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Abstract Kung–Traub (J ACM21:643–651, 1974) constructed two optimal general iterative
methods without memory for finding solution of nonlinear equations. In this work, we are
going to show that one of them can be applied for matrix inversion. It is observed that the
convergence order 2m can be attained using 2m matrix–matrix multiplications. Moreover,
a method with the efficiency index 101/6 ≈ 1.4677 will be furnished. To justify that our
procedure works efficiently, some numerical problems are included.
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Introduction

Recently, several one or multipoint iterative methods of various convergence orders have
been extended to approximate the inverse of a given matrix [1,2]. Note that throughout this
paper and as for prerequisite, the reader is expected to be familiar with iterative methods for
solving nonlinear equations [3].

Based on our best knowledge, Schulz and Hotelling are pioneer in the application of
iterative methods for computing matrix inverses [4,5]. They managed to extend Newton’s
method to compute matrix inverses of regular matrices. Some further discussions, extensions
and modifications have then been done for computing inner inverses in [6], Drazin inverse
in [7], Moore–Penrose inverse in [8], weighted Moore–Penrose inverse in [9] and interval
versions in [10].
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In this work andmotivated by the above-mentionedworks, we investigate the applicability
of Kung–Traub’s iterative class of methods [11], given in what follows:

⎧
⎪⎪⎨

⎪⎪⎩

�1,n(F)(Vn) = Vn − F(Vn)
F ′(Vn) , n = 0, 1, 2, . . . ,

...

� j,n(F)(Vn) = Q j−1(0),

(1)

for j = 1, . . . ,m for matrix inversion, whereas Q j (U ) is the inverse Hermite interpolatory
polynomial of degree at most j such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q j (F(Vn)) = Vn,

Q′
j (F(Vn)) = 1

F ′(Vn) ,

Q j

(
F(�k,n(F)(Vn))

)
= �k,n(Vn), k = 1, . . . , j − 1.

(2)

As an instance, the three-step eighth order method extracted from (1) could be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�1,n = Vn − F(Vn)
F ′(Vn) , n = 0, 1, 2, . . . ,

�2,n = �1,n − F(�1,n)(
F(Vn)−F(�1,n)

)2
F(Vn)
F ′(Vn) ,

�3,n = �2,n −
(

1
F(Vn)−F(�2,n)

(
Vn−�2,n

F(Vn)−F(�2,n)
− 1

F ′(Vn)

)
− F(�1,n)

F ′(Vn)(F(Vn)−F(�2,n))2

)

× F(�1,n)F2(Vn)
F(�1,n)− F(�2,n)

.

(3)

Kung–Traub have developed two general methods without memory for finding simple
roots of nonlinear equations in [11]. However, both of them cannot be applied in matrix
inversion. Here, we deal with one of their classes, i.e. (1). In fact by using (1), we are able to
construct a general fast class of algorithms with a simple but efficient structure.

The rest of this work is organized as follows. “Derivation” section concerns applying
general Kung–Traub’s class (1) for approximating matrix inverses. The extension of the
proposed iterative class forMoore–Penrose inversewill be discussed in “FurtherDiscussions”
section along with a new efficient formulation. Some numerical performances are illustrated
in “Numerical Performances” section. Finally, the last section concludes the paper.

Derivation

We now wish to apply the general method (1) for computing the approximate inverses of a
given nonsingular matrix A. To this end, we consider the nonlinear matrix equation

F(V ) := V−1 − A. (4)

It is clear that F(A−1) = 0. Considering (4), we first apply (3) to produce the matrix
sequence {Vn}, as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V0 is given,

�1,n = Vn (2I − AVn),

�2,n = �1,n

(
2I − A�1,n

)
,

Vn+1 = �3,n = �2,n

(
2I − A�2,n

)
,

(5)
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which later be shown that it converges to A−1. To be more precise, we obtain the following
second-, fourth-, and eighth-order iterative methods for computing the inverse of the matrix
A, respectively:

Vn+1 = Vn (2I − AVn), (6)

which is known as the Schulz quadratically convergent method, and

Vn+1 = Vn (2I − AVn)
(
2I − AVn(2I − AVn)

)
, (7)

which is known as the double Schulz method, and

Vn+1 = Vn (2I − AVn)
(
2I − AVn(2I − AVn)

)

×
(
2I − AVn(2I − AVn)

(
2I − AVn(2I − AVn)

))
, (8)

which is known as themethod ofHouseholder [12]. Inductively, with�1,n = Vn (2I − AVn),
for an m-step method extracted from the class (1), we have

Vn+1 = �m,n = �m−1,n

(
2I − A�m−1,n

)
, m = 2, 3, . . . . (9)

The general class of algorithms (9) could be re-written after proper factorizations in the
following form

Vn+1 = Vn(I + Yn)(I + Y 2
n ) · · · (I + Y 2m

n ), m = 1, 2, . . . , (10)

wherein Yn = I − AVn , to provide a general class of matrix methods of order q = 2m , at the
cost of 2m matrix multiplication per cycle whose efficiency is an increasing function of m.

Now, it must be discussed theoretically that the new scheme is computationally efficient.
It is well-known that the efficiency index could be expressed by

E I = p
1
θ , (11)

which is recently developed in [13] for such matrix methods and it has been proved that an
iteration of order p will almost require the following number of iterations to converge in
floating point arithmetic

s ≈ 2 logp κ2(A). (12)

In (12), κ2(A) is the condition number of an input matrix in l2 and defined generally as
κ2(A) = ‖A‖2‖A(2)

T,S‖2, where A(2)
T,S is the generalized outer inverse.

θ in (11) is thewhole computational cost of an algorithm includingmatrix–matrix products
and the stopping criterion. On the other hand, a reliable termination for finding approximate
inverses of regular matrices is given by

‖I − Vn A‖∗ ≤ ε. (13)

Note that Vn A should be computed further per computing cycle. This adds one more
multiplication per cycle. Accordingly, we now compare the computational efficiency indices
of different methods with various orders extracted from (10) by choosing (13). This is illus-
trated in Fig. 1. It shows that the growth in the number of steps (m), which ends in higher
convergence order, will produce higher efficiency indices for computing inverses.

Hence, the general class ofmethods in this work is efficient and consists of several existing
well-known schemes of the literature.
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Fig. 1 The comparison of efficiency indices for different methods of various orders extracted from (10)

The general class of methods (9) or (10) needs a good initial approximation, namely V0,
ideally close to A−1 which is addressed in the following theorem.

Theorem 2.1 If

‖I − AV0‖ < 1, (14)

then the class of iterative methods given by (9) or (10) produce a convergent sequence of
matrices {Vn} to A−1. Moreover, it is of order 2m.

Proof The proof is similar to those taken in [13]. ��
An interesting initial matrix was introduced and discussed in [14] is as follows

V0 = αA∗, (15)

where 0 < α < 2
||A||22

. Because of the fact that, the computation of matrix norm ‖ · ‖2, is
difficult for large matrices, an alternative bound for α could be considered in what follows
0 < α < 2

σ 2
max

. Another easy to compute initial approximation which is also useful even in

the case of finding Moore–Penrose inverses is

V0 = 1

‖A‖F A∗. (16)

Remark 2.2 The matrix iterations extracted from (10) of any arbitrary order are matrix–
matrix multiplication based iterative algorithms. The most important application of such
iterative schemes is in finding the (pseudo) inverses of H-matrices, i.e. the large sparse
matrices possessing sparse inverses emerging in scientific problems, see e.g. [15].

Further Discussions

Let us now extend the contributed method (10) for calculating the pseudo-inverse A†. That
is, we must analytically reveal that the sequence {Vn}n=∞

n=0 generated by the iterative Schulz-
type class (10), for any n ≥ 0, tends to the Moore–Penrose inverse as well. Note that for the
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rectangular complex matrix A ∈ C
l×k and the sequence {Vn}n=∞

n=0 generated by (9), for any
n ≥ 0, Vn reads

(AVn)
∗ = AVn, (Vn A)∗ = Vn A, Vn AA

† = Vn, A†AVn = Vn . (17)

Theorem 3.1 For the complex matrix A ∈ C
l×k , and the sequence {Vn}n=∞

n=0 generated by
(10), for any n ≥ 0, using the initial approximation (15), the sequence is converged to the
pseudo-inverse A† with 2m order of convergence.

Proof If we consider E†
n = Vn − A† as the error matrix, then the steps of the proof would be

similar to those taken in [13]. Hence, we only state that it reads the following error bound

‖E†
n+1‖ ≤ ‖A‖2m‖A†‖‖E†

n‖2
m
. (18)

That is, ‖Vn+1 − A†‖ → 0. The proof is complete. ��
It should be commented that although the families of Kung–Traub are optimal in solving

nonlinear equations, their counterparts in matrix inversion are not any more optimal and does
not follow the optimality condition of Kung–Truab [11]. To be more precise, matrix methods
of higher order with the same number of matrix–matrix multiplications can be constructed.

Mathematically speaking, the eighth order scheme of Kung–Traub requires 6 matrix–
matrix multiplications. Now, we point out that a much more efficient method of order 10
requiring the same number of multiplications can be derived from proper factorization of the
hyperpower scheme of order 10 [16]. That is to say, it would not be tough to derive that the
hyperpower method of order 10:

Vn+1 = Vn
(
I + Rn + · · · + R9

n

)
, Rn = I − AVn, (19)

can be re-written in a much simpler form as follows

Vn+1 = Vn (I + Rn)
[
(I + αR2

n + R4
n)(I + βR2

n + R4
n)

]
, (20)

with only 6 matrix–matrix multiplications whereas α = 1
2

(
1 − √

5
)
) and β = 1

2

(
1 + √

5
)
.

We name this method as MHP10. This shows that the new formulation hits the computa-
tional efficiency index 101/6 ≈ 1.4677 even without considering any burden on the stopping
criterion.

We also remark that the extension and use of the above methods for generalized outer
inverses would be simple and could be done according to the recent work [17].

Numerical Performances

This section investigates problems related to the numerical precision of the matrix inverse-
finding, using Mathematica 10 built-in precision, [18]. For numerical comparisons in this
section, we have used the class (10) with various convergence rates, i.e., the second order
scheme denoted by M2, the fourth order scheme denoted by M4, the eighth order scheme
denoted by M8 and the sixteenth order scheme denoted by M16. As the programs were
running, we found the running time using the command AbsoluteTiming[] to report
the elapsed CPU time (in seconds) for the experiments. The computer specifications are
Microsoft 7 Ultimate, 64-bit Operating System, with 8GB of RAM.

Example 4.1 The aim of this example is to compare different methods for finding approxi-
mate inverses of a randomly generated dense matrix of the size 1000 × 1000 as follows:
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Fig. 2 The comparison of different methods in terms of the number of iterations for Example 4.1

Table 1 The results of comparisons for Example 4.1 in terms of the elapsed time

Methods M2 M4 M8 M16 MHP10

Time (in seconds) 4.805809 4.173609 3.868807 3.588006 3.619206

d = 1000; SeedRandom[123]; A = RandomReal[{-10, 10}, {d, d}];

In this test, the prescribed tolerance is ε = 10−4 and the maximum number of iterations set
to 100 using the stopping termination (13) in the l∞.

We used the initial matrix (16) for starting the methods. The results of comparisons in
terms of the number of iterations along with the residual norm has been illustrated in Fig. 2,
which shows the applicability of the iterative scheme (10), while the computational times
are provided in Table 1. They all agree with the discussions in “Derivation” and “Further
Discussions” sections.

Example 4.2 This test compares the behavior of different methods for finding the Moore–
Penrose inverse of a large sparse matrix of the size 10, 000 × 11, 000 possessing a sparse
inverse as follows (I = √−1):

l = 10,000; k = 11,000; SeedRandom[123];
A = SparseArray[{Band[{2000, 1200}, {l, k}] -> Random[] - I,

Band[{100, 6000}, {m, n}] -> {1.1, -Random[]},
Band[{-200, 4000}] -> -0.02, Band[{4500, -6000}]
-> 0.1}, {l, k}, 0.];

Here, the initial matrix is V0 = 2
‖A‖F A

∗ and the same conditions as in Example 4.1 but the

different stopping criterion as ‖Vn+1−Vn‖F
‖Vn+1‖F ≤ ε. The results are given in Table 2 and Fig. 3.

It is observed that for larger matrices the presented method (M16) of the class (10) have an
edge over similar existingmethods. Numerical examples in general confirmed the discussions
of the paper.
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Table 2 The results of comparisons for Example 4.2 in terms of the elapsed time

Methods M2 M4 M8 M16 MHP10

Time (in seconds) 2.995205 2.277604 2.227205 2.012404 2.028004

Fig. 3 The comparison of different methods in terms of the number of iterations for Example 4.2

Conclusion and Outlook

We have introduced a new class of methods for matrix inversion with arbitrary convergence
rate according to the well-known derivative-involved class of Kung–Traub. It has been shown
that the new methods possess higher efficiency indices in contrast to the existing methods
of the same type. Theoretical analysis showed that this class has the 2m rate of convergence
using only 2m matrix–matrix products per cycle.

It is interesting to note that the new Schulz-type iterations are advocated in case of the
H-matrices or structured matrices, since their structure admits cheap matrix operations.

The further outlook is to accelerate this general family of iteration methods via scaling.
That is to say, to speed up the whole procedure (specially at the beginning of the process)
without further imposing matrix–matrix products.
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