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Abstract Singh and Kumar (A family of estimators of population variance using informa-
tion on auxiliary attribute. Studies in sampling techniques and time series analysis, 2011)
and Singh and Malik (Appl Math Comput 235:43–49, 2014) suggested some estimators for
estimating the population variance using an auxiliary attribute. This paper suggests a gen-
eralized class of estimators based on the adaption of the estimator presented by Koyuncu
(Appl Math Comput 218:10900–10905, 2012) for population variance using information
on an auxiliary attribute in simple random sampling. The properties of the suggested class
of estimators are derived and asymptotic optimum estimator identified with its properties.
The large numbers of known estimators are member of the suggested generalized class
and it has been shown that proposed generalized class of estimators are more efficient
than usual unbiased estimator, ratio, exponential ratio and regression estimator, estima-
tors due to Singh and Malik (Appl Math Comput 235:43–49, 2014) and Singh and Kumar
(A family of estimators of population variance using information on auxiliary attribute. Stud-
ies in sampling techniques and time series analysis, 2011) using information on auxiliary
attribute. In addition, theoretical results are supported by an empirical study and findings are
encouraging and support the soundness of present study.

Keywords Auxiliary information · Auxiliary attribute · Simple random sampling ·
Bias · Mean square error

Introduction

In the sampling literature, it is well established that efficiency of the estimator of population
parameters of interest can be increased by the use of auxiliary information related auxiliary
variable x, which is highly correlated with study variable y. In literature of survey sampling
many authors have suggested estimators based on auxiliary information. However in many
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situations of practical importance, instead of an auxiliary variable x there exist an attribute
(say, ϕ) which is highly correlated with study variable y. In these situations by taking the
advantage of point bi-serial (see [1]) correlation between the study variable y and the auxiliary
attribute ϕ, the efficient estimators of population parameter of interest can be constructed.
Several authors including [2–10] have paid their attention towards the improved estimation
using auxiliary attribute.

Let us consider a sample of size n is drawn by SRSWOR from a population of size N.
Further let yi and φi denote the observations on variable y and φ respectively for the ith unit
(i=1,2,3,…,N). It is assumed that attribute φ takes only the two values 0 and 1 according as
φ = 1, if ith unit of the population possesses attribute φ = 0, if otherwise. The variance of
the usual unbiased estimator S2y is given by

V (S2y) = S4y
n
(λ40 − 1) (1)

where

λrs = μrq

μ
r/2
20 μ

q/2
02

, μrq =
∑N

i=1(yi − Y)r(φi − P)q

N − 1

In this paper a family of estimator have been proposed for the population variance S2y when
the auxiliary information is available in the form of attribute. For main results we confine
ourselves to sampling scheme SRSWOR ignoring the finite population correction.

Estimators in Literature

In order to have an estimate of the study variable y, assuming the knowledge of the population
proportion P, [11] proposed the following estimators.

t1 = s2y
S2φ
s2φ

(2)

t2 = s2y + bφ(S2φ − s2φ) (3)

t3 = s2y exp

[
S2φ − s2φ
S2φ + s2φ

]

(4)

The MSE expression of the estimator t1 and variance of t2 are given, respectively, by

MSE(t1) = S4y [(λ40 − 1) + (λ04 − 1) − 2(λ22 − 1)]

n
(5)

V(t2) = 1

n

[
S4y(λ40 − 1) + b2φS

4
φ(λ04 − 1) − 2bφS2yS

2
φ(λ22 − 1)

]
(6)

On differentiating (6) with respect to bφ and equating to zero we obtain

bφ = S2y(λ22 − 1)

S2φ(λ04 − 1)
(7)

Substituting the optimum value of bφ in (6), we get the optimum variance of estimator t2, as

V(t2)min = S4y
n

[

(λ40 − 1) − (λ22 − 1)2

(λ04 − 1)

]

(8)
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The MSE expression of the estimator t3 is given by

MSE(t3) = S4y
n

[

(λ40 − 1) + (λ04 − 1)

4
− (λ22 − 1)

]

(9)

Following [12,13] proposed the following variance estimator using known values of some
population parameters

tKC1 = s2y

(
S2φ + Cp

s2φ + Cp

)

(10)

tKC2 = s2y

(
S2φ + β2φ

s2φ + β2φ

)

(11)

tKC3 = s2y

(
S2φβ2φ + Cp

s2φβ2φ + Cp

)

(12)

tKC4 = s2y

(
S2φCp + β2φ

s2φCp + β2φ

)

(13)

where s2y and s
2
φ are unbiased estimator of population variances S2y and S2φ, respectively.

To obtain the bias and MSE, we write-
s2y = S2y (1 + e0) and s2φ = S2φ (1 + e1) .
Such that E (e0) = E (e1) = 0
and E

(
e20
) = (λ40−1)

n , E
(
e21
) = (λ04−1)

n , E (e0e1) = (λ22−1)
n

and κpb = ρpb
Cy

Cp
.

TheMSE expression of tKCi (i = 1,2,3,4) to the first order of approximation are respectively
given by

MSE(tKCI ) = S4y
n

[
(λ40 − 1) + w2

i (λ04 − 1) − 2wi(λ22 − 1)
]
, (i = 1, 2, 3, 4) (14)

where

w1 = S2φ
S2φ + Cp

, w2 = S2φ
S2φ + β2φ

, w3 = S2φβ2φ

S2φβ2φ + Cp
, w4 = S2φCp

S2φCp + β2φ

Following [5], Singh and Malik proposed the following variance estimator.

tS = s2y + bφ(S2φ − s2φ)

(n1s2φ + n2)
(n1S

2
φ + n2) (15)

where n1, n2 are either real numbers or the functions of the known parameters of attribute
such as Cp, ρpb, β2φ and κpb.

The MSE expression of ts to the first order of approximation are respectively given by

MSE(ts) = 1

n

[
S4y(λ40 − 1) + (λ04 − 1)

{
b2φS

4
φ + A2

1S
4
y + 2A1bφS2yS

2
φ

}

−2S2y(λ22 − 1)
{
bφS2φ + A1S

2
y

}]
(16)

where A1 = n1S2
φ

n1S2
φ+n2

.
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The minimum MSE of ts is observed at n1 = ρpb and n2 = β2φ.
Following [5], Singh and Malik proposed another improve ratio type estimator trs for the

population variance as

trs = s2y
(ηS2φ − v)

[
α(ηs2φ − v) + (1 − α)(ηS2φ − v)

] (17)

where η, v are either real numbers or the functions of the known parameters of attributes
such as Cp, β2φ, ρpb and κpb.

Up to the first order approximation, the minimum MSE of trs is given by,

MSEmin(trs) = S4y
n

{
(λ40 − 1) + A2

2α
2
0(λ04 − 1) − 2A2α0(λ22 − 1)

}
(18)

where α0 = (λ22−1)
A2(λ04−1)

and A2 = ηS2
φ

(ηS2
φ−v) .

Another improved class of estimator suggested by [13] is as follows

tn = s2y
[
m1 + m2(S

2
φ − s2φ)

]
exp

⎛

⎝γ

[
δS2φ + μ

]
−
[
δs2φ + μ

]

[
δS2φ + μ

]
+
[
δs2φ + μ

]

⎞

⎠ (19)

where γ and μ are either real numbers or function of known parameters of the auxiliary
attribute φ such as Cp, β2φ, ρpb and κpb. The scalar γ takes value -1 and +1 for ratio and
product type estimators, respectively.

The min MSE of estimator tn up to the first order of approximation is given by,

MSE(tn) = S4y
[
1 + m2

1R1 + m2
2R2 + 2m1m2R3 − 2m1R4 − 2m2R5

]
(20)

where,

R1 = 1 + 1

n

[

(λ40 − 1) + γ2θ
2(λ04 − 1) + 2γ

(

1 + γ

2

)

θ
2(λ04 − 1) − 4γθ(λ22 − 1)

]

R2 = 1

n
S4φ(λ40 − 1)

R3 = 1

n
S4φ [2(λ22 − 1) + 2γθ(λ04 − 1)]

R4 = 1 + 1

n

[

γ

(

1 + γ

2

)

θ
2(λ04 − 1) − γθ(λ22 − 1)

]

R5 = 1

n
S2φ [γθ(λ04 − 1) − (λ22 − 1)]

θ = δS2φ
2(δS2φ + μ)

m1 = (R2R4 − R3R5)

(R1R2 − R2
3)

m2 = (R1R5 − R3R4)

(R1R2 − R2
3)
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Table 1 Set of estimators generated from the class of estimators tM

Subset of proposed estimator γ η λ

tM1 =
(
ω1s2y + ω2

)
exp

(
S2φ−s2

φ

S2φ+s2
φ

)

0 1 0

tM2 =
{

ω1s2y + ω2

(
s2
φ

S2φ

)}

exp

(
S2φ−s2

φ

S2φ+s2
φ

)

−1 1 0

tM3 =
{

ω1s2y + ω2

(
s2
φ

S2φ

)}

exp

{
S2φ−s2

φ(
S2φ+s2

φ

)
+2

}

−1 1 1

tM4 =
{

ω1s2y + ω2

(
s2
φ

S2φ

)}

exp

{
S2φ−s2

φ(
S2φ+s2

φ

)
+2Sφ

}

−1 1 Sφ

tM5 =
{

ω1s2y + ω2

(
s2
φ

S2φ

)}

exp

{
S2φ−s2

φ(
S2φ+s2

φ

)
+2ρpb

}

−1 1 ρpb

tM6 =
{

ω1s2y + ω2

(
s2
φ

S2φ

)}

exp

{
S2φ−s2

φ(
S2φ+s2

φ

)
+2Cp

}

−1 1 Cp

tM7 =
(
ω1s2y + ω2

)
exp

{
S2φ−s2

φ(
S2φ+s2

φ

)
+2Cp

}

0 1 Cp

tM8 =
(
ω1s2y + ω2

)
exp

{
S2φ−s2

φ(
S2φ+s2

φ

)
+2Sφ

}

0 1 Sφ

tM9 =
{

ω1s2y + ω2

(
s2
φ

S2φ

)}

exp

{
ρpb

(
S2φ−s2

φ

)

ρpb

(
S2φ+s2

φ

)
+2Sφ

}

−1 ρpb Sφ

tM10 =
{

ω1s2y + ω2

(
S2φ
s2
φ

)}

exp

(
S2φ−s2

φ

S2φ+s2
φ

)

1 1 0

The Suggested Class of Estimators

Motivated by [14]we propose generalized class of estimators tM for estimating the population
variance S2y, as

tM =
[

ω1s
2
y + ω2

(
s2φ
S2φ

)γ]

exp

⎡

⎣
η
(
S2φ − s2φ

)

η
(
S2φ + s2φ

)
+ 2λ

⎤

⎦ (21)

where ω1 and ω2 (ω1 + ω2 �= 1) are suitable constants to be determined such that MSE of
tM is minimum, η, γ and λ are either real numbers or the functions of the known parameter
associated with auxiliary attribute (See [15]).

γ and η are chosen in such a way that they generate ratio type and product type estimators
for variance estimators for particular values as +1 and −1.

A set of new estimators generated from (21) using suitable values of ω1,ω2, γ,η and λ

are listed in Table 1.
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Expanding Eq. (21) in terms of e’s up to the first order of approximation, we have,

tM − S2y = S2y (ω1 − 1) + ω1S
2
ye0 +

(

ω2 + ω2γe1 + ω2
γ(γ − 1)

2
e21

)

− 1

2
ω1S

2
yve1

−1

2
ω1S

2
yve0e1 − 1

2
ω2ve1 − 1

2
ω2vγe

2
1 + 3

8
ω1S

2
yv

2e21 + 3

8
ω2v

2e21 (22)

where, e0 = s2y−S2
y

S2
y

, e1 = s2φ−S2
φ

S2
φ

and v = ηS2
φ

ηS2
φ+λ

.

To obtain the bias and MSE of the estimator tM to the first degree of approximation, we
write

Such that E(e0) = E(e1) = 0
Also E(e0) = λ04−1

n , E(e1) = λ40−1
n and E(e0e1) = λ22−1

n
Taking expectation both sides of Eq. (22), we get the bias expression of estimator tM as

Bias(tM) = −S2y + ω1S
2
y

[

1 − 1

2
v
(λ22 − 1)

n
+ 3

8
v2

(λ22 − 1)

n

]

+ω2

[

1 +
{
1

2
γ(γ − 1) − 1

2
vγ + 3

8
v2
}
(λ40 − 1)

n

]

(23)

Squaring both sides of Eq. (23) and taking expectationweget theMSEexpression of estimator
tM as

MSE (tM) =
[
S4y + ω2

1S
4
yA + ω2

2B + ω1S
4
yD + ω2S

2
yG + ω1ω2S

2
yF
]

(24)

where

A =
[

1 + (λ40 − 1)

n
+ v2

(λ04 − 1)

n
− 2v

(λ22 − 1)

n

]

B =
[

1 + {
v2 + γ2 − 2vγ + γ(γ − 1)

} (λ04 − 1)

n

]

D =
[

−2 − 3

4
v2
{
(λ04 − 1)

n

}

+ v

{
(λ22 − 1)

n

}]

G =
[

−2 +
{

vγ − 3

4
v2 − γ(γ − 1)

}
(λ04 − 1)

n

]

F =
[

2 + {
2v2 − 2vγ + γ(γ − 1)

} (λ04 − 1)

n
+ 2(γ − v)

(λ22 − 1)

n

]

Partially differentiating Eq. (24) with respect to ω1 and ω2 and equating to zero, we get the
optimum value of ω1 and ω1 as

ω1(opt) =
{
GF − 2BD

4BA − F2

}

ω2(opt) =
{
DF − 2GA

4BA − F2

}

Substituting the optimal values of ωi (i=1,2) we obtain the minimum MSE associated with
tM,
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MSEmin(tM) = S4y

[

1 − BD2 − DFG + AG2

(4AB − F2)

]

(25)

Efficiency Comparisons

We compare the efficiency of the proposed estimator tM under optimum condition with the
usual unbiased estimator, ratio estimator, exponential ratio estimator, regression estimator
for variance estimation using an auxiliary attribute:

V(S2y) − MSE(tM) = S4y
n

[(λ40 − 1)]

−
[
S4y
(
1 + ω2

1A + ω1D
)+ S2y (ω2G + ω1ω2F) + ω2

2B
]

≥ 0

(26)

MSE(t1) − MSE(tM) = S4y [(λ40 − λ04 − 2λ22)]

n

−
[
S4y
(
1 + ω2

1A + ω1D
)+ S2y (ω2G + ω1ω2F) + ω2

2B
]

≥ 0

(27)

MSE(t2)min − MSE(tM) = S4y
n

[

(λ40 − 1) − (λ22 − 1)2

(λ04 − 1)

]

−
[
S4y
(
1 + ω2

1A + ω1D
)+ S2y (ω2G + ω1ω2F) + ω2

2B
]

≥ 0

(28)

MSE(t3) − MSE(tM) = S4y
n

[

λ40 − λ22 + (λ04 − 1)

4

]

−
[
S4y
(
1 + ω2

1A + ω1D
)+ S2y (ω2G + ω1ω2F) + ω2

2B
]

≥ 0

(29)

MSE(tKCI ) − MSE(tM) = S4y
n

[
(λ40 − 1) + w2

i (λ04 − 1) − 2wi(λ22 − 1)
]

−
[
S4y
(
1 + ω2

1A + ω1D
)+ S2y (ω2G + ω1ω2F) + ω2

2B
]

≥ 0

(30)

MSE(tS) − MSE(tM) = 1

n

[
S4y(λ40 − 1) + (λ04 − 1)

{
b2φS

4
φ + A2

1S
4
y + 2A1bφS2yS

2
φ

}

−2S2y
{
bφS2φ + A1S

2
y

}]

−
[
S4y
(
1 + ω2

1A + ω1D
)+ S2y (ω2G + ω1ω2F) + ω2

2B
]

≥ 0

(31)

MSE(trs) − MSE(tM) = S4y
n

{
(λ40 − 1) + A2

2α
2(λ04 − 1) − 2A2α(λ22 − 1)

}

−
[
S4y
(
1 + ω2

1A + ω1D
)+ S2y (ω2G + ω1ω2F) + ω2

2B
]

≥ 0

(32)
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Table 2 PRE’s of various
estimators w.r.t. S2y

Estimators PRE’s

Population I Population II

S2y 100.00 100.00

t1 141.89 96.41

t2(min) 262.19 101.13

t3 254.27 98.49

tKC1 108.84 99.40

tKC2 103.82 99.49

tKC3 155.19 99.37

tKC4 110.31 99.54

tS(min) 118.23 100.44

trs(min) 262.19 101.13

tn(min) 284.63 324.94

tM1 728.53 31103.76

tM2 468.79 3488.95

tM3 1427.47 6411.99

tM4 1032.11 5709.92

tM5 1335.77 6162.57

tM6 1692.00 6289.62

tM7 367005.50 623329.90

tM8 9342.04 277128.00

tM9 14050.20 5983.66

tM10 413.18 32095.56

MSE(tn) − MSE(tM) = S4y
[
1 + m2

1R1 + m2
2R2 + 2m1m2R3 − 2m1R4 − 2m2R5

]

−
[
S4y
(
1 + ω2

1A + ω1D
)+ S2y (ω2G + ω1ω2F) + ω2

2B
]

≥ 0

(33)

FromEqs. (26) to (33), we conclude that the proposed estimator tM under aforesaid conditions
performs better than the other existing estimator for the same scenario discussed in this
paper.

Empirical Study

In this section we compare the performance of different estimators considered in this paper
using two population data sets. The description of population data sets are as follows.

Population I [Source: [16], p. 256].

y = Number of villages in the circle.
φ = A circle consisting more than five villages.
N=89, n=23, S2y = 4.074,S2φ = 0.11,Cy = 0.601,Cp = 2.678, ρpb = 0.766, β2φ =
6.162,λ22 = 3.996,λ40 = 3.811, λ04 = 6.162.
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Population II [ Source: [17], p. 203].

y = Household size in each household of village.
φ = Household consisting size more than five.
N=35, n=15, S2y = 4.232,S2φ = 0.252,Cy = 0.346, Cp = 0.879, ρpb = 0.773, β2φ =
1.052,λ22 = 0.952, λ40 = 4.977,λ04 = 1.052.

Table 2 exhibits that the PRE’s of the proposed estimators including the different members
of the proposed class alongwith the PRE’s of the existing estimatorswith respect to S2y for two
real population data sets. Estimators tMi (i=1,2, …, 10) are obtained from class of estimators
tM by taking different values of η and γ and percent relative efficiency shown in the table.
The highest PRE is obtained for γ = 0, η = 1 and λ = Cp of estimator tM. It has also been
observed that the suggested class of estimators tM under optimum condition is more efficient
than the usual unbiased estimator, ratio estimator, regression estimator, [11,13] estimator
and other estimators discussed in this paper. Hence for observed choice of parameters the
proposed estimator tM is best among the entire estimators considered in this paper.

Conclusion

In this article we have suggested a generalized class of estimators for the population
variance of study variable y when information is available on an auxiliary attribute in
simple random sampling without replacement (SRSWOR). In addition, some known esti-
mators of population variance such as usual unbiased estimator, ratio, and exponential
ratio type estimators are found to be members of the proposed generalized class of esti-
mators. Some new members are also generated from the proposed generalized class of
estimators. We have determined the biases and mean square errors of the proposed class
of estimators up to the first order of approximation. The proposed generalized class of
estimators is advantageous in the sense that the properties of the estimators, which are
members of the proposed class of estimators, can be easily obtained from the properties
of the proposed generalized class. Thus the study unifies properties of several estimators for
population variance using information on an auxiliary attribute. In theoretical and empiri-
cal efficiency comparisons, it has been shown that almost all the members of the proposed
generalized class of estimators are more efficient than the usual unbiased estimator, ratio,
exponential ratio, regression estimator, estimators due to [11,13] and all other estimators
considered here using information on an auxiliary attribute, scrupulously, estimator tM7 is
best among all the members of generalized class in the sense of having least mean square
error.
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