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Abstract
The current manuscript investigates by proposing new numerical schemes based on
theAdomian’s technique for the resolution of the dark and singular solutions of theChen-Lee-
Liu (CLL) equation.More precisely, the schemes are derived from theWazwaz’smodification
of the Adomian’s method and the improved Adomian’s method for treating complex-valued
evolution equations. The CLL model is applicable to a variety of applications including pho-
tonic and optical crystal fibers. The schemeswhich are implemented via the help of theMaple
software have many salient advantages as contained in the comparative analysis. Finally, we
depict certain results graphically together with some supportive tables, in addition to some
comprehensive remarks.

Keywords Chen–Lee–Liu equation · Dark soliton · Singular soliton · Adomian
decomposition method

Introduction

Complex evolution equations are importantmodels that play vital roles in thefield of nonlinear
sciences including the fluid dynamics, optic fibers, plasma physics, pulse in biological chains,
quantum mechanics and so on [1–5]. A notable equation that surfaces from the Derivative
Nonlinear Schrödinger’s Equation (DNLSE) and utilized for studying soliton propagation
through optical fibers is the famous Chen-Lee-Liu (CLL) equation [6] with vast applicability
to a variety of applications, including photonic and optical crystal fibers. More recently,
there has been an increasing amount of literature on the dark and singular solitons in optical
and photonic crystal fibers [7–11]. The literature has attracted a great deal of attention due
to their attractive characteristics and wide-ranging applications. Dark solitons are robust
complex objects that have better stability (constant amplitude) against different disturbances
compared to the bright solitons that are characterized by fiber loss, Raman effects, the mutual
interaction between the adjacent pulses and the overlay of noise emitted by optical amplifiers,
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see [2] among others. More so, there are many various analytical and computational methods
in the literature to address the class of Nonlinear Schrodinger Equations (NLSE) including
among others [12–23] and the references therewith. Nevertheless, with regards to the CLL
equation, very few computational techniques are available to numerically treat the model
via the application of the standard Adomian’s method and its modifications with particular
types of soliton solutions [24–29]. Other similar numerical-based considerations to treat both
the integer and non-integer order evolution equations and other broader forms of differential
equations models are available in [30–40] and the references therein.

However, the aim of this paper is to numerically study the CLL equation amidst the pres-
ence of dispersion and steepening terms via the applications of the Adomian Decomposition
Method (ADM) and ImprovedAdomianDecompositionMethod (IADM) [21–23]. Two types
of optical soliton solutions comprising the dark and singular solitons are sought for as bench-
mark exact solitons for the validation of the proposed schemes. Illustrative examples cases
to exhibit the applicability and effectiveness of the schemes will be examined.

Thus, the dimensionless form of the CLL model in optical fibers is expressed as follows:

iqt + aqxx + ib|q|2qx � 0, (1.1)

where q � q(x, t) is the complex-wave profile in spatial x and temporal t , variables; a
and b are real constants. Physically, the parameter a is group velocity dispersion, while the
parameter b denotes the self-steepening phenomena in the context of optical fiber [14]. It is
also worth noting here that when a � b � 1 in Eq. (1.1), the CLL equation recasts to the
Regular CLL (RCLL) equation [6]. Furthermore, the newly constructed dark and singular
solitary wave solutions [7, 8] of Eq. (1.1) using the ansatz method will be used as benchmark
exact solutions for numerical comparisons. Also, the manuscript follows the organization:
Sect. 2 and Sect. 3 recall some exact dark and singular solitons, correspondingly. The outline
of the methodologies is given in Sect. 4. Discussions of the results acquired are presented in
Sect. 5; while Sect. 6 gives the conclusion.

Dark Optical Soliton Solutions

• The first type of dark solution of Eq. (1.1) for δ > 0 and σ < 0 is given by [7]:

q(x, t) � R
√
1 − sech[G(x − vt)]ei[−kx+ωt+θ(x−vt)], (2.2)

coupled to the initial condition

q(x, 0) � R
√
1 − sech(Gx)ei[−kx],

with R and G as parameters given by some relations defined as

R �
√

− 8δ

5σ
, G �

√
4δ

5
,

of which given the constants a, b, k, v and ω,δ � v2

4a2
+ vk−ω

a andσ � − bv
2a2

.

• The second type of dark solution of Eq. (1.1) from [7] for γ > 0 and σ < 0 is given by:

q(x, t) � Btanh[r(x − vt)]
√
3 + tanh2[r(x − vt)]

ei[−kx+ωt+θ(x−vt)], (2.3)

coupled to the initial condition

123



Int. J. Appl. Comput. Math (2021) 7 :98 Page 3 of 12 98

q(x, 0) � Btanh(r x)
√
3 + tanh2(r x)

ei[−kx],

where B and r are related by some relations defined as

B �
√

−σ

γ
, r �

√
σ 2

16γ
, γ � 3σ 2

16δ
,

of which given the constants a, b, k, v and ω, δ � v2

4a2
+ vk−ω

a and σ � − bv
2a2

.

• The third type of dark (gray) solution of Eq. (1.1) from [7] for δ < 0 and σ > 0 is given
by:

q(x, t) � n cosh[μ(x − vt)]
√∈ +cosh2[μ(x − vt)]

ei[−kx+ωt+θ(x−vt)], (2.4)

with the initial condition

q(x, 0) � n cosh(μx)
√∈ +cosh2(μx)

ei[−kx],

where n,∈, v, k and μ are arbitrary constants.

Singular Optical Soliton Solutions

• The first type of singular solution of Eq. (1.1) to be considered is expressed as [8]:

q(x, t) � A
√
1 + coth[r(x − vt)]ei[−kx+ωt+θ(x−vt)], (3.1)

coupled to the initial condition

q(x, 0) � A
√
1 + coth(r x)ei[−kx],

with A and r as parameters defined as follows

A �
√

−2δ

σ
, r � √−δ,

of which given the constants a, b, k, v and ω, δ � v2

4a2
+ vk−ω

a andσ � − bv
2a2

for all δ < 0

and σ > 0, provided that γ � 3σ 2

16δ .

• The second type of singular solution of Eq. (1.1) to be considered is defined as [12]:

q(x, t) � M√
1 + R sinh[μ(x − vt)]

ei[−kx+ωt+θ(x−vt)], (3.2)

coupled to the initial condition

q(x, 0) � M√
1 + R sinh(μx)

ei[−kx],

where M, μ and r are real parameters given by the expressions
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M �
√

−4δ

σ
, μ � √−4δ, R �

√
16δγ

3σ 2 − 1,

of which given the constants a, b, k, v and ω, δ � v2

4a2
+ vk−ω

a andσ � − bv
2a2

, for all δ < 0

and σ > 0, provided that γ >

∣∣∣ 3σ
2

16δ

∣∣∣.

• The third type of singular solution of Eq. (1.1) to be considered is expressed as [8]:

q(x, t) � Pcsch[Q(x − vt)]
√
1 − R coth2[Q(x − vt)]

ei[−kx+ωt+θ(x−vt)], (3.3)

coupled to the initial condition

q(x, 0) � Pcsch(Qx)
√
1 − R coth2(Qx)

ei[−kx],

with P, Q and R parameters given by the following relations

P �
√
2δ(1 + R)

σ
, Q � √−δ, γ � 3σ 2R

4δ(1 + R)2
,

of which given the constants a, b, k, v and ω, δ � v2

4a2
+ vk−ω

a andσ � − bv
2a2

, for all δ < 0,
all σ 〈0, γ 〉0 and R < −1.

• The fourth type of singular solution of Eq. (1.1) to be considered is found as [8]:

q(x, t) �
√

Z

m + sinh2[n(x − vt)]
ei[−kx+ωt+θ(x−vt)], (3.4)

coupled to the initial condition

q(x, 0) �
√

Z

m + sinh2(nx)
ei[−kx],

where Z and n are real parameters given by the expressions

Z �
√

−2δ(2m − 1)

σ
, n � √−δ,m � 1

2

(

1 +

[
1 − 16δγ

3σ 2

]− 1
2
)

,

of which given the constants a, b, k, v and ω, δ � v2

4a2
+ vk−ω

a andσ � − bv
2a2

, for all δ < 0

and γ <

∣∣∣ 3σ
2

16δ

∣∣∣.

Numerical Methods

Adomian DecompositionMethod

Here, a consideration of the modification of ADM proposed byWazwaz [22, 25, 30] is made.
Making use of the operator notation by assuming Lt � ∂

∂t , and its analogous inverse operator

L−1
t � t∫

0
(.)dt , Eq. (1.1) is expressed as

q � q(x, 0) + ai L−1qxx − bL−1A, (4.1)
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where A in the above equation is the nonlinear term originally given by

A � |q|2qx , (4.2)

Therefore, the decomposition method represents the given solution in Eq. (4.1) by an
infinite series given as

q(x, t) �
∞∑

n�0

qn(x, t), (4.3)

and decomposes the nonlinear term A

A �
∞∑

n�0

An, (4.4)

with A′
ns denoting the Adomian’s polynomials explicitly defined by the given formula

An � 1

n!

dn

dλn
N

⎛

⎝
∞∑

j�0

(
λ j q j (x, t)

)
⎞

⎠

λ�0

, n � 0, 1, 2, . . . (4.5)

Now, on substituting Eq. (4.3) and Eq. (4.4) into Eq. (4.1) yields the following

q �
∞∑

n�0

qn(x, t) � q(x, 0) + ai L−1
∞∑

n�0

qnxx (x, t) − bL−1
∞∑

n�0

An, (4.6)

which consequently reveals the recursive solution scheme as follows

q0(x, t) � q(x, 0)

qk+1(x, t) � ai L−1(qkxx (x, t)
) − bL−1Ak, k ≥ 0. (4.7)

Improved Adomian DecompositionMethod

The IADM [20, 21, 24, 26] was mainly proposed to transform complex-valued equations into
systems of real-valued equations for onward treatment using the ADM. Thus, to transform
the complex-valued equation of Eq. (1.1) form to a real system, the method goes by splitting
the imaginary and real components of the complex profile q(x, t) as follows

q(x, t) � q1 + iq2, (4.8)

where q1and q2 are real-valued functions. Therefore, making use of Eq. (4.8) into Eq. (1.1),
the following system of real-valued equations is obtained

q1t + aq2xx + b
(
q21 + q22

)
q1x � 0,

q2t − aq1xx + b
(
q21 + q22

)
q2x � 0,

(4.9)

where q1(x, 0) � [q(x, 0)]R and q2(x, 0) � [q(x, 0)]I ,with R denoting the real component
and I represents the imaginary component.

Furthermore, the solutions in the above equation q1and q2 are decomposed using the
following infinite sums

qi (x, t) �
∞∑

n�0

qin(x, t), i � 1, 2, . . . (4.10)
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where the components q1n, q2n, (n ≥ 0) are to be determined recursively.
The nonlinear terms in Eq. (4.9) are represented by the following

A1 � (
q21 + q22

)
q1x ,

A2 � (
q21 + q22

)
q2x . (4.11)

Applying the inverse operator L−1
t � t∫

0
(.)dt into Eq. (4.9) together with the application

of Eq. (4.11) yields

q1(x, t) � q1(x, 0) − aq2xx − bL−1A1,

q2(x, t) � q2(x, 0) + aq1xx − bL−1A2. (4.12)

Substituting the solution form from Eq. (4.10) into Eq. (4.12), we get

q1,0(x, t) � q1(x, 0),

q2,0(x, t) � q2(x, 0),

q1,k+1(x, t) � −L−1a
(
q2,k(x, t)

)
xx − bL−1A1,m, k ≥ 0,

q2,k+1(x, t) � L−1a
(
q1,k(x, t)

)
xx − bL−1A2,m, k ≥ 0, (4.13)

where A1m, andA2m are the Adomian’s polynomials belonging to the nonlinear terms
A1andA2 given in Eq. (4.11). These polynomials are to be computed recursively from
Eq. (4.5). Finally, the overall recurrent scheme for the model is obtained by the compo-
nents in Eq. (4.13) via Eq. (4.4).

Numerical Results

This section presents the obtained numerical results using the said two methods and deduces
comparatively the relationship between the schemes. Taking into consideration various dark
and singular optical soliton solutions given in Sects. 2 and 3, we utilize the recurrent schemes
determined in Sect. 4 to simulate the solutions for the CLL model. In doing so, we make use
of the Maple software to exhibit the resultant depictions in Figs. 1, 2, 3, 4, 5, 6 and report
the error analysis in Tables 1, 2, 3, 4. Figures 1 and 2 compare the two results between the
exact and approximate solutions of the model using the dark (first and second types) and gray
(third type) solitons via the use of theADMand IADM, correspondingly; additionally, Figs. 3,

Fig. 1 Comparison between the exact and approximation solutions with ADM for the dark and gray solitons
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Fig. 2 Comparison between the exact and approximation solutions with IADM for the dark and gray solitons

Fig. 3 Comparison between the exact and approximation solutions with ADM for the singular solitons

Fig. 4 Comparison between the exact and approximation solutions with ADM for the singular solitons
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Fig. 5 Comparison between the exact and approximation solutions with IADM for the singular solitons

Fig. 6 Comparison between the exact and approximation solutions with IADM for the singular solitons

4, 5, 6 graphically illustrate the comparison of results between the exact and approximate
solutions of the model using singular (first, second, third and forth types) solitons via the two
methods, correspondingly. Furthermore, looking at the revealed minimal error discrepancies,
it is remarked here that the method due to IADM is more efficient than the ADMwith regards
to these types of solutions considered as benchmarks; this also is in conformity with most
related numerical literatures on the ADM and IADM.
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Table 1 The error for the first and
second dark solitons when
b � 10 and t � 0.5

x Type 1 Type 2

|qE − qADM | |qE − qI ADM | |qE − qADM | |qE − qI ADM |

−3 1.704119170
· 10−8

1.2513 ·
10−8

2.827193984
· 10−8

2.776 · 10−8

−2 2.099049050
· 10−8

1.8417 ·
10−8

1.562830181
· 10−8

1.551 · 10−8

−1 2.503250592
· 10−8

2.4254 ·
10−8

1.099509542
· 10−9

1.083 · 10−8

1 2.503245729
· 10−8

2.4254 ·
10−8

1.099377102
· 10−9

1.083 · 10−9

2 2.099018577
· 10−8

1.8417 ·
10−8

1.562437327
· 10−8

1.550 · 10−8

3 1.704104684
· 10−8

1.2514 ·
10−8

2.827010932
· 10−8

2.775 · 10−8

Table 2 The error for the gray
soliton when B � 0.00001 and
t � 0.5

x Type 3

|qE − qADM | |qE − qI ADM |

− 3 4.968621467 10−9 3.70 · 10−11

− 2 4.960202348 10−9 1.11 · 10−10

− 1 4.954558852 10−9 1.69 · 10−10

1 4.954574494 10−9 1.98 · 10−10

2 4.960231045 10−9 1.67 · 10−10

3 4.968658793 10−9 1.17 · 10−10

Table 3 The error for the singular soliton with ADM when t � 0.5

x Type 1 Type 2 Type 3 Type 4
b � −10 b � −10 b � 10 b � −10
|qE − qADM |

− 3 2.75764667 · 10−11 3.233927798 · 10−11 4.465248890 · 10−10 3.940000021 · 10−11

− 2 7.53342623 · 10−11 9.992497185 10−11 1.013306756 10−8 1.333065410 10−10

− 1 4.42167085 · 10−10 5.718325104 · 10−10 1.811629779 · 10−7 2.140052461 · 10−9

1 7.02840642 · 10−10 5.719629708 · 10−10 1.813966093 · 10−7 2.140026820 · 10−9

2 3.81815507 · 10−10 9.977459597 · 10−11 1.014997901 · 10−8 1.332065408 · 10−10

3 3.85342638 · 10−10 3.235289322 · 10−11 4.472730404 · 10−10 3.940001224 · 10−11
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Table 4 The error for the singular
soliton with IADM when t � 0.5

x Type 1 Type 2 Type 3 Type 4
b � −10 b � −10 b � 10 b � −10
|qE − qI ADM |

− 3 7.35 · 10−11 2.913548009
· 10−11

1.99054 ·
10−10

3.847 ·
10−11

− 2 5.04 · 10−11 7.228395396
· 10−11

4.51941 ·
10−9

1.333 ·
10−10

− 1 5.43 · 10−11 3.308348379
· 10−10

1.06592 ·
10−7

2.000 · 10−9

1 6.59 · 10−10 3.308951042
· 10−10

1.06733 ·
10−7

2.000 · 10−9

2 7.92 · 10−11 7.214492359
· 10−11

4.52699 ·
10−9

1.332 ·
10−10

3 1.35 · 10−11 2.914230773
· 10−11

1.99389 ·
10−10

3.847 ·
10−11

Conclusions

The purpose of the current investigation was to derive two numerical recursive schemes
based the decomposition methods to investigate the optical CLL model amidst the presence
of dispersion and steepening terms. The results for the exact and numerical solutions of the
CLLmodel are evaluated to exhibit the correctness and effectiveness of the devised methods.
In order to achieve this, we hunted for certain exact dark and singular solitons of the model
to ascertain a computational relative analysis. The choice of dark solitons is indeed in favour
of their stability against disturbances compared to the bright solitons; while and singular
soliton solution for their discontinuous derivatives. We simulated the results on the Maple
software. Both the two schemes revealed quite interesting results and demonstrated high-
level of accuracy. Through Tables 1, 2, 3, 4 and Figs. 1, 2, 3, 4, 5, 6, it can be observed that
the IADM possessed higher accuracy with minimal error than the ADM; however, this is also
is in conformity with most related literatures on the ADM and IADM. The reported figures
indeed spoke for themselves with regards to accuracy of the methods. In all, the contribution
of this study is to confirm the exactness, from a numerical perspective, of the exact solutions
available for the CLL model. In addition, similar investigations may be conducted with other
types of solutions or by considering different complex evolution equations.
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