content of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R.K., Kaur, B. On Symmetries and Conservation Laws of Einstein–Maxwell Equations for Non-static Cylindrical Symmetric Metric. Int. J. Appl. Comput. Math 7, 238 (2021). https://doi.org/10.1007/s40819-021-01161-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01161-9

Keywords

Mathematics Subject Classification

Navigation