Skip to main content
Log in

An Implicit Finite Difference Analysis of Von Karman Flow of Second Grade Nanofluid with Temperature Dependent Viscosity

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This numerical study elaborate the Von Karman swirling flow of second grade fluid having temperature dependent viscosity. The governing non-linear partial differential equations converted into non-dimensional ordinary differential equations using suitable transformations. The system of resulting ordinary differential equations are solved using the well-known implicit finite difference scheme. Then the results are presented graphically and the impact of various involved parameters on velocity, temperature, and concentration profiles. Redial and transversal shear stress on the surface of the disk, local Nusselt and Sherwood numbers are presented through tables. It is found that Variable viscosity parameter \({\theta }_{\delta }\), Thermorpheratic parameter, Brownian motion and the suction parameter oppose the motion while the Non-Newtonian fluid parameter and the Prandtl number assist the fluid motion. Variable viscosity parameter enhance both temperature and concentration fields but reduces the magnitude of radial and transversal shear stresses. The results are compared with the existing results and found to be an excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. Von Kármán, Th.: Uber laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)

    Article  MATH  Google Scholar 

  2. Emslie, A.G., Bonner, F.T., Peck, L.G.: Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29(5), 858–862 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ackroyd, J.A.D.: On the steady flow produced by a rotating disc with either surface suction or injection. J. Eng. Math. 12(3), 207–220 (1978)

    Article  MATH  Google Scholar 

  4. Acrivos, A., Shah, M.J., Petersen, E.E.: On the flow of a non-Newtonian liquid on a rotating disk. J. Appl. Phys. 31(6), 963–968 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ariel, P.D.: On computation of MHD flow near a rotating disk. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 82(4), 235–246 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Miklavčič, M., Wang, C.Y.: The flow due to a rough rotating disk. Zeitschrift für angewandte Mathematik und Physik ZAMP 55(2), 235–246 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Griffiths, P.T.: Flow of a generalised Newtonian fluid due to a rotating disk. J. Nonnewton. Fluid Mech. 221, 9–17 (2015)

    Article  Google Scholar 

  8. Ji, Z., Rajagopal, K.R., Szeri, A.Z.: Multiplicity of solutions in von Karman flows of viscoelastic fluids. J. Nonnewton. Fluid Mech. 36, 1–25 (1990)

    Article  MATH  Google Scholar 

  9. Volk, R., Enrico, C., Emmanuel, L., Pinton, J.-F.: Dynamics of inertial particles in a turbulent von Kármán flow. J. Fluid Mech. 668, 223–235 (2011)

    Article  MATH  Google Scholar 

  10. Nayagam, V., Williams, F.A.: Rotating spiral edge flames in von Karman swirling flows. Phys. Rev. Lett. 84(3), 479 (2000)

    Article  Google Scholar 

  11. Attia, H.A.: Steady flow over a rotating disk in porous medium with heat transfer. Nonlinear Anal.: Modell. Control 14(1), 21–26 (2009)

    Article  MATH  Google Scholar 

  12. Sparrow, E.M., Gregg, J.L.: Mass transfer, flow, and heat transfer about a rotating disk. J. Heat Transf. 82, 294–302 (1960)

    Article  Google Scholar 

  13. Asghar, S., Jalil, M., Hussan, M., Turkyilmazoglu, M.: Lie group analysis of flow and heat transfer over a stretching rotating disk. Int. J. Heat Mass Transf. 69, 140–146 (2014)

    Article  Google Scholar 

  14. Turkyilmazoglu, M.: Exact solutions corresponding to the viscous incompressible and conducting fluid flow due to a porous rotating disk. J. Heat Transf. 131(9), 091701 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Turkyilmazoglu, M.: MHD fluid flow and heat transfer due to a shrinking rotating disk. Comput. Fluids 90, 51–56 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Turkyilmazoglu, M.: MHD fluid flow and heat transfer due to a stretching rotating disk. Int. J. Therm. Sci. 51, 195–201 (2012)

    Article  Google Scholar 

  17. Turkyilmazoglu, M.: Flow and heat simultaneously induced by two stretchable rotating disks. Phys. Fluids 28(4), 043601 (2016)

    Article  Google Scholar 

  18. Bachok, N., Ishak, A., Pop, I.: Flow and heat transfer over a rotating porous disk in a nanofluid. Phys. B 406(9), 1767–1772 (2011)

    Article  Google Scholar 

  19. Imtiaz, M., Hayat, T., Alsaedi, A., Ahmad, B.: Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects. Int. J. Heat Mass Transf. 101, 948–957 (2016)

    Article  Google Scholar 

  20. Hayat, T., Taseer, M., Sabir, A.S., Ahmed, A.: On magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: a numerical study. Comput. Methods Appl. Mech. Eng. 315, 467–477 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yin, C., Zheng, L., Zhang, C., Zhang, X.: Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction. Propuls. Power Res. 6(1), 25–30 (2017)

    Article  Google Scholar 

  22. Mustafa, M.: MHD Nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. Int. J. Heat Mass Transf. 108, 1910–1916 (2017)

    Article  Google Scholar 

  23. Turkyilmazoglu, M.: Nanofluid flow and heat transfer due to a rotating disk. Comput. Fluids 94, 139–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mushtaq, A., Mustafa, M.: Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions. Results Phys. 7, 3137–3144 (2017)

    Article  Google Scholar 

  25. Mahanthesh, B., Gireesha, B.J., Shehzad, S.A., Rauf, A., Kumar, P.B.S.: Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Phys. B: Condens. Matter 537, 98–104 (2018)

    Article  Google Scholar 

  26. Mehta, K.N., Shobha, S.: Effect of temperature dependent viscosity on free convection flow across an impermeable partition. Int. J. Eng. Sci. 31(7), 1093–1103 (1993)

    Article  MATH  Google Scholar 

  27. Babu, M.J., Sandeep, N., Ali, M.E., Nuhait, A.O.: Magnetohydrodynamic dissipative flow across the slendering stretching sheet with temperature dependent variable viscosity. Results Phys. 7, 1801–1807 (2017)

    Article  Google Scholar 

  28. Ram, P., Joshi, V.K., Sharma, K., Walia, M., Yadav, N.: Variable viscosity effects on time dependent magnetic nanofluid flow past a stretchable rotating plate. Open Phys. 14(1), 651–658 (2016)

    Article  Google Scholar 

  29. Tanveer, A., Salahuddin, T., Khan, M., Alshomrani, A.S., Malik, M.Y.: The assessment of nanofluid in a Von Karman flow with temperature relied viscosity. Results Phys. 9, 916–922 (2018)

    Article  Google Scholar 

  30. Mithal, K.G.: On the effects of uniform high suction on the steady flow of a non-Newtonian liquid due to a rotating disk. Q. J. Mech. Appl. Math. 14(4), 403–410 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shuaiba, M., Shaha, R.A., Khana, A.: Study of second grade fluid over a rotating disk with Coriolis and centrifugal forces. J. Phys. Math. 8(242), 2090–2902 (2017)

    Google Scholar 

  32. Mahmood, K., Sajid, M., Ali, N., Javed, T.: Slip flow of a second grade fluid past a lubricated rotating disc. Int. J. Phys. Sci. 11, 96–103 (2016)

    Article  Google Scholar 

  33. Shit, G.C., Haldar, R., Ghosh, S.K.: Convective heat transfer and MHD viscoelastic nanofluid flow induced by a stretching sheet. Int. J. Appl. Comput. Math. 2(4), 593–608 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shit, G.C., Haldar, R., Mandal, S.: Entropy generation on MHD flow and convective heat transfer in a porous medium of exponentially stretching surface saturated by nanofluids. Adv. Powder Technol. 28(6), 1519–1530 (2017)

    Article  Google Scholar 

  35. Khan, N.A., Naz, F., Khan, N.A., Ullah, S.: MHD nonaligned stagnation point flow of second grade fluid towards a porous rotating disk. Nonlinear Eng. 8(1), 231–249 (2019)

    Article  Google Scholar 

  36. Saif, R.S., Hayat, T., Ellahi, R., Muhammad, T., Alsaedi, A.: Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness. Results Phys. 7, 2821–2830 (2017)

    Article  Google Scholar 

  37. Rivlin, R.S.: Further remarks on the stress-deformation relations for isotropic materials. J. Rational Mech. Anal. 4, 681–702 (1955)

    MathSciNet  MATH  Google Scholar 

  38. Ernest, D.J., Fosdick, R.L.: Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Rational Mech. Anal. 56(3), 191–252 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  39. Turkyilmazoglu, M., Senel, P.: Heat and mass transfer of the flow due to a rotating rough and porous disk. Int. J. Therm. Sci. 63, 146–158 (2013)

    Article  Google Scholar 

  40. Mahmood, K., Sajid, M., Ali, N., Javed, T.: Heat transfer analysis in the time-dependent axisymmetric stagnation point flow over a lubricated surface. Therm. Sci. 22(6 Part A), 2483–2492 (2018)

    Article  Google Scholar 

  41. Abbasi, A., Riaz, I., Farooq, W., Ahmad, M.: Analysis of nonlinear thermal radiation and higher-order chemical reactions on the non-orthogonal stagnation point flow over a lubricated surface. Heat Transf.—Asian Res. 49, 673–692 (2020)

    Article  Google Scholar 

  42. Abbasi, A., Farooq, W., Riaz, I.: Stagnation point flow of a Maxwell nanofluid containing gyrotactic microorganism impinging obliquely on a convective surface. Heat Transf. 49, 2977–2999 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abbasi.

Ethics declarations

Conflict of interest

We do not have any conflict of interest regarding this Manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Batool, M., Farooq, W. et al. An Implicit Finite Difference Analysis of Von Karman Flow of Second Grade Nanofluid with Temperature Dependent Viscosity. Int. J. Appl. Comput. Math 7, 183 (2021). https://doi.org/10.1007/s40819-021-01118-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01118-y

Keywords

Navigation