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Abstract The goal of this paper is to give usefulmethod for solving a problem in polymer that
is formulated by stochasticmixedVolterra–Fredholm integral equations driven by space–time
white noise. Here, we consider homotopy perturbationmethodwhich consists in constructing
the series whose sum is the solution of the considered problem. The method is applied to
test examples to illustrate the accuracy and implementation of it. The results reveal that the
proposed method is very effective.
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Introduction

In this paper, we consider stochastic dynamic equations of motion for a freely draining
polymer with one end fixed at the origin and the other end attached to a microsphere [1,2].
Take N+1 particles with positions Rn immersed in a fluid and assume that nearest-neighbors
are connected by harmonic springs. If the particles are furthermore subject to an external
forcing F , the equations of motion (in the overdamped regime where the forces acting on the
particle are more important than inertia, which can also formally be seen as the limit where
the masses of the particles go to zero) would be given by
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dR0

dt
= k(R1 − R0) + F(R0),

dRn

dt
= k(Rn+1 + Rn−1 − 2Rn) + F(Rn), n = 1, ..., N − 1, (1)

dRN

dt
= k(RN − RN−1) + F(RN ).

This is a primitive model for a polymer chain consisting of N + 1 monomers and without
self-interaction. It does, however, not take into account the effect of the molecules of water
that would randomly ‘kick’ the particles that make up our string. Assuming that these kicks
occur randomly and independently at high rate, this effect can be modeled in first instance
by independent white noises acting on all degrees of freedom of our model. Thus we obtain
a system of coupled stochastic differential equations:

dR0 = k(R1 − R0)dt + F(R0)dt + σdB0(t),

dRn = k(Rn+1 + Rn−1 − 2Rn)dt + F(Rn)dt + σdBn(t), n = 1, ..., N − 1, (2)

dRN = k(RN − RN−1)dt + F(RN )dt + σdBN (t).

To obtain the equation of typical polymer strand from the finite bead strings, we conceptu-
ally take a continuum limit (with the scalings k � vN 2 and σ � √

N ), replacing the system
(2) with an equation on the interval 0 ≤ n ≤ N , where now N is the length of the strand. In
the limit it is obtained a stochastic partial differential equation (SPDE) in n for the position
R(t, n) of particles along the strand given by

dR(x, t) = ∂2x R(x, t)dt + F(R(x, t))dt + dB(x, t), (3)

endowed with the boundary conditions ∂x R(0, t) = ∂x R(1, t) = 0.
Most numerical work on SPDE’s has concentrated on the Euler finite-difference scheme.

Gyongi and Nualart [3] have proved that these schemes converge, and Gyongi [4] has deter-
mined the order of convergence. Davie and Gaines [6], examining a much larger class of
schemes, have found a universal lower bound for the rate of convergence. Gyongi [4,5] also
applied finite differences for an SPDE driven by spacetime white noise and then used sev-
eral temporal implicit and explicit schemes, in particular, the linear-implicit Euler scheme.
He showed that these schemes converge with order 1/2 in space and with order 1/4 in time
(assuming a smooth initial value). This is the bound given by Gyongi, so the simple Euler
scheme achieves the optimal rate of convergence. (If h is the space step and k is the time
step, for the Euler scheme, k must be smaller than a constant times h2, so that one can say
that the scheme is roughly of order one-fourth).

In recent years, the homotopy perturbation method (HPM) has been an active area of
research since it was originally proposed by He [7–10]. Considerable research works have
been conducted recently in applying this method to a class of linear and non-linear equations
and have been developed for solving differential and integral equations [10–20]. In [10] He
modified the general Lagrange multiplier method and [11] constructed an iterative sequence
of functions which converges to the exact solution. In most linear problems, on determining
the exact Lagrange multiplier, the approximate solution turns into the exact solution and is
available with just one iteration. In this method the solution is considered as the summation
of an infinite series which usually converges rapidly to the exact solutions. In [12], local
fractional variation iteration method used for solving fractional heat conduction problem and
papers [13,14] used this method for the mixed Volterra–Fredholm integral equations. We
apply the method for solving stochastic mixed Volterra–Fredholm integral equations.
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The sections of this paper are organized as follows: In the next sectionwe review some gen-
eral stochastic concepts of space–time white noise. “Mixed Stochastic Volterra–Fredholm
Integral Equations” section expresses the model as a stochastic mixed Volterra–Fredholm
integral equations. “Homotopy Perturbation Method for the Stochastic Mixed Volterra–
Fredholm Integral Equations” section, presents the homotopy perturbation method and is
applied themethod to solve stochastic mixed Volterra–Fredholm integral equations. “Numer-
ical Examples” section, the method has been supported by numerical examples and finally,
“Conclusion” section provides a brief conclusion.

Stochastic Concepts of Space–Time White Noise

In many physical dynamical systems with randomness, the driving noise is given as a space–
time white noise process, also referred to as a Brownian sheet. In this section we introduce
this stochastic process. Let (�, F, P, Ft ) be a filtered probability space and fix a bounded
open subset O ∈ R.

Definition 2.1 AGaussian family of realvalued randomvariables {B(x, t), (x, t) ∈ O×R+}
on the above filtered probability space is called a Brownian sheet if

(i) E(B(x, t)) = 0,∀(x, t) ∈ O × R+.
(ii)B(x, t) − B(x, s) is independent of {Fs},∀0 ≤ s ≤ t and x ∈ O .
(iii) Cov(B(x, t), B(y, s)) = λ(Ax,t , Ay,s), where λ is the Lebesgue measure on O ×

R+and Ax,t . = {(y, s) ∈ O × R+|0 ≤ s ≤ t and y ≤ x}.
(ii) The map (x, t) → B(x, t) from O × R+ to R is continuous a.s.

This process is a generalization of the one-parameter Brownian motion and we list its
main properties below.

(1) B(x, t) = 0 for x = 0 or t = 0 (B vanishes on the axes).
(2) B has independent increments, i.e. that for every pair of disjoints rectangles R1 and R2

of [0, T ]2, the increment of B on R1 is a real-valued random variable independent on
the increment of B on R2. The definition of an increment of B on a rectangle is defined
as follows. Let R be a rectangle R := [x1, x2] × [t1, t2] then the increment of B on R
(denoted �R B) is defined as:

�R B := B(x2, t2) − B(x1, t2) − B(x2, t1) + B(x1, t1)

= (B(x2, t2) − B(x1, t2)) − (B(x2, t1) − B(x1, t1)).

(3) B is a (centered) Gaussian process and in particular we have that

E[B(x1, t1)B(x2, t2)] = min(x1, x2)min(t1, t2),∀(x1, t1), (x2, t2) ∈ [0, T ]2.
Let ℘ := L2([0, T ]2, dsdt) the space of deterministic functions f : [0, T ]2 → R such that∫
[0,T ]2 f (s, t)2dsdt < ∞ where dsdt denotes the Lebesgue measure on [0, T ]2. Then

SI :=
∫

[0,T ]2
h(s, t)dB(s, t), h ∈ ℘,

defines an isonormal Gaussian process on ℘. Once again the Ito calculus gives that

(1) SI is a linear map.
(2) E(

∫
[0,T ]2 f (s, t)dB(s, t)) = 0,∀ f ∈ ℘.
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(3) SI is a (centered) Gaussian random variable with variance
∫
[0,T ]2 f (s, t)2dsdt,∀ f ∈ ℘.

(4) For all f, g in ℘ we have that

E

(∫

[0,T ]2
f (s, t)dB(s, t)

∫

[0,T ]2
g(s, t)dB(s, t)

)

=
∫

[0,T ]2
f (s, t)g(s, t)dsdt

=< f, g > .

For more detail see [21,22].

Mixed Stochastic Volterra–Fredholm Integral Equations

we consider the stochastic partial differential equation

∂

∂t
u(x, t) = ∂2

∂x2
u(x, t) + F(x, t, u(x, t)) + σ(x, t, u(x, t))

∂2

∂t∂x
B(x, t), (4)

with following boundary condition

u(x, 0) = f (x), x ∈ [0, 1],
∂xu(0, t) = ∂xu(1, t) = 0, t ≥ 0, (5)

where, F, σ are locally Lipschitz continuous and locally bounded Borel functions mapping
R+ × [0, 1] × R into R. The existence of a unique solution of this problem has proved by
space-discretization in [23], when F and σ are Lipschitz functions. and f (x) be a continuous
function on [0, 1].
The solutions of (4–5) are continuous but non-differentiable functions. Since the derivatives
do not exist, (4–5) should just be regarded as shorthand for an integral equation [24–26]. We
say informally

u(x, t) =
∫ 1

0
G(x, ξ, t)(ξ)dξ +

∫ t

0

∫ 1

0
G(x, ξ, t − τ)F(x, ξ, t, τ, u(ξ, τ )dξdτ

+
∫ t

0

∫ 1

0
G(x, ξ, t − τ)σ (x, ξ, t, τ, u(ξ, τ ))dB(ξ, τ ), (6)

is the solution of (4–5). where G(x, ξ, τ ) is the Green’s function or fundamental solution for
the homogeneous equation ∂u

∂t = ∂2u
∂x2

with boundary conditions ∂xu(t, 0) = ∂xu(t, 1) = 0
for all t > 0.

We note that the first term in (6) is what we obtain from the heat equation. The second
term in (6) is the stochastic term.

Homotopy Perturbation Method for the Stochastic Mixed
Volterra–Fredholm Integral Equations

Basic Ideas of Homotopy Perturbation Method

The goal of this section is to recall notations and basic concept of homotopy perturbation
method that are used in the next sections. Consider the following general nonlinear differential
equation:

A(u) − f (r) = 0, r ∈ �, (7)
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with the following boundary conditions:

B

(

u,
∂u

∂n

)

= 0, r ∈ 	, (8)

where, A is a general differential operator, B is a boundary operator, f (r) is a known analytic
function, 	 is the boundary of the domain �.
Generally speaking, the operator A can be divided into two parts L and N , where L is linear,
and N is nonlinear, therefore Eq. (7) can be written as

L(u) + N (u) − f (r) = 0. (9)

By using homotopy technique, one can construct a homotopy v(r, p) : � × [0, 1] → R
which satisfies

H(v, p) = (1 − p)(L(v) − L(u0)) + p(A(v) − f (r)) = 0, p ∈ [0, 1], (10)

or

H(v, p) = (L(v) − L(u0)) + pL(u0) + p(N (v) − f (r)) = 0, p ∈ [0, 1], (11)

where p ∈ [0, 1] is an embedding parameter, and u0 is the initial approximation of Eq. (7)
which satisfies the boundary conditions.

H(v, 0) = L(v) − L(u0) = 0, H(v, 1) = A(v) − f (r) = 0, (12)

the changing process of p from zero to unity is just that of v(r, p) changing from u0(r)
to u(r). This is called deformation, and also, L(v) − L(u0) and A(v) − f (r) are called
homotopic in topology. If, the embedding parameter p; p ∈ [0, 1] is considered as a “small
parameter”, applying the classical perturbation technique. The solutions to problem (12) can
be written as a power series in p, i.e.,

v = v0 + pv1 + p2v2 + ..., (13)

when p → 1, the approximate or the exact solution for Eq. (7), will be obtained

u = lim p→1v = v0 + v1 + v2 + · · · . (14)

The convergence of series (14) has been proved in [7], and the stability of this method
is addressed in [20]. The major advantage of He’s homotopy perturbation method is that
the perturbation equation can be freely constructed in many ways (therefore is problem
dependent) by homotopy in topology and the initial approximation can also be freely selected.
Moreover, the constructions of the homotopy for the perturb problemplays very important role
for obtaining desired accuracy. So, homotopy perturbation method will receive considerable
attention in dealing with nonlinear problems in engineering and science.

The Homotopy Perturbation Method Applied to Stochastic Mixed
Volterra–Fredholm Integral Equations

The stochastic mixed Volterra–Fredholm integral equation is given as

u(x, t) = f (x, t) +
∫ t

0

∫ 1

0
F(x, t, ξ, τ, u(ξ, τ ))dξdτ

+
∫ t

0

∫ 1

0
σ(x, t, ξ, τ, u(ξ, τ ))dB(ξ, τ ), (x, t) ∈ � × [0, T ]. (15)
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It is assumed that the function f can be divided into the sum of two parts, namely f0 and f1,
so

f = f0 + f1. (16)

Then Eq. (15) can be write as

u(x, t) = f0(x, t) + f1(x, t) +
∫ t

0

∫ 1

0
F(x, t, ξ, τ, u(ξ, τ ))dξdτ

+
∫ t

0

∫ 1

0
σ(x, t, ξ, τ, u(ξ, τ ))dB(ξ, τ ), (17)

select a homotopy such that

u(x, t) − f0(x, t) − p( f1(x, t) +
∫ t

0

∫ 1

0
F(x, t, ξ, τ, u(ξ, τ ))dξdτ

+
∫ t

0

∫ 1

0
σ(x, t, ξ, τ, u(ξ, τ ))dB(ξ, τ )) = 0, (18)

substituting (13) into (18), and equating the terms with identical powers of p,

p0 : u0(x, t) = f0(x, t), (19)

p1 : u1(x, t) = f1(x, t) +
∫ t

0

∫ 1

0
F(x, t, ξ, τ, u0(ξ, τ ))dξdτ

+
∫ t

0

∫ 1

0
σ(x, t, ξ, τ, u0(ξ, τ ))dB(ξ, τ ), (20)

.

.

.

pk : uk(x, t) =
∫ t

0

∫ 1

0
F(x, t, ξ, τ, uk−1(ξ, τ ))dξdτ

+
∫ t

0

∫ 1

0
σ(x, t, ξ, τ, uk−1(ξ, τ ))dB(ξ, τ ), (21)

(19)–(21) will allow us to determine the un(x, t), n ≥ 0 recurrently, and finally, solution
u(x, t) is readily obtained.

Numerical Examples

The method presented in this paper is used to find numerical solution of two examples, a
simple example with exact solution and another example, a model for random string.

Example 1 Consider the following linear stochastic integral equation,

u(x, t) = 1

12
+

∫ t

0

∫ 1

0
u(y, s)dyds +

∫ t

0

∫ 1

0
u(y, s)dB(y, s), t, x ∈ [0, 1), (22)

with the exact solution u(x, t) = 1
12e

1
2 t+B(t,1), for 0 ≤ t, x < 1.
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According to previous relations

f0(x, t) = 1

12
,

f1(x, t) = 0.

As a result

p0 : u0(x, t) = 1

12
.

p1 : u1(x, t) =
∫ t

0

∫ 1

0
u0(ξ, τ )dξdτ +

∫ t

0

∫ 1

0
u0(ξ, τ )dB(ξ, τ )

=
∫ t

0

∫ 1

0

1

12
dξdτ +

∫ t

0

∫ 1

0

1

12
dB(ξ, τ )

= 1

12
(t + B(1, t)).

p2 : u2(x, t) =
∫ t

0

∫ 1

0

1

12
(τ + B(1, τ ))dξdτ +

∫ t

0

∫ 1

0

1

12
(τ + B(1, τ ))dB(ξ, τ )

= 1

12

t2

2
+

∫ t

0

1

12
B(1, τ )dτ +

∫ t

0

1

12
τdB(1, τ ) +

∫ t

0

1

12
B(1, τ )dB(1, τ )

(23)

by using the integration by part for third term and

Bm(1, t) = m
∫ t

0
Bm−1(1, τ )dB(1, τ ) + m(m − 1)

2

∫ t

0
Bm−2(1, τ )dτ. m ≥ 2

for the forth part we have

= 1

12

(
t2

2
+

∫ t

0
B(1, τ )dτ + t B(1, t) −

∫ t

0
B(1, τ )dτ + B2(1, τ )

2
− t

2

)

= 1

12

(
t2

2
− t

2
+ t B(1, t) + B2(1, t)

2

)

p3 : u3(x, t) =
∫ t

0

∫ 1

0

1

12

(
τ 2

2
− τ

2
+ τ B(1, τ ) + B2(1, τ )

2

)

dξdτ

+
∫ t

0

∫ 1

0

1

12

(
τ 2

2
− τ

2
+ τ B(1, τ ) + B2(1, τ )

2

)

dB(ξ, τ )

= 1

12

(
t3

3! − t2

4
+

∫ t

0
τ B(1, τ )dτ +

∫ t

0

B2(1, τ )

2
dτ + t2

2
B(1, t)

−
∫ t

0
τ B(1, τ )dτ − t

2
B(1, t) +

∫ t

0

B(1, τ )

2
dτ

+
∫ t

0
τ B(1, τ )dB(1, τ ) + B3(1, t)

3! −
∫ t

0

B(1, τ )

2
dτ

)

= 1

12

(
t3

3! − t2

4
+

∫ t

0

B2(1, τ )

2
dτ + t2

2
B(1, t) − t

2
B(1, t)

+
∫ t

0
τ B(1, τ )dB(1, τ ) + B3(1, t)

3!
)
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= 1

12

(
t3

3! − t2

4
+

∫ t

0

B2(1, τ )

2
dτ + t2

2
B(1, t) − t

2
B(1, t)

+ t
B2(1, t)

2
− t2

2
−

∫ t

0

B2(1, τ )

2
dτ +

∫ t

0

τ

2
dτ + B3(1, t)

3!
)

= 1

12

(
t3

3! − t2

2
+ t2

2
B(1, t) − t

2
B(1, t) + t

B2(1, t)

2
+ B3(1, t)

3!
)

p4 : u4(x, t) =
∫ t

0

∫ 1

0

1

12

(
τ 3

3! − τ 2

2
+ τ 2

2
B(1, τ )− τ

2
B(1, τ )+τ

B2(1, τ )

2
+ B3(1, τ )

3!
)

dξdτ

+
∫ t

0

∫ 1

0

1

12

(
τ 3

3! − τ 2

2
+ τ 2

2
B(1, τ ) − τ

2
B(1, τ )

+ τ
B2(1, τ )

2
+ B3(1, τ )

3!
)

dB(ξ, τ )

= 1

12

(
t4

4! − t3

3! − t3

6
+ t2

8
+ · · ·

)

.

And by repeating this approach we obtain

u(x, t) =
∞∑

i=0

ui (x, t) = 1

12

(

1 + t

2
+ B(1, t) +

( t
2 + B(1, t)

)2

2! + · · ·
)

= 1

12
e

t
2+B(1,t).

which are exact solutions of Example 1.

Example 2 At first we consider a model for random string

∂

∂t
u(x, t) = ∂2

∂x2
u(x, t) + u(x, t) + ∂2

∂t∂x
B(x, t), (24)

ux (0, t) = 0,

ux (1, t) = 0 t > 0,

u(x, 0) = f (x) = 1 0 ≤ x ≤ 1,

has the mixed Volterra–Fredholm form

u(x, t) =
∫ 1

0
G(x, ξ, t) f (ξ)dξ +

∫ t

0

∫ 1

0
u(ξ, τ )G(x, ξ, t − τ)dξdτ

+
∫ t

0

∫ 1

0
G(x, ξ, t − τ)dB(ξ, τ ), (25)

with representation of the Green’s function

G(x, ξ, t) = 1 + 2
∞∑

n=1

cos(nπx)cos(nπξ)e(−n2π2t), (26)

for f (x) = 1,
∫ 1

0
G(x, ξ, t) f (ξ)dξ = 1.

Then

u(x, t) = 1 +
∫ t

0

∫ 1

0
u(ξ, τ )G(x, ξ, t − τ)dξdτ +

∫ t

0

∫ 1

0
G(x, ξ, t − τ)dB(ξ, τ ). (27)
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At first, we consider homotopy perturbation method and for comparison with this method
finite difference scheme are presented.

(a) Homotopy perturbation method We may choose a homotopy such that

u(x, t)−1+ p

(∫ t

0

∫ 1

0
u(ξ, τ )G(x, ξ, t−τ)dξdτ +

∫ t

0

∫ 1

0
G(x, ξ, t−τ)dB(ξ, τ )

)

=0,

(28)

According to last section we get

f0(x, t) = 1,

f1(x, t) =
∫ t

0

∫ 1

0
G(x, ξ, t − τ)dB(ξ, τ ).

As a result

p0 : u0(x, t) = 1. (29)

p1 : u1(x, t) =
∫ t

0

∫ 1

0
u0(ξ, τ )G(x, ξ, t − τ)dξdτ +

∫ t

0

∫ 1

0
G(x, ξ, t − τ)dB(ξ, τ )

=
∫ t

0

∫ 1

0
G(x, ξ, t − τ)dξdτ +

∫ t

0

∫ 1

0
G(x, ξ, t − τ)dB(ξ, τ )

= t +
∫ t

0

∫ 1

0
G(x, ξ, t − τ)dB(ξ, τ ) (30)

= t + B(1, t) + 2
∞∑

n=1

cos(nπx)e(−n2π2t)
∫ t

0

∫ 1

0
cos(nπξ)e(n2π2τ)dB(ξ, τ )

= t + B(1, t) + 2
∞∑

n=1

cos(nπx)e(−n2π2t)α(n, t), (31)

where,

α(n, τ ) :=
∫ τ

0

∫ 1

0
cos(nπλ)e(−n2π2(−ς))dB(λ, ς),

by using (28) and (21)

p2 : u2(x, t) =
∫ t

0

∫ 1

0

(∫ τ

0

∫ 1

0
G(ξ, λ, τ − ς)dB(λ, ς) + τ

)

G(x, ξ, t − τ)dξdτ

= t2

2
+

∫ t

0

∫ 1

0

(∫ τ

0

∫ 1

0
G(ξ, λ, τ − ς)dB(λ, ς)

)

G(x, ξ, t − τ)dξdτ

(32)

with replacing G(x, ξ, t)

= t2

2
+

∫ t

0

∫ 1

0

(∫ τ

0

∫ 1

0
1 + 2

∞∑

n=1

cos(nπξ)cos(nπλ)e(−n2π2(τ−ς))dB(λ, ς)

)

×
(

1 + 2
∞∑

m=1

cos(mπx)cos(mπξ)e(−m2π2(t−τ))

)

dξdτ
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= t2

2
+

∫ t

0
B(1, τ )dτ +

∫ t

0

∫ 1

0

(∫ τ

0

∫ 1

0
2

∞∑

n=1

cos(nπξ)cos(nπλ)e(−n2π2(τ−ς))dB(λ, ς)

)

×
(

1 + 2
∞∑

m=1

cos(mπx)cos(mπξ)e(−m2π2(t−τ))

)

dξdτ

= t2

2
+

∫ t

0
B(1, τ )dτ +

∫ t

0

∫ 1

0

(

2
∞∑

n=1

cos(nπξ)e(−n2π2τ)

×
∫ τ

0

∫ 1

0
cos(nπλ)e(−n2π2(−ς))dB(λ, ς)

)

×
(

1 + 2
∞∑

m=1

cos(mπx)cos(mπξ)e(−m2π2(t−τ))

)

dξdτ

= t2

2
+

∫ t

0
B(1, τ )dτ +

∫ t

0

∫ 1

0

(

2
∞∑

n=1

cos(nπξ)e(−n2π2τ)

×
∫ τ

0

∫ 1

0
cos(nπλ)e(−n2π2(−ς))dB(λ, ς)

)

×
(

2
∞∑

m=1

cos(mπx)cos(mπξ)e(−m2π2(t−τ))

)

dξdτ

= t2

2
+

∫ t

0
B(1, τ )dτ +

∫ t

0

∫ 1

0

(

2
∞∑

n=1

cos(nπξ)e(−n2π2τ)α(n, τ )

)

×
(

2
∞∑

m=1

cos(mπx)cos(mπξ)e(−m2π2(t−τ))

)

dξdτ

= t2

2
+

∫ t

0
B(1, τ )dτ +

∫ t

0

(

2
∞∑

n=1

α(n, τ )cos(nπx)e(−n2π2(t))

)

dτ

= t2

2
+

∫ t

0
B(1, τ )dτ + 2

∞∑

n=1

cos(nπx)e(−n2π2(t))
∫ t

0
α(n, τ )dτ,

continuing this procedure

p3 : u3(x, t) =
∫ t

0

∫ 1

0

(
τ 2

2
+

∫ τ

0
B(1, ς)dςdτ + 2

∞∑

n=1

cos(nπξ)e(−n2π2(τ ))

×
∫ τ

0
α(n, ς)dς

)

G(x, ξ, t − τ)dξdτ

= t3

3! +
∫ t

0

∫ τ

0
B(1, ς)dςdτ +

∞∑

n=1

cos(nπx)e(−n2π2(t))

×
∫ t

0

∫ τ

0
α(n, ς)dςdτ,
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Fig. 1 The approximate solution
for N = 5, of Example 2 by
homotopy method

= t3

3! +
∫ t

0
(t − ς)B(1, ς)dς +

∞∑

n=1

cos(nπx)e(−n2π2(t))

×
∫ t

0
(t − ς)α(n, ς)dς. (33)

Therefore, the approximate solution of Example 1. can be readily obtained by

u(x, t) = u0(x, t) + u1(x, t) + · · ·
= 1 + t + t2

2
+ t3

3! + t4

4! + · · · + B(1, t) +
∫ t

0
B(1, ς)dς

+
∫ t

0
(t − ς)B(1, ς)dς + · · · +

∞∑

n=1

cos(nπx)e(−n2π2t)α(n, t)

+ 2
∞∑

n=1

cos(nπx)e(−n2π2(t))
∫ t

0
α(n, τ )dτ + · · · , (34)

in practice, all terms of series (34) cannot be determined and so we use an approximation of
the solution by the following truncated series:

uN (x, t) =
N−1∑

i=0

ui (x, t),

then absolute error which is defined by

eN (x, t) = |uN (x, t) − u(x, t)|.
We approximate this equation and numerical results with N = 5 are shown in Fig. 1.

(b)Finite differencemethod Partial differential equations are solved by numerousmethods.
A popular methods amongst them are finite difference methods.
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Fig. 2 The approximate solution
of Example 2 by Crank–Nicolson
schemes

Basically, these schemes discretize the continuous space and time into an evenly distributed
grid system, and the values of the state variables are evaluated at each node of the grid.
Let h = x, k = t. we approximate derivative by

∂u

∂t
u(xi , t j ) = u(xi , t j ) − u(xi , t j−1)

h
+ O(h),

∂u

∂x
u(xi , t j ) = u(xi+1, t j ) − u(xi−1, t j )

2k
+ O(k2),

∂2u

∂x2
u(xi , t j ) = u(xi+1, t j ) − 2u(xi , t j ) + u(xi−1, t j )

k2
+ O(k2). (35)

First, continuous space–time white noise is calculated

B(i, j) := B(i, j − 1) + B(i − 1, j) − B(i − 1, j − 1) + dB(i, j).

By substituting the discrete approximations to the continuous derivatives in equation (3) we
obtain

ui j+1 − ui j
h

= θ

(
ui−1 j − 2ui j + ui+1, j

k2
+ F(ui j )

)

+ (1 − θ)

(
ui−1 j+1 − 2ui j+1 + ui+1 j+1

k2
+ F(ui j+1)

)

+ dB(ih, jk),

for i = 1, 2, ..., N − 1 and j = 0, 1, ..., l − 1, and θ ∈ [0, 1]. The classical fully implicit,
fully explicit and Crank–Nicolson schemes are special cases of the θ -method and can be
obtained by letting θ = 1, θ = −1, and θ = 1/2 respectively.

The boundary condition at x = 0, and x = 1 in terms of central difference, gives at x = 0

u0 j+1 = u0 j + θ [2r(u1 j − u0 j ) + hF(u0 j )] + (1 − θ)[2r(u1 j+1 − u0 j+1)

+ hF(u0 j+1)] + hdB(0, jk).
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Also, for x = 1

uN j+1 = uN j + θ [2r(uN−1 j − uN j ) + hF(uN j )]
+ (1 − θ)[2r(uN−1 j+1 − uN j+1) + hF(uN j+1)] + hdB(lh, jk).

where r = h/k2. The numerical results for Crank–Nicolson scheme are shown in Fig. 2.

Conclusion

In this paper, homotopy perturbation method was applied to solve a model for a stochastic
polymer. The presented method was used to find numerical solutions of two examples, a
simple example with exact solution and another example, a model for random string. The
homotopy method needs much less computational work compared with traditional methods.
It is shown that homotopy is a very fast convergent, precise and cost efficient tool for solving
stochastic integral equations in the bounded domains.
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