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Abstract
Inventory for an item is being replenished at a constant rate whilst simultaneously being
depleted by demand growing randomly and in relation to the inventory level. A stochastic
differential equation is put forward to model this situation with solutions to it derived when
analytically possible. Probabilities of reaching designated a priori inventory levels from some
initial level are considered. Finally, the existence of stable inventory states is investigated by
solving the Fokker–Planck equation for the diffusion process at the steady state. Investigation
of the stability properties of the Fokker–Planck equation reveals that a judicious choice of
control strategy allows the inventory level to remain in a stable regime.

Keywords Diffusion process · Itô solution · Fokker–Planck equation · Time-dependent
Ornstein–Uhlenbeck process

Introduction

It has been recognized for some time that the demand for some items may be proportional
to the inventory on display. Baker and Urban [1] argued that the demand rate of an item is of
a polynomial functional form, dependent on the inventory level. A thorough review of such
demand models has been carried out by Urban [2]. In his 2005 article Urban stated that two
distinct functional models for the demand rate were dominant, Type I Models, where the
demand rate advanced on the initial inventory alone, and Type II Models, where the demand
rate was a continuous (predominantly a power) function of the inventory level. Tsoularis [3]
used the type of demand function in this article to solve an optimal inventory control problem
but no deep analysis of the stochastic differential equation was undertaken.

In this work we propose that the demand growth rate, d, is a continuous function of the
inventory level, x, assuming the quadratic form:

d(x) � d1x − d2x
2 (1)

where d1 and d2 are both positive constants that establish the concavity (d ′′(x) < 0) of the
function (1). The growth in demand is at its most rapid for small inventory levels, governed
primarily by the coefficient d1, rising gradually at a decreasing rate (d ′(x) > 0, d ′′(x) < 0),
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due to the influence of the coefficientd2, until the inventory reaches the level, x � d1
2d2

(d ′(x) �
0), where the demand rate is at its peak value,

d21
4d2

. This behaviour of the demand rate is a
feature of the Type II Models reviewed by Urban [2]. However, when the inventory exceeds
d1
2d2

, the growth in demand declines rapidly (d ′(x) < 0, d ′′(x) < 0) and ceases altogether

(d(x) � 0) when x � d1
d2
. This constitutes a departure from Type II Models and allows the

realistic possibility of saturation in demand when the product inventory reaches a sufficiently
high level.

We introduce next an element of stochasticity in the demand growth Eq. (1) by allowing
the dominant growth parameter, d1, to be a random variable that evolves according to

d1(t) � d̄1 − ση(t) (2)

where d̄1 is the mean value, η(t) is the continuous time Gaussian white noise and σ is the
diffusion coefficient measuring the intensity of the disturbance. In discrete time, white noise
is a sequence of independent uncorrelated random variables. In continuous time, however, the
autocorrelation is the Dirac delta function, E[η(t)η(t+ s)] � δ(s). The white noise, although
not an actual physical process, is a useful approximation to physical situations where noise
is inherently present in the dynamics of a process [4].

The stochastic equivalent of the demand growth form (1) is

d(x) � (
d̄1x − d2x

2) − σ xη(t) (3)

The change in the actual demand induced by d(x) in an infinitesimal interval, dt, is

d(x)dt � (
d̄1x − d2x

2)dt − σ xdw (4)

where η(t) is symbolically written as the derivative of Brownian motion,w(t), as the Wiener
process is nowhere differentiable.

In a small time interval, dt, demand grows by d(x)dt and the inventory is replenished at a
rate udt, so the infinitesimal inventory change is (u-d(x))dt. Using (4) we can formulate the
following stochastic differential equation (SDE):

dx � (u − d(x))dt � (
u − (d̄1x − d2x

2)
)
dt + σ xdw (5)

with drift, u − (d̄1x − d2x2), and diffusion coefficient, σx.

The Stochastic Differential Inventory Equation

By making the notational substitutions, α � d̄1 and D � d̄1
d2
, we may rewrite (5) as the SDE:

dx �
(
u − αx

(
1 − x

D

))
dt + σ xdw (6)

so that the mean demand growth, d̄1x − d2x2, adopts the more familiar logistic form, αx(
1 − x

D

)
. We shall assume an initial inventory, x0 ∈ [0, D) and that the control variable,

u, assumes a constant value throughout some interval [0,t]. Moreover (6) will be valid for
x ∈ [0, D) only, that is, the inventory will obey (6) so long as x is bounded form above byD,
and (6) will be no longer valid for x ≥ D. The mean value of the random parameter d1, α,
is the demand growth rate per unit of inventory (the random parameter whilst the inventory
is low, and D is the level of inventory that places an upper limit on demand growth, so no
further growth in demand is possible beyond this value. If demand saturation is unlikely to
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occur at small values then D → ∞ and demand grows linearly with inventory, which in this
case evolves thus:

dx � (u − αx)dt + σ xdw (7)

Strong and weak solutions to SDEs are subject to certain conditions. In strong solutions,
the Brownian motions are given on a given probability space whereas in weak solutions
the Brownian motion is chosen. The existence and uniqueness of a continuous path strong
solution to SDE (6) is subject to the following two conditions [5]:

(i) The Lipschitz condition:
∣
∣
∣
(
u − αx1

(
1 − x1

D

))
−

(
u − αx2

(
1 − x2

D

))∣
∣
∣ + |σ x1 − σ x2| ≤ L|x1 − x2|

for some constant independent of time t, L, in some time interval, [0, T ] and x1, x2 ∈
[x0, D]. This is essentially a smoothness condition which is fulfilled in the sufficient as
the functions, u − αx

(
1 − x

D

)
and σx, are continuously differentiable.

(ii) The growth condition:
∣
∣
∣u − αx

(
1 − x

D

)∣
∣
∣
2
+ |σ x |2 ≤ L2(1 + |x |2)

in some finite time interval, [0, T ]. This condition is imposed to prevent the solution
to (6) becoming infinite in [0, T ], which is always the case when u and σ are bounded
from above by L.

Provided these existence and uniqueness conditions are met, for an initial condition,
x(0) � x0, with finite variance, E[x20 ] < ∞, a strong solution to (6) exists as a continuous
path. The Itô solution is a Markov process given by the integral equation

x(t) � x0 +

t∫

0

(
u − αx

(
1 − x

D

))
dt +

t∫

0

σ xdw (8)

The first integral in (8) is a standard Riemann integral and the second is an Itô
integral, whose convergence is interpreted in the mean square sense (L2), lim

n→∞ E
[∑n

i�1 σ x(ti−1)(w(ti ) − w(ti−1)) − ∫ t
0 σ xdw

]2 � 0.

Solution to SDE (6)

In this section a solution to the temporally homogeneous process (6) is presented for two
distinct cases: (i) when the order rate, u, is a nonzero constant, and (ii) when u � 0.

Solution to SDE (6) with u �� 0

First introduce the integrating factor:

F(t) � exp

(
σ 2t

2
− σw(t)

)

Define y(t) � x(t)F(t), with y(0) � x0, and proceed to derive the random differential
equation
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dy

dt
� F

(
u − αx

(
1 − x

D

))
� F

(
u − αy

F

(
1 − y

FD

))
� Fu − αy

(
1 − y

FD

)
,

or

dy

dt
+ αy − α

FD
y2 � Fu (9)

This is a Riccati equation with a random coefficient, − α
FD , of the nonlinear term, and a

random forcing function, Fu. We shall not make any further attempt to solve Eq. (9) in this
article.

Directly from (6) we obtain a differential equation for the mean inventory, E[x(t)]:

d

dt
E[x(t)] � u − αE[x(t)] +

α

D
E[x2(t)] (10)

To derive the equation for the variance of the solution to (6) we use Itô’s formula:

d(x2(t)) � 2xdx + (dx)2 � 2xdx + σ 2x2dt �
[
2ux + (σ 2 − 2α)x2 + 2α

x3

D

]
dt + 2σ x2dw

Hence,

d

dt
E[x2(t)] � 2uE[x(t)] + (σ 2 − 2α)E[x2(t)] + 2

α

D
E[x3(t)] (11)

(10) and (11) are the first two differential equations in a recursive scheme of differential
equations involving higher moments, E[xn(t)], n ≥ 3, obtained by repeated application of
Itô’s formula on d(xn(t)).

Solution to SDE (6) when the Noise� is Small

In many practical applications, the diffusion parameter, σ , is small. In such cases, it is
reasonable to assume that the solution to the SDE will be a stochastic perturbation of the
deterministic solution as σ → 0. We assume a solution to (6) of the form

x(t) � y(t) +
∞∑

n�1

σ nxn (12)

where y(t) is the solution to the deterministic differential equation

dy

dt
� u − αy

(
1 − y

D

)
, y(0) � x0

which can be obtained by separation of variables.
The drift term, u − αx

(
1 − x

D

)
, can be expanded via a Taylor series around the solution

y(t):

u − αx
(
1 − x

D

)
� u − αy

(
1 − y

D

)
+

(
2αy

D
− α

)( ∞∑

n�1

σ nxn
)

+
2α

D

( ∞∑

n�1

σ nxn
)2

(13)

The diffusion term, σ x , can also be expanded as a power series:

σ x � σ y +
∞∑

n�1

σ n+1xn (14)
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We substitute next the expansions (13) and (14) in (6) and equate coefficients of like
powers of σ to obtain an infinite set of stochastic differential equations. We write below only
the first two which are often adequate in practice:

dy(t) �
(
u − αy

(
1 − y

D

))
dt (15)

dx1(t) �
(
2αy

D
− α

)
x1 + ydw (16)

SDE (16) is a time-dependent Ornstein–Uhlenbeck process whose solution is the first order
linearization of (6) around the deterministic solution found directly from (15). The solution
to (16) with the obvious initial condition, x1(0) � 0, is

x1(t) �
t∫

0

y(τ ) exp

⎛

⎝
t∫

τ

(
2αy(s)

D
− α

)
ds

⎞

⎠dw(τ ) (17)

The Itô integral solution (17) is a Gaussian random variable, and as such it can assume any
value with finite probability. The validity of the series expansion is investigated in [6] where
it is shown that it is asymptotic, x(t) − y(t) − ∑m

n�1 σ nxn ∼ σm+1.

Solution to SDE (6) with u� 0

When u� 0, (6) is a Bernoulli equation which is transformed via the substitution z � 1
y to

the standard form

dz

dt
− αz � − α

FD

with solution

z(t) � 1

x0
eαt − αeαt

D

t∫

0

exp

(
−

(
α +

σ 2

2

)
τ + σw(τ )

)
dτ

and finally, by virtue of x(t) � 1
z(t)F(t) ,

x(t) �
exp

(
−

(
α + σ 2

2

)
t + σw(t)

)

1
x0

− α
D

∫ t
0 exp

(
−

(
α + σ 2

2

)
τ + σw(τ )

)
dτ

(18)

The solution is not a Gaussian process as the Wiener process, w(t), appears in the exponent.

Solution to SDE (7)

In this section a solution to the temporally homogeneous SDE (7) is presented for two distinct
cases: (i) when the order rate, u, is a nonzero constant, and (ii) when u � 0.
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Solution to SDE (7) with u �� 0

As in “Solution to SDE (6) with u� 0” section, first introduce the integrating factor, F(t) �
exp

(
σ 2t
2 − σw(t)

)
, then proceed along the same lines as beforewe arrive at the final solution:

x(t) � x0 exp

(
σw(t) − σ 2t

2
− αt

)
+ u

t∫

0

exp

(
σ(w(t) − w(τ )) +

(
σ 2

2
+ α

)
(τ − t)

)
dτ

(19)

The expected value of exp(σ (w(t)− w(τ )), where σ (w(t)− w(τ )) is a Gaussian variable

with zero mean, is given byE[σ (w(t)− w(τ ))] � exp
(

σ 2

2 (t − τ )
)
,since w(t)− w(τ ) is nor-

mally distributed, N~(0,t − τ ), and the standard formula, E[eZ ] � exp
(
E[Z ] + 1

2Var (Z )
)

[6], for a normally distributed random variable Z , is applicable here. The expected value of
x(t) is then given by the following formula, which is independent of σ :

E[x(t)] � u

α
+

(
x0 − u

α

)
e−αt (20)

As t → ∞,,

lim
t→∞ E[x(t)] � u

α
(21)

The average inventory will be increasing in time if x0 < u
α
, decreasing if x0 > u

α
, and remain

static at x0 if x0 � u
α
.

The variance can be found by first solving the differential equation

d

dt
E[x2(t)] − (σ 2 − 2α)E[x2(t)] � 2u2

α
+ 2u

(
x0 − u

α

)
e−αt

for E[x2(t)] using the integrating factor, e
(
2α−σ 2

)
t . The solution is then

E
[
x2(t)

] � x20e
(
σ 2−2α

)
t +

2u2

α

1 − e
(
σ 2−2α

)
t

2α − σ 2 + 2u
(
x0 − u

α

)e−αt − e
(
σ 2−2α

)
t

α − σ 2 (22)

Solution to SDE (7) with u� 0

When u� 0 (7) reduces to:

dx � x(−αdt + σdw), x(0) � x0, w(0) � 0 (23)

a geometric Brownian motion with the well-known solution, x(t) � x0 exp(
σw(t) − αt − σ 2t

2

)
, mean, E[x(t)] � x0e−αt , and variance,Var [x(t)] � x20e

−2αt

(
eσ 2t − 1

)
.

The Boundary at x� 0

The inventory, x=0, is an intrinsic boundary of the diffusion process (6) because the diffusion
coefficient, σx, vanishes there. Its classification is dependent on the integrability of the scale
function, S(ξ ) � ∫ x0

0 s(ξ )dξ , where
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s(ξ ) � exp

⎛

⎜
⎝−

∫

ξ

2
(
u − αz

(
1 − z

D

))

σ 2z2
dz

⎞

⎟
⎠ for ξ ∈ (0, x0)

Now s(ξ ) � ξ
2α
σ2 exp

(
2u
σ 2ξ

− 2α
Dσ 2 ξ

)
, and the value of the scale function is

S(0) �
x0∫

0

ξ
2α
σ2 exp

(
2u

σ 2ξ
− 2α

Dσ 2 ξ

)
dξ � ∞

As the scale function is divergent at x � 0, x� 0 is a natural boundary according to
the Russian literature classification scheme [7]. According to another classification scheme
proposed by Feller [5, 8], one classifies the point, x � 0, based on the convergence of the
integral

x∫

0

⎛

⎜
⎝

x0∫

ξ

s(z)dz

⎞

⎟
⎠

1

σ 2ξ2s(ξ )
dξ

The above integral is convergent, and according to Feller, x � 0 is an entrance boundary. An
entrance boundary cannot be reached from the interior of the state space, that is the inventory
cannot vanish in finite time from some initial value, x0 
� 0. The inventory however, can start
from x0 � 0 and quickly build up to nonzero values.

In the absence of any orders, u� 0, and

s(ξ ) � ξ
2α
σ2 exp

(
− 2α

Dσ 2 ξ

)

The scale function

S(0) �
x0∫

0

ξ
2α
σ2 exp

(
− 2α

Dσ 2 ξ

)
dξ < ∞

converges in the vicinity of x � 0. The boundary, x � 0, is attracting and the inventory never
attains the boundary zero in finite time.

When D → ∞, then s(ξ ) � ξ
2α
σ2 exp

(
2u
σ 2ξ

)
, and the scale function, S(0) �

∫ x0
0 ξ

2α
σ2 exp

(
2u
σ 2ξ

)
dξ � ∞. The integral,

∫ x
0

(∫ x0
ξ

s(z)dz
)

1
σ 2ξ2s(ξ )

dξ < ∞, and the bound-

ary, x � 0, is a natural boundary under the Russian classification scheme and an entrance

boundary in the sense of Feller. For u � 0, S(0) �
x0∫

0
ξ

2α
σ2 dξ < ∞, and x � 0 is an attracting

boundary.

First Passage Times and Probabilities of Exit Through Absorbing
Barriers

In this section we look at how long the inventory, initially at x0 at time t� 0, remains in the
interval (xl, xr), which is assumed to contain x0, xl<x0 <xr . By erecting artificial absorbing
barriers at xl and xr we investigate the probability that the inventory crosses over either
barrier, xl or xr , and the mean first passage time to xl or xr . Define
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πl � probability of exit through xl ,

πr � probability of exit through xr ,

Passage Probabilities for SDE (6) withD <∞
The solution to the ordinary differential equation

σ 2x2

2

d2π

dx2
+

(
u − αx

(
1 − x

D

))dπ

dx
� 0 (24)

yields the probabilities of exit through either xl or xr , starting from x0, with the boundary
conditions:

πl (xl ) � 1, πr (xr ) � 0, if the exit is through, xl ,

πl (xl ) � 0, πr (xr ) � 1, if the exit is through, xr ,

πl (x0) + πr (x0) � 1.
The probabilities are given by

πl (x0) �

∫ xr

x0
x

2α
σ2 exp

(
2u

σ 2x
− 2α

Dσ 2 x

)
dx

∫ xr

xl
x

2α
σ2 exp

(
2u

σ 2x
− 2α

Dσ 2 x

)
dx

(25)

πr (x0) � 1 − πl (x0) �

∫ x0

xl
x

2α
σ2 exp

(
2u

σ 2x
− 2α

Dσ 2 x

)
dx

∫ xr

xl
x

2α
σ2 exp

(
2u

σ 2x
− 2α

Dσ 2 x

)
dx

(26)

The definite integrals in (25) and (26) can be evaluated in the following manner. First

expand exp
(

2u
σ 2x

)
as a power series:

b∫

a

x
2α
σ2 exp

(
2u

σ 2x
− 2α

Dσ 2 x

)
dx �

b∫

a

exp

(
− 2α

Dσ 2 x

)
⎛

⎜
⎝

∞∑

n�0

(
2u
σ 2

)n
x

2α
σ2

−n

n!

⎞

⎟
⎠dx

Then introduce the transformation, z � 2α
Dσ 2 x , so that a series of upper incompleteGamma

functions arises [9]:

b∫

a

x
2α
σ2 exp

(
2u

σ 2x
− 2α

Dσ 2 x

)
dx �

2αb
Dσ2∫

2αa
Dσ2

e−z
∞∑

n�0

(
2u
σ 2

)n(
Dσ 2

2α

) 2α
σ2

+1−n
z

2α
σ2

−n

n!
dz

�
∞∑

n�0

(
Dσ 2

2α

) 2α
σ2

+1−n(
2u
σ 2

)n

n!

2αb
Dσ2∫

2αa
Dσ2

e−z z
2α
σ2

−ndz

�
∞∑

n�0

(
Dσ 2

2α

) 2α
σ2

+1−n(
2u
σ 2

)n

n!

(
Γ

(
2α

σ 2 + 1 − n,
2α

Dσ 2 a

)
− Γ

(
2α

σ 2 + 1 − n,
2α

Dσ 2 b

))

(27)
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Mean Passage Times Through Boundaries with D <∞

The solution to the following ordinary differential equation

σ 2x2

2

d2T

dx2
+

(
u − αx

(
1 − x

D

))dT
dx

� −1 (28)

with the boundary conditions

T (xl ) � T (xr ) � 0

yields themeanfirst passage times through either xl or xr . The solution to (28)with integration
constants k1, k2 is

T (x) �
xr∫

x

⎛

⎜
⎝
k1 − ∫x

xl
2
σ 2 y

−2
(
1+ α

σ2

)

exp
(
− 2u

yσ 2 + 2α
Dσ 2 y

)
dy

z−
2α
σ2 exp

(
− 2u

zσ 2 + 2α
Dσ 2 z

)

⎞

⎟
⎠dz + k2 (29)

Passage Probabilities for SDE (7) with D� ∞

The solution to the ordinary differential equation, with the same boundary conditions as in
the last section,

σ 2x2

2

d2π

dx2
+ (u − αx)

dπ

dx
� 0 (30)

gives the exit probabilities

πl (x0) �
∫ xr
x0

x
2α
σ2 e

2u
σ2x dx

∫ xr
xl

x
2α
σ2 e

2u
σ2x dx

, πr (x0) � 1 − πl (x0) �
∫ x0
xl

x
2α
σ2 e

2u
σ2x dx

∫ xr
xl

x
2α
σ2 e

2u
σ2x dx

(31)

The integrand, x
2α
σ2 e

2u
σ2x , in (34) can be expressed as the power series,

∑∞
n�0

(
2u
σ 2

)n
x

2α
σ2

−n ,

which can then be integrated term by term. If 2u
σ 2 is a large quantity however, on account of

the order, u, being several orders of magnitude larger than σ 2, the integrals in (31) behave like

Laplace integrals [9] of the form,
∫ b
a x

2α
σ2 e

2u
σ2x dx . As the functions, x

2α
σ2 and d

dx

( 1
x

) � − 1
x2

,

vanish nowhere in the interval (a,b), an asymptotic expression for the Laplace integral is
possible:

b∫

a

x
2α
σ2 e

2u
σ2x dx ∼ σ 2

2u

(
a

2α
σ2

+2e
2u

σ2a − b
2α
σ2

+2e
2u

σ2b

)
,
2u

σ 2 → ∞ (32)

Mean Passage Times Through Boundaries with D� ∞

The differential equation is in this case

σ 2x2

2

d2T

dx2
+ (u − αx)

dT

dx
� −1 (33)

with the boundary conditions

T (xl ) � T (xr ) � 0
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and solution

T (x) �
xr∫

x

⎛

⎜
⎝
k1 − ∫x

xl
2
σ 2 y

−2
(
1+ α

σ2

)

exp
(
− 2u

yσ 2

)
dy

z−
2α
σ2 exp

(
− 2u

zσ 2

)

⎞

⎟
⎠dz + k2 (34)

Stationary Solution of the Fokker–Planck Equation and Existence
of Stable States

The Kolmogorov forward equation of Fokker–Planck equation governs the evolution of the
transition probability density, f (x(t)|x0 � x(0)), henceforth denoted by f .

Stationary Solution to the Fokker–Planck Equation for SDE (6)

For (6) the Fokker–Planck equation reads

∂ f

∂t
� −∂

((
u − αx

(
1 − x

D

))
f
)

∂x ′ +
σ 2

2

∂2
(
f x ′2)

∂x ′2 (35)

If as t → ∞ the system attains a probability density, f ∗(x), independent of time, the sys-
tem exhibits stationary behaviour. In this case (35) becomes an ordinary differential equation
with solution

f ∗(x) � N

x2
exp

⎛

⎝
∫

x

2
(
u − αz

(
1 − z

D

))

σ 2z2
dz

⎞

⎠ � Nx− 2α
σ2

−2 exp

(
− 2u

σ 2x
+

2α

Dσ 2 x

)
(36)

where N is the integration (normalization) constant.
To qualify as a probability density, (36) must be normalizable, that is,

1

N
�

D∫

0

1

x2
exp

⎛

⎝
∫

x

2
(
u − αz

(
1 − z

D

))

σ 2z2
dz

⎞

⎠dx < ∞ (37)

Integrating (37) yields the definite integral

1

N
�

D∫

0

x− 2α
σ2

−2 exp

(
− 2u

σ 2x
+

2α

Dσ 2 x

)
dx (38)

The variable substitution, z � 2u
σ 2x

, in (38) leads to the following series representation:

1

N
�

∞∑

n�0

(
2α
Dσ 2

)n(
2u
σ 2

)n−1− 2α
σ2

n!
Γ

(
2α

σ 2 + 1 − n,
2u

σ 2D

)
(39)

If u � 0, it can be seen from (38) that N does not exist, and in this case, f ∗(x) � δ(x), in
[0, D). This is because the boundary, x � 0, is an attracting boundary and the stationary
probability mass will be concentrated entirely on zero.
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Stationary Solution to the Fokker–Planck Equation for SDE (7)

The Fokker–Planck equation now reads

∂ f

∂t
� −∂((u − αx) f )

∂x ′ +
σ 2

2

∂2
(
f x ′2)

∂x ′2 (40)

and the stationary density reads

f ∗(x) � N

x2
exp

⎛

⎝
∫

x

2(u − αz)

σ 2z2
dz

⎞

⎠ � Nx− 2α
σ2

−2e
− 2u

σ2x (41)

where the normalization constant, N , is now furnished by the much simpler expression:

1

N
�

(
σ 2

2u

) 2α
σ2

+1

Γ

(
2α

σ 2 + 1

)
(42)

Extrema of Stationary Densities

The qualitative behaviour of the inventory process is determined by the extrema of the sta-
tionary density [10]. For (36) the extrema are supplied by the two roots of the quadratic
equation:

u − αx
(
1 − x

D

)
− σ 2x � 0 (43)

given by

x∗
1 � D(α + σ 2) − √

D2(α + σ 2)2 − 4αDu

2α

x∗
2 � D(α + σ 2) +

√
D2(α + σ 2)2 − 4αDu

2α
(44)

Both roots are real if u
D ≤ (α+σ 2)2

4α . For u
D � (α+σ 2)2

4α , we have a double root, which is an

inflection point at x∗
1 � x∗

2 � 2u
α+σ 2 . If the condition,

u
D <

(α+σ 2)2

4α , holds, the stable root, x∗
1 ,

falls below D when either σ 2 ≤ α, or σ 2 > max
(
α, u

D

)
.

Differentiation of (43) with respect to x reveals that x∗
1 is a relative maximum and x∗

2 > x∗
1

is a relative minimum. The inventory tends to move away from the relative minimum, x∗
2 ,

towards the relative maximum, x∗
1 , which represents the stable inventory state of the diffusion

process.

Probabilistic Potentials

Use the exponent in (37) to define the following function:

φ(x) � −
∫

x

2u − 2αz
(
1 − z

D

)

σ 2z2
dz � 2u

σ 2x
− 2αx

σ 2D
+
2α ln x

σ 2 (45)

If u
D < α

4 , then φ(x) possesses two extrema in [0,D) given by
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ξ1 � Dα − √
D2α2 − 4Duα

2α

ξ2 � Dα +
√
D2α2 − 4Duα

2α
(46)

If u
D � α

4 then φ′( D
2

) � φ′′( D
2

) � 0 and φ′′′( D
2

)
< 0, so x � D

2 is an inflection point. If
u
D > α

4 however, φ′(x) < 0, and φ(x) is uniformly decreasing so no global minimum exists,
as the order rate, u, always exceeds demand growth (constantly positive drift).

The probabilistic potential, φ(x), is analogous to the potential (Lyapunov) function in
Classical Mechanics. The root ξ1 is a stable minimum and the second root, ξ2 > ξ1, is an
unstable maximum. The inventory will tend to drift towards levels that minimize φ(x) and
maximize f ∗(x). But the maximum, x∗

1 , of f ∗(x) does not in general coincide with the
minimum, ξ1, of φ(x), unless the diffusion term is just an additive constant, independent of
x. In practice, stable inventory values will be those that fall within the valley of φ(x) and the
peak of f ∗(x). If φ(x) does not have a minimum but f ∗(x) still has a maximum, then there is
a non-negligible probability that the inventory will fall anywhere in the range, [0, D), which
is clearly an undesirable consequence when D is large in relation to the existing stock.

The density (41) has a unique maximum at

x∗ � u

α + σ 2 (47)

and the associated probabilistic potential function, φ(x) � 2u
σ 2x

+ 2α ln x
σ 2 , a unique minimum

at

ξ∗ � u

α
(48)

Approximation of the Stationary Density by a Normal Density in the Vicinity of Its
Extremum

The probability density function (36), f ∗(x) � Nx− 2α
σ2

−2 exp
(
− 2u

σ 2x
+ 2α

Dσ 2 x
)
, is reasonably

symmetric at x � x∗
1 . Its second derivative at x � x∗

1 is

( f ∗)′′(x∗
1 ) �

(
− 4u

σ 2(x∗
1 )

3 +
2

(x∗
1 )

2

( α

σ 2 + 1
))

f ∗(x∗
1 ) � −c f ∗(x∗

1 )

where c �
(

4u
σ 2(x∗

1 )
3 − 2

(x∗
1 )

2

(
α
σ 2 + 1

))
> 0.

We can approximate f ∗(x) by a Gaussian density, g(x), in the neighbourhood of x∗
1 [10].

The Gaussian density must have the form

g(x) � f ∗(x∗
1 ) exp

(

−c
(
x − x∗

1

)2

2

)

(49)

so that g′(x∗
1 ) � 0 and g′′(x∗

1 ) � −c f ∗(x∗
1 ) � ( f ∗)′′(x∗

1 ).
The area, A, under the Gaussian function, g(x), is given by

A � f ∗(x∗
1 )

D∫

0

exp

(

− c(x − x∗
1 )

2

2

)

dx � f ∗(x∗
1 )

√
π

2c

(
erf

(
(D − x∗

1 )

√
c

2

)
− erf

(
−x∗

1

√
c

2

))
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where erf(x) is the well known error function, erf(x) � 2√
π

∫ x
0 e−t2dt [11]. The effective

width, ε, of the peak of the Gaussian function, g(x), is the width of the rectangle that has the
same height as its peak, f ∗(x∗

1 ), and the same area, A. So

ε � A

f ∗(x∗
1 )

�
√

π

2c

(
erf

(
(D − x∗

1 )

√
c

2

)
− erf

(
−x∗

1

√
c

2

))
(50)

The probability density (41), f ∗(x) � Nx− 2α
σ2

−2 exp
(
− 2u

σ 2x

)
, can also be approximated

by the normal density

g(x) � f ∗(x∗) exp
(

−c(x − x∗)2

2

)

(51)

where c � 2
(x∗)2

(
α
σ 2 + 1

)
> 0.

The effective width for (51) is similarly given by

ε �
√

π

2c

(
erf

(
(D − x∗)

√
c

2

)
− erf

(
−x∗

√
c

2

))
(52)

The effective width is useful in practice as it designates the range of approximately stable
inventory levels locatedwithin± ε

2 the theoretically obtained stable steady states, x
∗
1 (D < ∞)

and x∗(D � ∞).
The Gaussian density, g(x), is a credible approximation to f ∗(x) when both φ(x) and

f ∗(x) possess extreme values in [0,D), so that the effective width for g(x) represents the
basin of stability.

A Numerical Example

We close the paper by a simple numerical demonstration of the key findings. Let x0 � 5, u �
5, D � 400, α � 0.2, σ � 0.3.

Figure 1 below shows 5 sample path realizations and the evolution of the mean inventory
level.

Figure 2 below displays the stationary probability density, f ∗(x), and its Gaussian approx-
imation, g(x). The maximum density inventory is x∗

1 ≈ 18 from (44) and the effective width
is ε ≈ 18 from (50), hence the range of stable inventory values is approximately [9, 27].
Finally, Fig. 3 illustrates the probabilistic potential, φ(x), maximized at ξ1 ≈ 27 from (46).

Finally, suppose the inventory planner wants to estimate for instance, the probability that
the inventory, starting from x0 � 5 will either double to xr � 10 or drop to xl � 4, when
the replenishment rate is u � 5 and α � 0.2, σ � 0.3, D � 400. From (25), (26) and (27)
we obtain the probability estimates, π (xl � 4) � 0.0177 and π(xr � 10) � 0.9823. If
the replenishment rate drops to u � 2 for instance, the probabilities become roughly equal,
π(xl � 4) � 0.5089 and π (xr � 10) � 0.4911.

Discussion

We have presented in this work a continuous time mathematical model for a randomly evolv-
ing inventory of an item for which demand is growing at a gradually slowing rate in relation to
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the inventory’s availability, whilst being simultaneously satisfied at a constant order rate. The
model put forward is a temporally homogeneous stochastic differential equation described
by (6) and in a simpler reduced version by (7), with Itô solutions provided when analytically
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possible. To assess the direction the inventory is likely to take, theoretical estimates of the
probabilities of attaining arbitrary inventory levels from some current inventory state under
a fixed replenishment scheme are explicitly determined in “First Passage Times and Proba-
bilities of Exit Through Absorbing Barriers” section. Finally, in “Stationary Solution of the
Fokker–Planck Equation and Existence of Stable States” section the issue of long term stable
stock levels is thoroughly addressed and the constraint on the replenishment rate, u, for a
stable inventory regime is explicitly obtained. The size of the stable regime derived from the
approximation of the probability density to a Gaussian density, will depend on the magnitude
of the diffusion parameter, σ . The probabilities of reaching prescribed inventory levels and
the determination of the stability regime are useful practical parameters for the inventory
planner.
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