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Abstract Effect of inertia on the Draw resonance instability of Fibre spinning is studied
numerically by carrying out a linear stability analysis of the governing equations. Viscoelastic
effects are incorporated by using the Giesekus model as the constitutive equation. These
results are validated by carrying out simulations of the complete non stationary system.
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Introduction

Fibre spinning is an important industrial process that has been studied widely in the past few
years. There are differentways inwhich a fibre can be spun usingmolten polymer, for instance
dry spinning, wet spinning and melt spinning. In this paper we particularly talk about melt
spinning. In this process, molten polymer is extruded through a die also known as a spinn eret,
subjected to cool air and then taken up via some take-up device at a velocity higher than the
initial velocity. This ensures that the fibre is stretched. The ambient temperature ismuch lower
than the polymer solidification point and therefore the polymer cools and solidifies before
take-up. High speed non isothermal melt spinning is associated with a neck like deformation
of the fibre, also known as “necking” where in there is a sudden and sharp decrease in the
diameter of the fibre. The necking phenomena has been shown to be connected to flow induced
crystallization in polymers [5]. Studies investigating this phenomena take into account the
micro structure of the polymer molecules. In the industrial process hundreds of fibres are
extruded and spun in parallel. But for our studies we consider only one fibre. Figure 1 shows
a schematic diagram of the melt spinning process. The ratio of the take-up velocity (vL ) to the
extrusion velocity (v0) is called the Draw ratio (D = vL

v0
> 1). Textile fibres need to conform
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Fig. 1 Sketch of the melt spinning process

to prescribed dimensions and properties and therefore any fluctuations in the dimensions of
the fibre need to be avoided. In order to prevent flow instabilities it is imperative to thoroughly
understand not only the flow dynamics of the process but also the mechanical and rheological
properties of the fluid. Among the different flow instabilities that can occur in a fibre spinning
process the most severe is the filament breakup. This is connected to the necking phenomena
[17]. The other important instability is called “Draw Resonance” and is characterized by
sustained periodic oscillations in the cross-sectional area of the fibre. This happens when the
Draw ratio exceeds a critical value. For Newtonian fluids this value has been numerically
found to be of order 20, [3] and this has been corroborated through experimental results [4,9].
Since this instability makes it difficult to manufacture synthetic fibres at high speeds, it is
worth studying the process of Draw resonance and factors that suppress it. Several factors
such as inertia, spinline cooling and viscoelasticity are known to effect the stability of the
spinning process. These have been investigated by several authors [10,12,14,15]. Spinline
cooling has been shown to enhance stability where as surface tension tends to destabilise the
spinning process. Stability of the spinning process has also been investigated by performing
linear or spectral stability analysis [7,8,10,14]. It has long been established, [13,14] that
inertia has a stabilising effect on spinning. This is easy to understand since conservation of
mass requires that areas with large diameters move slowly and areas with smaller diameters
move more rapidly. Effect of inertia is to inhibit the velocity which prevents changes in areas
of the fibre. Hagen [6], has studied numerically the effect of inertia on the stability of the
spinning process and given more precise and accurate results of the suppression of Draw
resonance by inertia. However the study was limited to Newtonian fluids. Beris and Liu [1,2]
in their seminal work have studied in detail the effect of inertia on Draw resonance dynamics
using theMaxwell constitutive model. However, Maxwell model being a linear equation fails
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tomodel the effects caused due to the nonlinear terms. Therefore, very often nonlinearmodels
such as PTT and Giesekus are used in modeling processes involving viscoelastic flows.

In this work we investigate the fibre spinning equations using the Giesekus model. The
Giesekusmodel describes how the relaxation time of amolecule is alteredwhen the surround-
ing molecules are oriented. The relaxation behavior becomes anisotropic and results in an
additional quadratic term of the stress tensor compared to the Maxwell model. The Giesekus
model parameter α determines the magnitude of the anisotropic drag. In this work, effects
such as necking are neglected as in order to incorporate those effects micro structure of the
polymers would have to be taken into account. We are more interested in doing a qualitative
analysis of a simple model governing the extensional flow of a polymer fluid with prescribed
boundary conditions. First we derive analytic solutions of the stationary equations taking
into account inertia as the dominant force but neglecting secondary forces such as gravity,
surface tension and air drag. We then linearise the equations and perform a linear stability
analysis. This is followed by the simulation of the complete nonlinear system of equations.

Description of the System

A polymer fibre is usually modeled as a uniaxial, extensional flow of fluid. Simple models
consider the fluid to be Newtonian or simply viscous. But molten polymers are best described
as viscoelastic fluids. Therefore, a viscoelastic model is used as the constitutive equation
relating the stress to the strain rate. Considering the geometry of the fibre, usually a cylindrical
coordinate system is used to describe the flow with the z coordinate in the direction of the
flow. When the polymer melt exits the spinneret, it swells to several times its diameter size
exhibiting a characteristic behavior of Non-Newtonian fluids also known as the “die swell
effect”. This phenomena has been ignored for simplicity. Since the radius of the fibre is
very small in comparison to the length of the fibre, it is a common practice to consider
one-dimensional (1-d) model equations. Considering the conservation laws of mass and
momentum of a polymer jet and averaging over the cross-section of the fibre, the following
one-dimensional equations are got [11].

∂a

∂t
+ ∂

∂z
(avz) = 0 (1)

ρa

(
∂vz

∂t
+ vz

∂vz

∂z

)
= ∂

∂z
(aτzz) (2)

In the above equations, z denotes the coordinate along the spinline, t is the time, a the cross
sectional area of the fibre, vz the axial velocity and τzz the axial stress. Radial stress variable
is not considered. The energy equation has been neglected in order to get the isothermal
process.
The constitutive equation of the Giesekus fluid has the form [16]

τ + λ

(
Dτ

Dt
− D.τ − τ .DT

)
+ αη0

G
τ 2 = 2η0ε̇ (3)

where τ denotes the stress tensor,D represents the deformation rate tensor, λ is the relaxation
time of the polymer (time taken for the fluid to get back its original state after being stretched),

η0 is the zero-shear viscosity,G is the melt shear modulus and ε̇ = D+DT

2 denotes the rate-of-
strain or extensional rate tensor. The Giesekus model parameter α is such that 0 ≤ α ≤ 1. For
α = 0, the isotropic, Upper Convected Maxwell model is recovered. The most severe case
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of anisotropic drag is reached when α = 1. In the above equation D
Dt denotes the material

derivative.
D

Dt
= ∂

∂t
+ v.	

where v is a velocity vector. Considering only the axial stress variable τzz , and integrating
over the cross-sectional area, we get the following form of theGiesekus constitutive equation.

τzz + λ

(
∂τzz

∂t
+ vz

∂τzz

∂z
− 2τzz

∂vz

∂z

)
+ αη0

G
τ 2zz = 2η0

∂vz

∂z
(4)

The system (1), (2) and (4) is subject to the following boundary conditions.
a = a0, vz = v0, at z = 0 for all t
vz = vL at z = L for all t
where L denotes the length of the fibre, a0 and v0 denote the cross sectional area and axial
velocity of the fibre at the spinneret and vL denotes the take-up velocity of the fibre.

Dimensionless Equations

We non dimensionalise the equations by introducing the following dimensionless variables:

ã = a

a0
, ṽ = vz

v0
, t̃ = tv0

L
, z̃ = z

L
τ̃ = τzz L

η0v0
Re = ρv0L

η0
, De = λv0

L

The dimensionless transport equations governing the melt spinning process along with the
constitutive equation are given below.

∂ ã

∂ t̃
+ ∂(ãṽ)

∂ z̃
= 0 (5)

Re ã
∂ṽ

∂ t̃
+ Re ãṽ

∂ṽ

dz̃
= ∂(ãτ̃ )

∂ z̃
(6)

∂τ̃

∂ t̃
+ ṽ

∂τ̃

∂ z̃
− 2(τ̃ + 1

De
)
∂ṽ

∂ z̃
= − τ̃

De
(1 + αDeτ̃ ) (7)

z̃ = 0; ã = 1 = ṽ, (8)

z̃ = 1; ṽ = D > 1 (9)

In the above, De represents the dimensionless characteristic relaxation time, also known as
the Deborah number and Re is the Reynolds number representing the force due to inertia,
ρ being the density of the fiber. For sake of convenience hereafter we drop the˜from all the
variables.

Steady State Solution

The stationary equations can be easily read off from Eqs. (5)–(7) as follows.

d(av)

dz
= 0 (10)

Re av
dv

dz
= d(aτ)

dz
(11)

v
dτ

dz
− 2

(
τ + 1

De

)
dv

dz
= − τ

De
(1 + αDeτ) (12)
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From (10) and (11) we easily get τ = Rev2 + cv where c is a constant. Substituting this
in Eq. (12), we get the following differential equation in variable v(z).

dv

dz
= (cv + Rev2)(1 + αDe(Rev2 + cv))

cvDe + 2

Solving the above differential equation we get

√
αDe(c2De − 4Re) tan−1

√
αDe(c + 2Rev)√
4Re − αc2De

− cDe log(αvDe(c + Rev) + 1)

2Re

+ (c2De − 2Re) log(c + Rev)

cRe
+ 2

c
log v = z + K (13)

The constants K and c are got by applying the boundary conditions v(0) = 1 and v(1) = D
respectively. Let us have a look at some simplified cases.
Putting α = 0 we get the solution with the UCM model,

(c2De − 2Re) log(c + Rev)

cRe
+ 2

c
log v = z + K

Applying the boundary condition v(0) = 1 the following solution is got

2

c
log v(z) +

(
cDe

Re
− 2

c

)
log

Rev(z) + c

Re + c
= z (14)

This is the solution for the Maxwell fluid as got by [1]. Further by putting Re = 0 one gets
the solution without the inertia terms

Dev(z) + 2

c
log v(z) = z + De

where c = 2 log D
1+De−DeD

The solutions got above are implicit. In the following theorem we prove the existence of
solution to the boundary value problem for the simple case of α = 0.

Theorem 1 Under the assumption that De > 0, 0 < Re < 4De log(1 + 1/De), e

√
Re
2De <

D < 1 + 1/De, there exists a number τ0 > Re +
√

2Re
De such that there exists at least one

solution of Eqs. (10)–(12) along with boundary conditions (8) and (9)

Proof Consider the implicit solution as given by Eq. (14). Here, c = τ0(D) − Re where τ0
is an initial value of τ which depends on the Draw ratio D. Let

f (v) =
(

2

τ0(D) − Re

)
log v(z)

+
(
De(τ0 − Re)

Re
− 2

τ0(D) − Re

)
log

(
Rev(z) + τ0(D) − Re

τ0(D)

)
− z

lim
v→0

f (v) = −∞ (15)

Also,
lim

v→∞ f (v) = ∞ (16)
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Hence, from the intermediate value theorem, there exists at least one solution v ∈ (0,∞).
Now substituting the boundary condition v(1) = D in Eq. (14) we get

(
(τ0 − Re)2De − 2Re

(τ0 − Re)Re

)
log

(
τ0 − Re + ReD

τ0

)
+ 2

(τ0 − Re)
log D = 1

Let

g(τ0) =
(

(τ0 − Re)2De − 2Re

(τ0 − Re)Re

)
log

(
τ0 − Re + ReD

τ0

)
+ 2

(τ0 − Re)
log D − 1

lim
τ0→Re+

√
2Re
De

g(τ0) =
√
2De

Re
log D − 1 > 0 since D > e

√
Re
2De

Also,

lim
τ0→∞ g(τ0) = De(D − 1) − 1 < 0 since D < 1 + 1/De

Therefore, using the intermediate value theorem, there exists at least one τ0 ∈ (Re +√
2Re
De ,∞) such that the boundary value problem has a solution. ��

The proof of existence of stationary solutions for α 	= 0 may be investigated using fixed
point arguments which may be the subject of another paper.

Numerical Method

Numericalmethod for solving the stationary boundaryvalue problemconsists of the following
steps:

1 Initialise i = 2
2 Guess two boundary conditions for stress at z = 0, namely s1 and s2. Let si denote the

value of τ(0) in the ith iteration.
3 Solve the system of odes twice as an initial value problem with two initial condition

vectors (a(0), v(0), si−1) and (a(0), v(0), si ).
4 Compute the error ε = |D − v(si , 1)|.
5 Let Tol denote a prescribed tolerance. If ε > Tol then,

• compute the new value of τ(0) using the secant method as follows:

si+1 = si−1 + (si − si−1)
D − v(si , 1)

v(si , 1) − v(si−1, 1)

• update i = i + 1
• go to step 3 and follow the procedure only for the latest value of i .

else
Stop

Figure 2 shows the typical axial velocity profiles of a fibre for various values of α in the
stationary case. The axial velocity increases to match the axial velocity prescribed at the end.
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Fig. 2 Axial velocity profiles of the stationary solutions for De = 0.005, Re = 0.01, D = 30 for various
values of α

Linear Stability Analysis

Equipped with the existence of stationary solutions, we proceed to linearise the equations
and perform a linear stability analysis. We introduce infinitesimal perturbations in the steady
state solutions as follows.

a(t, z) = as(z) + γ (z) exp(μt), v(t, z) = vs(z) + β(z) exp(μt),

τ (t, z) = τs(z) + φ(z) exp(μt)

where as, vs and τs are the steady state solutions. Substituting these in Eqs. (5)–(9) and
neglecting higher order terms we get the following system.

μγ = −v′
sγ − vsγ

′ − a′
sβ − asβ

′

μβ = γ

(
τs

′

Reas
− vsv

′
s

as

)
+ γ ′

(
τs

Reas

)
− βv′

s − β ′

as
+ φ

(
a′
s

Reas

)
+ φ′

Re

μφ = −τs
′β + β ′2

(
τs + 1

De

)
+ φ

(
2v′

s − ατs − 1 + αDeτs
De

)
− vsφ

′ (17)

where γ ′ = dγ
dz .

Boundary conditions: γ (0) = β(0) = β(1) = 0.
There are several discretization schemes that can be used to solve the above system of
equations. In the context of fibre spinning equations, Chebyschev collocation scheme has
proven to be robust [6]. Therefore, we employ this method to find the eigenvalues of the
above system. The unknowns γ, β and φ are projected onto the vector space of functions
spanned by the Chebyshev polynomials {Cn}N0 of degree 0 through N.

γ N (z) =
N∑

n=0

γnCn(2z − 1), βN (z) =
N∑

n=0

βnCn(2z − 1), φN =
N∑

n=0

φnCn(2z − 1)
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with 3(N + 1) unknown coefficients γn, βn, φn . These projections are substituted in the
Eqs. (5)–(9) and evaluated at the N + 1 collocation points
zk = 1

2

(
cos

(
πk
N

) + 1
)
, 0 ≤ k ≤ N . This gives the following discretised eigenvalue

problem to be solved.
μBu = Au (18)

where u = [γn, βn, φn]. The eigenvalues are got by using the function “eig.m” in MATLAB.
Eigenvalues are computed for increasing values of N until convergence is achieved. In our
computations N = 600 was good enough to give us the required convergence.

Results of Linear Stability Analysis

Figure 3 is the stability diagram which shows the pairings of Draw ratio D and Deborah
number De with Re = 0 for α = 0. As mentioned before, α = 0 reduces the Giesekus
model to the UCM model for which a detailed stability analysis has been done by Beris
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and Liu [1]. The given figure compares well with the stability diagram as produced by the
mentioned authors, for low to medium range of Draw ratios. Since computations become
more difficult with increasing Draw ratios and the purpose of this paper is to study the Draw
resonance instability for various Giesekus fluids, we limited our computations to medium
range of Draw ratios. The instability region that we get differs from that of the Newtonian
fibre, considerably in that in the viscoelastic case it tends to be closed. Figure 4 shows us the
stability regions for Giesekus fluids with α = 0.2 and α = 0.5 respectively. These figures
vary considerably from the case where α = 0. For α = 0.2, the stability curve seems to
plateau with increasing value of De. In the case where α = 0.5, it is interesting to note as De
increases stability decreases. Figure 5 shows that as the values of α increase, stability comes
down. Increase in nonlinearity of stress in the Giesekus model, decreases stability. Effect of
inertia however is to increase the stability in all cases although as α increases, the stability is
only marginally improved.

Figures 6, 7 and 8 show us the spectra for various values of α for constant Draw ratio
and a slightly varying Re keeping all other parameters fixed. We have plotted the inverse
of eigenvalues so that the complete spectrum is visible.The eigenspectra are lined up along
certain curves. As Re is increased slightly, the dominant pair of the complex-conjugate
eigenvalue crosses over to the left half of the plane showing the transition from instability to
stability. This is an indicator of the occurrence of a subcritical Hopf bifurcation.

Non Stationary Equations

The system of Eqs. (5–9) is solved numerically using the Method of Lines. We set h = 1/N
and xi = i

N , where N is the number of nodes and 0 ≤ i ≤ N . Define ai (t) = a(xi , t), vi (t) =
v(xi , t) and τi (t) = τ(xi , t). An upwind method is used to approximate the convective
derivatives. The other spatial derivatives are approximated using central differences at the
interior nodes, 1 ≤ j ≤ N − 1.

da j

dt
= −a j

(v j+1 − v j−1)

2h
− v j

(a j − a j−1)

h
(19)

dv j

dt
= −v j

(v j − v j−1)

h
+ 1

Re

(τ j+1 − τ j−1)

2h
+ τ j

Rea j

(a j+1 − a j−1)

2h
(20)
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dτ j

dt
= −v j

(τ j − τ j−1)

h
+ 2

(
τ j + 1

De

)
(v j+1 − v j−1)

2h
− τ j

De
(1 + αDeτ j ) (21)

Stress boundary condition at z = 0 is not specified. Therefore the spatial derivatives in the
stress equation at the first node are discretized using forward differences and the resulting
equation reads as follows.

dτ0

dt
= − (τ1 − τ0)

h
+ 2

(
τ0 + 1

De

)
(v1 − 1)

h
− τ0

De
(1 + αDeτ0) (22)

The area and stress evolution equations at j = N are got by discretizing the spatial variables
using backward differences.

daN
dt

= − a j
(D − vN−1)

h
− D

(aN − aN−1)

h
(23)

dτN

dt
= −D

(τN − τN−1)

h
+ 2

(
τN + 1

De

)
(D − vN−1)

h
− τN

De
(1 + αDeτN ) (24)

Boundary conditions: a0(t) = 1, v0(t) = 1 and vN (t) = D(1 + δ) where δ > 0 represents
the perturbation in the actual Draw ratio.
Initial conditions: ai (0) = as , vi (0) = vs and τi (0) = τs for l 0 ≤ i ≤ N
where as, vs and τs are the steady state solutions. Here, ε is the perturbation introduced in
the Draw ratio. The resulting system is a first order system of ODEs in 3N unknowns which
is solved using standard MATLAB ode solvers.

Results of Nonstationary Simulations

Figures 10, 11 and 12 show the graphs of cross sectional area versus time at z = 1 for
the same set of parameters as in Figs. 6, 7 and 8 respectively. For instance, consistent with
the linear stability results, we see that the Draw resonance instability manifests at D = 26
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Fig. 10 Area versus time at z = 1 for α = 0, Re = 0.002, De = 0.005, D = 26 (left), Re = 0.008 (right)
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Fig. 11 Area versus time at z = 1 for α = 0.2, Re = 0.01, De = 0.005, D = 23 (left), Re = 0.02 (right)

450 452 454 456 458 460
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

time (t)

C
ro

ss
 s

ec
tio

na
l a

re
a 

a(
t)

0 20 40 60 80 100
0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

time (t)

C
ro

ss
 s

ec
tio

na
l a

(t
)

Fig. 12 Area versus time at z = 1 for α = 0.5, Re = 0.001, De = 0.001, D = 21 (left), Re = 0.01 (right)

and Re = 0.002 for α = 0 in the form of sustained periodic oscillations in the cross-
sectional area of the fibre. Also, as the value of Re is increased slightly keeping the draw
ratio constant, the oscillations in the cross sectional area of the fibre dampen to finally reach
the steady state solution. It is a well known fact that in the terminology of nonlinear dynamics
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Draw resonance presents itself as a Hopf bifurcation. When the complex conjugate pair of
eigenvalues crosses the imaginary axis from right half plane to the left half as the values of
the parameter Re is increased, it is the case of occurrence of a subcritical Hopf bifurcation.
This has been demonstrated in the plots of the eigenspectra. The instability presents itself in
the form of time periodic sustained oscillations. Figure 9 shows a section of the Limit cycle
corresponding to a time periodic motion.

Conclusion

In conclusion, in this paper we have furnished a numerical study of the suppression of Draw
resonance due to inertia in the fibre spinning process by doing a linear stability analysis as
well as by simulating the nonstationary equations using a nonlinear viscoelastic constitutive
equation. Along with the plots of complete eigenspectra and corresponding nonstationary
simulations, we furnish stability diagrams showing the stability regions for various values
of the Giesekus parameter α which describe Giesekus fluids with varying anisotropic drag.
We believe that since this work is new, it certainly adds to our knowledge about the role of
inertia in suppressing Draw resonance in nonlinear viscoelastic fibres.
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