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Abstract In this paper we have investigated the viscoelastic nano-fluid flow and heat trans-
fer over a stretching sheet in the presence of magnetic field. The effects of Brownian
motion and thermophoresis are taken into account. The flow is governed by the viscoelastic
non-Newtonian fluid obeying Walter’s liquid B ′ fluid model. The combined effects of strat-
ifications (thermal and concentration) in the mixed convective flow past over a stretching
surface is analyzed. The non-linear boundary layer equations together with the boundary
conditions are reduced to a system of coupled non-linear ordinary differential equations by
using the similarity transformations. The transformed equations are solved numerically by
developing a finite difference scheme along with the Newton’s linearization technique. The
study shows that the thermal boundary layer thickness appreciably increases with the increas-
ing effects of Brownian motion, thermophoresis and magnetic field strength. However, the
viscoelasticity of the nanofluid has reducing effect on thermal boundary layer thickness.

Keywords Nanofluid · Viscoelasticity · Magnetic field · Nusselt number

Introduction

Nano-fluids are basically in the form of dispersing solid nanometer-sized particles in fluids
such as water, oil or ethylene glycol. These nanoparticles are typically made of metals, oxides
and carbon nanotubes. The nanoparticles are also used for biomedical applications, such as
magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein sepa-
ration, biosensors, DNA detection and immunosensors [1]. The nanofluids are responsible
for the increase of thermal conductivity and thereby heat transfer. An innovative technique,
which uses a mixture of nanoparticles and base fluid, was first introduced by Choi [2] with
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an aim to enhance the heat transfer by means of increasing thermal conductivity of fluids.
Later on, Boungiorno [3] explored the reasons behind the enhancement of heat transfer of
nanofluids and concluded that Brownian diffusion and thermophoresis are responsible for
this enhancement. On the basis of this principle, Kuznetsov and Nield [4] and Nield and
Kuznetsove [5] have developed the double diffusive natural convective boundary layer flow
of a nanofluid past over a flat plate. Influence of stratification is an important aspect in heat and
mass transfer analysis. The formation or deposition of the layers is known as the stratification.
This phenomenon occurs due to the change in temperature or concentration, or variations in
both, or presence of various fluids. In this regard, Hayat et al. [6,7] have examined the thermal
stratification effects in the mixed convection flow of Maxwell as well as Jeffrey fluid over a
stretching surface and provided analytical solution via homotopy analysis method. Malvandi
and Ganji [8] investigated the effects of nanoparticle migration on force convective flow of
alumina/water nanofluid and heat transfer in a cooled parallel-plate channel in the presence
of heat generation. Recently, the study of boundary layer flow of nanofluids over a stretching
sheet has become the great interest to the researchers because of various technical processes
involved in the production of stretching materials. These materials needs either heating or
cooling for increasing the quality of final products. Crane [9] first studied the boundary layer
flow over a stretching sheet, which moves with a velocity varying linearly with a distance
from a fixed point. Gupta and Gupta [10] carried out the heat and mass transfer effects on the
boundary layer flow of a viscous fluid over a stretching sheet subject to suction or blowing.
Khan and Pop [11] have investigated the steady boundary layer flow and heat transfer in
nanofluids over a stretching surface by considering the nanoparticle volume fraction. They
observed that the local Nusselt number and local Sherwood number are completly depends
on the effects of Lewise number, Brownian motion number and thermophoresis number.
Makinde and Aziz [12] studied the effect of convective boundary layer flow and heat transfer
and nanoparticle volume fraction over a stretching surface in nanofluid. Malvandi and Ganji
[13] carried out the mixed convective heat transfer of water/alumina nanofluid inside a verti-
cal microchannel by employing modified Buongiorno’s model. Further, Malvandi and Ganji
[14] numerically investigated the laminar flow and convective heat transfer of alumina/water
nanofluid inside a circular microchannel in the presence of a uniform magnetic field.

Hassani et al. [15] carried out analytical solution via HAM for the problem of boundary
layer flow of a nanofluid past over a linear stretching sheet. They have only considered the
effects of Brownian motion and thermophoresis. At the same time Rana and Bhargava [16]
presented numerical solution using variational finite element method for the boundary layer
flow and heat transfer of a nanofluid over a nonlinearly stretching sheet. They assumed that
the sheet is being stretched as the nth power of the distance from the origin. Malvandi et al.
[17] have investigated the steady two-dimensional stagnation point flow and heat transfer of a
nanofluid over a porous stretching sheet by taking into account the effects of Brownianmotion
and thermophoresis diffusion of nanoparticles. In a separate study, Malvandi et al. [18] have
also solved same problem by considering non-linear stretching sheet without porous effect.
Loganthan and Vimala [19] dealt with the combined influence ofMHD, suction and radiation
on the forced convection boundary layer flow of a nanofluid over an exponentially stretching
sheet embedded in a thermally stratified medium. However all the above mentioned studies
are restricted in the Newtonian fluid model. These studies are not examined the effects of vis-
coelasticity of the nanofluid as well as the effect of magnetic field. But the study of magneto-
hydrodynamic (MHD) flow of an electrically conducting nanofluid is of considerable interest
in modern metallurgical and metal-working process lies in the purification of molten metals.

Again the non-newtonian fluids are commonly useful in the process of manufacturing
coated sheets, foods, plastic polymers, blood etc. Although several studies [20–23] are avail-
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able, who considered different kinds of non-Newtonian fluidmodels. But these studies are not
examined through nanofluid models. However, Cheng [24] studied the free convective heat
transfer over a truncated cone embedded in a porous medium saturated by a non-Newtonian
power-law nanofluid with constant wall temperature and nanoparticle volume fraction with-
out applying magnetic field. Hedayati and Domiarry [25] and Hedayati et al. [26] studied the
effects of nanoparticle migration on different nanofluids by employing the hypothesis that the
Brownian motion and the thermophoresis are the only responsible mechanisms for nanopar-
ticle migration. Moreover Goyal and Bhargava [27,28] examined the effect of velocity slip
condition on the flow and heat transfer of a non-Newtonian viscoelastic nanofluid over a
stretching sheet in the presence of applied magnetic field. But their studies are restricted in
the consideration of the effects of viscous dissipation and buoyancy force.

Recently, Bhattacharyya and Layek [29] put forwarded a Newtonian model for the steady
boundary layer flow of a nanofluid over a permeable stretching sheet in the presence of
magnetic field. They pointed out that magnetic field has significant effect on enhancing heat
transfer rate. The other studies [30,31] who have considered the effect of magnetic field on
the boundary layer flow of nanofluid but restricted in the consideration of non-Newtonian
nanofluid model.

This paper aims to study the viscoelastic nanofluid flow and heat transfer over a linearly
stretching sheet in the presence of externally applied magnetic field. The effects of Brownian
motion and thermophoretic volume fraction of nanoparticles are taken into account. The
problem is solved numerically by using finite difference scheme along with the Newton’s
linearization technique. The effects of various values of the non-dimensional parameters are
examined on the velocity and thermal boundary layers as well as on the heat transfer rate in
terms of Nusselt number.

Flow Analysis

Let us consider the steady two-dimensional boundary-layer flow of an incompressible homo-
geneous, electrically conducting viscoelastic nanofluid past over an isothermal stretching
sheet. The flow is assumed to be in the x-direction, which is taken along the sheet and the y-
axis is normal to it. Two equal and opposite forces are introduced along the x-axis, so that the
sheet is stretched linearlywith a velocity proportional to the distance from thefixedorigin. The
flow of nanofluid takes place in the region y > 0 obeyingWalters liquid B ′ fluid model under
the action of an externally applied magnetic field. The magnetic field of uniform strength
B0 is applied perpendicular to the sheet. Since there is no external applied electric field and
the assumption of the low magnetic Reynolds number, the induced electric field as well as
induced magnetic field have been neglected from the present study. The effects of Brownian
motion and the thermophoresis of nanoparticles are incorporated in the present model.

Employing Oberbeck–Boussinesq approximations, the governing equations of conserva-
tion of mass, momentum, thermal and nanoparticle volume fraction in the boundary layer
are taken as (cf. Nield and Kuznetsov [22] and Kuznetsov and Nield [23])
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= 0, (1)

(
u

∂u

∂x
+ v

∂u

∂y

)
= ν f

∂2u

∂y2
− k0

ρ f

{
u

∂3u

∂x∂y2
+ v

∂3u

∂y3
− ∂u

∂y

∂2u

∂x∂y
+ ∂u

∂x

∂2u

∂y2

}

+gβt (T − T∞) + gβn (N − N∞) − σ B2
0

ρ f
u, (2)

123



596 Int. J. Appl. Comput. Math (2016) 2:593–608
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where u and v are the velocity components in the x− and y−directions respectively, T be the
temperature, N the nanoparticle volume fraction, ν f and ρ f be the coefficient of kinematics
viscosity and density of the base fluid, g be the acceleration due to gravity, k0 the coefficient
of viscoelasticity, βt and βn be the thermal expansion coefficient and expansion coefficient
of nanoparticle volume fraction, σ the electrical conductivity of the nanofluid, T∞ and N∞
be the ambient temperature and nanoparticle volume fraction far away from the sheet, α is
the thermal diffusivity, (ρc)p the effective heat capacity of nanoparticle, (ρc) f the effective
heat capacity of the base fluid, DB is the Brownian diffusion coefficient and DT is the
thermophoresis diffusion coefficient.

The boundary conditions for the present problem are taken as

u = Uw = bx, v = 0, T = Tw, N = Nw at y = 0, (5)

and

u → 0, T → T∞, N → N∞ as y → ∞, (6)

where Tw and Nw be the temperature and nanoparticle volume fraction at the sheet. In the
above, Uw be the velocity at the sheet with b (> 0) denotes the constant stretching rate.

Now we express the following non-dimensional variables by defining,

ψ = √
bν f x f (η); η =

√
b

ν f
y; θ(η) = T − T∞

Tw − T∞
; φ(η) = N − N∞

Nw − N∞
(7)

where ψ is a dimensional stream function defined by u = ∂ψ
∂y and v = − ∂ψ

∂x , f is a dimen-
sionless stream function, η be the similarity space variable, θ and φ are the dimensionless
temperature and nanoparticle volume fraction respectively. Using these dimensionless vari-
ables, the velocity components in non-dimensional form can be expressed as

u = bx f ′(η), v = −√
bν f f (η).

The continuity Eq. (1) is satisfied by u and v automatically.
Substituting the dimensionless variables defined in (7) into the Eqs. (2)–(4) yield

f ′′′ + f f ′′ − f ′2 − K1

[
2 f ′ f ′′′ − f f iv − f ′′2] + (λtθ + λnφ) − M f ′ = 0, (8)

θ ′′ + Pr( f θ ′ + Nbθ
′φ′ + Ntθ

′2 + Ecf ′′2) = 0, (9)

φ′′ + Le f φ′ + Nt

Nb
θ ′′ = 0. (10)

Similarly, the boundary conditions (5) and (6) reduce to

f ′(η) = 1, f (η) = 0, θ(η) = 1, φ(η) = 1 at η = 0, (11)
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and

f ′(η) → 0, θ(η) → 0, φ(η) → 0 as η → ∞, (12)

where primes denotes differentiation with respect to η only.

The dimensionless parameters that appear in Eqs. (8)–(10) are defined as M = σ B2
0

bρ f

the magnetic parameter, K1 = k0b
ρ f ν f
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(ρc) f

DT
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ν f
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(ρc) f
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w
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= gβt (Tw−T∞)

b2x
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b2x

the solutal buoyancy parameter, Grx = gβt (Tw−T∞)x3

ν2f
the local Grashof number, Gnx =

gβn(Nw−N∞)x3

ν2f
the local modified Grashof number and Rex = Uwx

ν f
be the local Reynolds

number.
Since the viscoelastic parameter K1 is very small, it is therefore, reasonable to seek a

solution of the nonlinear Eq. (8) in the form

f = f0(η) + K1 f1(η) + · · · . (13)

Substituting (13) in (8) and equating the like powers of K1, we get

f ′′′
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′′
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i
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0 = 0, (15)

Using (13), the boundary conditions for f0 and f1 can be derived from (11) and (12) as

f0 = 0, f ′
0 = 1 at η = 0; f ′

0 −→ 0, as n −→ ∞ (16)

f1 = f ′
1 = 0 at η = 0; f ′

1 −→ 0, as n −→ ∞. (17)

The other important characteristics of the present investigation are the local skin-friction
coefficient C f , the local Nusselt number Nu and the local Sherwood number Sh defined by
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Sh = nw

DB

√
b
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)
y=0
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Numerical Results and Discussion

The system of nonlinear couple differential Eqs. (14) and (15) subject to the boundary con-
ditions (16) and (17) are solved numerically by employing finite difference scheme along
with the Newton’s linearization technique (cf. Cebeci and Cousteix [32]). However, the lin-
ear coupled ordinary differential Eqs. (9) and (10) using the boundary conditions (11) and
(12) for θ and φ are solved by using finite difference scheme only. The detail numerical
procedures can be found in [20,21,32]. The essential features of this technique is that it is
based on a finite difference scheme, which has better stability, simple, accurate and more
efficient. Implicit finite difference technique leads to a system which is tri-diagonal and
therefore speedy convergence. The numerical computation has been carried out by taking
grid size �η = 0.01. We observed that further decrease in �η does not bring about any
significant change in the results. This confirms the stability and convergence of the present
numerical scheme. In order to examine the flow and heat transfer characteristic of the present
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problem, the following values of the different quantities of parameters are invoked in which
0 ≤ M ≤ 6, 0 ≤ K1 ≤ 0.1, 0 ≤ Nt ≤ 1.0, 5 ≤ Le ≤ 20, −1 ≤ λt ≤ 1.5, 0.1 ≤ Nb ≤ 0.5,
−1 ≤ λn ≤ 1.5, 1 ≤ Pr ≤ 7.
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Figures 1, 2 and 3 illustrate the variation of axial velocity along the height from the
sheet with different values of the magnetic parameter M , the viscoelastic parameter K1

and the thermal buoyancy parameter λt . Figure 1 shows that the axial velocity gradually
decreases with the increase of magnetic parameter M . This is happens due to the fact that in
the presence of magnetic field there arises a resistive force known as Lorentz force, which
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Fig. 10 Variation of nanoparticle volume fraction φ(η) with η for different values of M (with Pr = 7.0,
Nt = 0.3, Nb = 0.5, K1 = 0.01, γ = 1.0, λt = 0.5 = λn , Ec = 0.002, Le = 10.0)
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Fig. 11 Variation of nanoparticle volume fraction φ(η) with η for different values of Nb (when Pr = 7.0,
K1 = 0.01, Nt = 0.3, M = 2.0, γ = 1.0, λt = 0.5 = λn , Ec = 0.002, Le = 10.0)

has a tendency to slow down the motion of the fluid in the boundary layer. The velocity
boundary layer thickness decreases in the presence of strong magnetic field. From Fig. 2 we
observe a very interesting result that near the stretching sheet the axial velocity increases with
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increasing viscoelastic parameter K1, while the trend is reverse near the edge of the boundary
layer. Therefore, viscoelasticity of the nanofluid play an important role in the boundary layer
thickness. It seems that there would be a decrease of boundary layer thickness in the presence
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Table 1 The numerical values of the Skin-friction coefficient, Nusselt number and Sherwood number for
different physical parameters

Fixed values Parameters that varying C f |Nu| Sh

Pr = 7, K1 = 0.01 M = 0 119.7182 0.63202 5.26135

Nb = 0.5, Nt = 0.3 M = 2 137.2104 0.77514 5.05059

λt = λn = 0.5 M = 4 140.2582 0.828622 4.802206

Le = 10 M = 6 141.264831 0.864581 4.59237

Pr = 7, M = 2 K1 = 0.0 132.28075 0.7515194 4.97113492

Nb = 0.5, Nt = 0.3 K1 = 0.01 137.210406 0.7751438 5.0505917

λt = λn = 0.5 K1 = 0.05 155.759699 0.873585108 5.36750771

Le = 10 K1 = 0.1 176.257221 1.00540997 5.76107551

Pr = 7, K1 = 0.05 Nt = 0.0 157.196497 0.70503639 4.59806142

Nb = 0.5, M = 2 Nt = 0.2 156.286321 0.83544107 5.11375114

λt = λn = 0.5 Nt = 0.5 154.574899 0.919942417 5.84681921

Le = 10 Nt = 0.7 153.232261 0.943300115 6.28795376

Pr = 7, K1 = 0.05 Le = 5 152.759505 0.83672963 4.10796308

Nb = 0.5, Nt = 0.5 Le = 10 154.574899 0.9199424 5.84681921

λt = λn = 0.5 Le = 15 155.210475 0.9320114 7.12008192

M = 2 Le = 20 155.538012 0.930242647 8.18293968

of thermophoresis parameter and the viscoelasticity of the nanofluid. These results may have
greater importance in polymer processing by the choice of the higher order viscoelasticity
of the nanofluid to reduce the power consumption. Figure 3 indicates that the axial velocity
within the boundary layer layer has increasing effects on the thermal buoyancy parameter λt .

The variation of dimensionless temperature within the boundary layer for different values
of the magnetic parameter M , Brownian motion parameter Nb, thermophoresis parameter
Nt , viscoelastic parameter K1, and Prandatl number Pr are shown in Figs. 4, 5, 6, 7, 8
and 9. Figures 4, 5 and 6 show that the temperature increases significantly with increasing
the magnetic parameter, Brownian motion parameter and thermophoresis parameter. These
parameters have enhancing effect on the thermal boundary layer thickness due to the presence
of nanoparticle in the fluid aswell as the appliedmagnetic field.However, fromFigs. 7, 8 and 9
we observe that the temperature has reducing effect for increasing values of the viscoelasticity
of the fluid, the Prandatl number Pr and the thermal buoyancy parameter λt . Therefore the
viscoelastic parameter K1, the Prandatl number Pr and the thermal buoyancy parameter λt
are responsible for increasing thermal boundary layer thickness.

Figures 10, 11, 12 and 13 depict the variation of nanoparticle volume fraction φ(η) along
the perpendicular distance from the sheet within the boundary layer. It is interesting to note
from Fig. 10 that the volume fraction of nanoparticle increases with increasing magnetic
field strength. However, the volume fraction of nanoparticle decreases with increasing the
Brownian motion parameter Nb, the Lewis number Le and the solute buoyancy parameter λn
as shown in Figs. 11, 12 and 13 respectively. Therefore, the presence of magnetic field has
enhancing effect on the boundary layer thickness of the nanoparticle volume fraction, while
the opposite trend is observed in the case of Brownian motion parameter, the Lewis number
and the solute buoyancy parameter.
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The important characteristics of the present problem are the skin-friction coefficient (C f ),
Nusselt number (Nu) and the Sherwood number (Sh). Themathematical expressions of those
physical quantities are presented in the Eqs. (18)–(20) and their corresponding numerical
values for various parameters are given in Table 1. From Table 1 we observed that the skin-
friction coefficient and the magnitude of the Nusselt number |Nu| increases with increasing
magnetic field strength. However, the rate of nanoparticle volume fraction i.e., sherwood
number Sh decreases when the magnetic filed strength increases. The viscoleasticity of the
nanofluid has an enhancing effect on the skin-friction coefficient, the rate of heat transfer |Nu|
and the Sherwood number. However, the thermophoresis parameter Nt has a reducing effect
on the local skin-friction coefficient C f , while the parameter Nt has increasing behaviour on
the magnitude of the Nusselt number and the Sherwood number. Moreover, the increasing
values of the Lewis number Le has an accelerating impact on each of the local skin-friction
coefficient and themagnitude of theNusselt number aswell as the rate of nanoparticle volume
fraction. This enhancing effect is more significant for Sherwood number.

Concluding Remarks

The effect of viscoelasticity on the nano-fluid flow and heat transfer past over a stretching
sheet in the presence of magnetic field has been the main concern in this paper. Moreover
the effects of Brownian motion and thermophoretic volume fraction of nanoparticles are
taken into account. The governing partial differential equations in the boundary layer have
been reduced to a system of couple nonlinear ordinary differential equations under similarity
transformation. The transformed governing equations are then solved numerically by using
finite difference scheme along with the Newton’s linearization technique. From the present
analysis the following important findings are summarized as follows.

– The viscoelasticity of the nanofluid has reducing effect on the boundary layer thickness.
– The presence ofmagnetic field causes decreasing of the velocity boundary layer thickness

and enhancement of the thermal boundary layer thickness.
– The thermal buoyancy effect leads to the decreasing of momentum boundary layer thick-

ness and enhancement of the thermal boundary layer thickness.
– The presence of nanoparticle in the viscoelastic fluid increases the thermal boundary

layer thickness.
– The volume fraction of the nanoparticle increases with the magnetic field strength.
– The viscoelasticity of the nanofluid has uplifting effect on the local skin-frintion, the

Nusselt number and the rate of volume fraction of nanoparticle.
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