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Abstract In this paper, we consider the interval linear programming (ILP) with equality
constraints. Computing the best value of the objective function is easy, but obtaining the
worst value of the objective function is much more complicated. Firstly, we determine range
of optimal values of the objective function. Secondly, by considering some distribution func-
tions, we use Monte Carlo simulation to explore the solutions for the ILP model, and then
we compare the results obtained through the simulations.
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Introduction

One of the basic tools for description uncertain problems existing in real world is interval
linear programming (ILP).Manymethods have been proposed for solving ILPmodels [1–32].
Somemethods give range of optimal values of the ILPmodels [4,10,11,26]. Some of them are
focused on interval arithmetic and extensions of the simplex algorithm [3,17,18,24]. Some
of methods are based on basis stability [9,19,25,29]. Under the assumption of basis stability,
we can determine range of optimal values. In some of other methods, two sub-models with
deterministic parameters were formulated. By solving the two sub-models, solutions for the
optimized interval objective and interval decision variables can be obtained [13,16,31,32].

The best and the worst method (BWC) proposed by Tong converts ILP model into two
sub-models [31]. Chinneck and Ramadan extended the BWCmethod to include nonnegative
variables and equality constraints [4]. Huang and Moore proposed a new interval linear
programming method (ILP) [16]. This method incorporates interval information directly
into the optimization process.
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An interval number x± is generally represented as [x−, x+]where x− ≤ x+. If x− = x+,
then x± will be degenerate.
If A− and A+ are two matrices in R

m×n and A− ≤ A+, then the set of matrices

A± = [A−, A+] = {A| A− ≤ A ≤ A+},
is called an interval matrix, and the matrices A− and A+ are called its bounds. Center and
radius matrices have been defined as

Ac = 1

2
(A+ + A−), A� = 1

2
(A+ − A−).

A square interval matrix A± is called regular if each A ∈ A± is nonsingular.
A special case of an interval matrix is an interval vector which is a one-column interval
matrix

x± = {x| x− ≤ x ≤ x+},
where x−, x+ ∈ R

n .
Interval arithmetic is defined in [1].

We consider ILP model as follows:

min z± =
∑n

j=1
c±
j x

±
j

s.t.
∑n

j=1
a±
i j x

±
j = b±

i , i = 1, 2, . . . ,m

x±
j ≥ 0, j = 1, 2, . . . , n.

(1)

By

min z =
∑n

j=1
c j x j

s.t.
∑n

j=1
ai j x j = bi , i = 1, 2, . . . ,m

x j ≥ 0, j = 1, 2, . . . , n.

(2)

we denote characteristic model of the ILP model (1), where ai j ∈ a±
i j , c j ∈ c±

j and bi ∈ b±
i .

Optimal solution set of the ILP is defined as a set of all optimal solutions over all characteristic
models.
The interval [z−opt , z+opt ] is called the range of the optimal values of the ILP model (1).
Computing of the best value z−opt is easy, but obtaining the worst value z+opt is NP-hard [5].

In this paper, we use Monte Carlo simulation when all of the interval coefficients of the
ILP are replaced by the confidence interval of a random variable with normal, uniform and
beta distributions. Obtaining the worst value of the objective function of the ILP model is
considered. Also, we determine the optimal solutions under the distributions and then we
compare the solutions obtained through the Monte Carlo simulation with the exact solutions.

Range of the Optimal Values

In this section, we review some notations and the method for obtaining the best and the worst
values of the objective function of the ILP model (1) [5].

Let Ym be the set of all {−1, 1} m-dimensional vectors, i.e.

Ym = {y ∈ R
m | |y| = e},
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where e = (1, 1, . . . , 1)T . For a given y ∈ {±1}m , by
Ty = diag(y1, y2, . . . , ym),

we denote the corresponding diagonal matrix. For each x ∈ R
n , we denote its sign vector

sign(x) by

(signx)i =
{

1 xi ≥ 0

−1 xi < 0,

where 1, 2, . . . , n. Then we have |x| = Tzx, where z = sign(x) ∈ Yn .
Consider an interval matrix A± = [A−, A+] = [Ac − A�, Ac + A�] and an interval vector
b± = [b−, b+] = [bc − b�, bc + b�]. For each y ∈ Ym and z ∈ Yn , Ayz and by are defined
as follows [5].

Ayz = Ac − TyA
�Tz,

by = bc + Tyb
�.

Theorem 1 [5] The best and the worst values of the objective function of the ILP model (1)
could be obtained as follows.

z−opt = inf{c−T x| A−x ≤ b+, A+x ≥ b−, x ≥ 0}, (3)

z+opt = sup
y∈Ym

f (Aye, by, c
+), (4)

where f (A, b, c) = inf{cT x| Ax = b, x ≥ 0}.
Theorem 2 [5] Computing the worst value of the objective function of the ILP model (1) is
NP-hard.

While computing z−opt is easy, computation of z+opt is much more involved [5].

Example 1 Consider the interval linear programming

min z = x±
1 + x±

2

s.t. [2, 3]x±
1 + x±

2 = [3, 4]
[4, 6]x±

1 + [−3,−2]x±
2 = [1, 5]

x±
1 , x±

2 ≥ 0.

(5)

By Theorem 1, the best value of the objective function is determined by solving the following
model.

min z− = x1 + x2

s.t. 2x1 + x2 ≤ 4

4x1 − 3x2 ≤ 5

3x1 + x2 ≥ 3

6x1 − 2x2 ≥ 1

x1, x2 ≥ 0.

The optimal value is z−opt = 1. The worst value of the objective function is z+opt = 3.1 which
results from solving the following model.
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min z+ = x1 + x2

s.t. 2x1 + x2 = 4

6x1 − 2x2 = 1

x1, x2 ≥ 0.

Therefore, range of optimal values of the objective function is [1, 3.1].

Monte Carlo Simulation

AMonte Carlo method is used to evaluation solving methods [30]. We use the simulation for
example 1 based on three distribution functions, normal, uniform and beta. We compare the
solution obtained through the distribution functions with the exact solution. In view of the
solutions resulted from the simulations, we determine coverage rate (CR) and validity rate
(VR) proposed by Lu et al. [20].

Firstly, we generate 15000Monte Carlo samples for each coefficient of the ILP model (5).
We simulate three probability density functions for each coefficient of the ILP model (5). For
a random variable with normal distribution N (μ, σ ), the effective range can be considered
as [μ − 3σ,μ + 3σ ] [30].

For example, for a11 = [2, 3], Figure 1 shows three samples of normal, uniform and beta
distributions. Values of z resulted from samples of the distributions are shown in Figs. 2, 3
and 4.

Coverage rate (CR) and valid rate (VR) proposed by Lu et al. are used as indicators to
qualify the performance. The coverage and valid rates of the interval solution x are defined
as follows [20]:

CR(x±) = The number of samples whose values lie in x±

Total sample used in simulation
× 100 %

VR(x±) = The width of intersection between effective range and x±

The width of x± × 100 %
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Fig. 1 Monte Carlo simulation for a11 of the ILP model (5)
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Fig. 2 Values of z resulted from Monte Carlo simulation for normal distribution of the ILP model (5)

1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

450

500

z

sa
m

pl
e 

nu
m

be
rs

Fig. 3 Values of z resulted from Monte Carlo simulation for uniform distribution of the ILP model (5)

The larger the CR value, the higher the chance of the exact solution lie in the interval of
solutions. The higher the VR value of the solutions, the more valid information is included
in the solutions [20].

Suppose all coefficients of the ILP model (5) have normal distribution. The valid rate of
z can be obtained as follows:

VR(z± = [1, 3.1]) = The width of {[1, 3.1] ∩ [1.0394, 2.8585]}
The width of [1, 3.1] × 100 %

= 86.62 %,

which the interval [1.0394, 2.8585] is interval obtained through simulation for normal dis-
tribution.
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Fig. 4 Values of z resulted from Monte Carlo simulation for beta distribution of the ILP model (5)

Table 1 Results for the three
distribution samples of the ILP
model (5)

Distribution z V R(z) (%)

Normal [1.0394, 2.8585] 86.62

Uniform [0.9512, 2.9298] 93.89

Beta [0.9384, 2.8186] 89.53
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Fig. 5 Values of z resulted from Monte Carlo simulation for normal distribution of the ILP model (6)

The values of VR(z) for the uniform and beta distributions are 93.89 and 89.53 %, respec-
tively. Therefore, the samples of uniform distribution are better than the others.

The simulation results for the three samples of distributions are presented in Table 1.
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Fig. 6 Values of z resulted from Monte Carlo simulation for uniform distribution of the ILP model (6)
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Fig. 7 Values of z resulted from Monte Carlo simulation for beta distribution of the ILP model (6)

Example 2 Consider the interval linear programming

min z = [1, 5]x±
1 + [3, 4]x±

2

s.t. [2, 3]x±
1 + x±

2 = [3, 4]
x±
1 , x±

2 ≥ 0.

(6)

By Theorem 1, range of the optimal values of the objective function is [1, 10]. Values of
z resulted from samples of the distributions are shown in Figs. 5, 6 and 7. The simulation
results for the samples of distributions are presented in Table 2. By attention to the values of
V R(z) for three samples of distribution, the samples of beta distribution and then uniform
distribution are better than the samples of normal.
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Table 2 Results for the three
distribution samples of the ILP
model (6)

Distribution z V R(z) (%)

Normal [1.2031, 7.2702] 67.41

Uniform [1.0526, 9.5641] 94.57

Beta [1.1724, 10.6192] 98.08
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Fig. 8 Values of z resulted from Monte Carlo simulation for normal distribution of the ILP model (7)
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Fig. 9 Values of z resulted from Monte Carlo simulation for uniform distribution of the ILP model (7)

Example 3 Consider the interval linear programming

min z = [2, 4]x±
1 + [5, 7]x±

2 + [2, 3]x±
3

s.t. − 2x±
1 + [4, 5]x±

2 + [5, 6]x±
3 = 6

[5, 6]x±
1 − 4x±

2 + [1, 2]x±
3 = 7

x±
1 , x±

2 , x±
3 ≥ 0.

(7)
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Fig. 10 Values of z resulted from Monte Carlo simulation for beta distribution of the ILP model (7)

Table 3 Results for the three
distribution samples of the ILP
model (7)

Distribution z V R(z) (%)

Normal [4.3818, 8.0844] 71.41

Uniform [3.9962, 8.4461] 85.82

Beta [2.9939, 6.1016] 59.93

By Theorem 1, range of the optimal values of the objective function is [4, 9.1852]. Values of
z obtained through samples of the distributions are shown in Figs. 8, 9 and 10. The simulation
results for the samples of distributions are presented in Table 3. By attention to the values of
V R(z) for three samples of distribution, the samples of uniform distribution are better than
the others.

Conclusion

Computing the worst value of the objective function is much more complicated for ILP
models with equality constraints. By considering some distribution functions, Monte Carlo
simulation has been used to explore the values of the objective function. The results show that
when the range of the objective function needs to be obtained, uniform and beta distribution
samples for all coefficients of the ILP model are applicable.
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