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Abstract The irregularity of a simple undirected graph G = (V, E) is defined as irr(G) =∑

uv∈E(G)

|dG(u)−dG(v)|, where dG(u) is the degree of the vertex u. This graph invariant is also

known as third Zagreb index. In this paper, we investigate how the irregularity of a graph
changes with various subdivision operations. Moreover, we find some exact expressions
for irregularity of different composite graphs such as double graph, double cover graph,
generalized thorn graph and subdivision vertex corona of graphs.

Keywords Vertex degree ·Graph invariant · Zagreb indices ·Graph irregularity ·Composite
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Introduction

Let G = (V, E) be a simple undirected graph with n vertices and m edges. We denote the
degree of a vertex u by dG(u) and the maximum and minimum degree of the graph G by
� and δ respectively. The imbalance of an edge e = uv ∈ E(G) is defined as imb(e) =
|dG(u) − dG(v)|. In [2], Albertson defined the irregularity of G as
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irr(G) =
∑

e∈E(G)

imb(e) =
∑

uv∈E(G)

|dG(u) − dG(v)| (1)

and found upper bounds of irregularity for bipartite graphs, triangle-free graphs and a sharp
upper bound of irregularity for trees. Also, Hansen and Mélot [15] characterized the graphs
with n vertices and m edges with maximal irregularity. A lot of researches on irregularity of
graphs have been carried out in the recent past [1,4,20,21].

It is clear that the irregularity of a graph is always nonnegative and for a regular graph
G, irr(G) = 0. We recall that the first and the second Zagreb indices of a graph G, denoted
by M1(G) and M2(G) respectively, are one of the oldest topological indices introduced by
Gutman and Trinajstić [13] and were defined as

M1(G) =
∑

u∈V (G)

dG(u)2 =
∑

uv∈E(G)

[dG(u) + dG(v)] and

M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

In [12], Fath-Tabar named the sum (1) as the third Zagreb index and denoted it by M3(G)

and presented some upper and lower bounds of M3(G) in terms of M1(G) and M2(G).
However, we shall refer this sum as irregularity of graphs throughout this paper.

In this paper, we will show how the irregularity of a graph changes with the various
subdivision operations. Moreover, we give exact expressions for irregularity of double graph,
extended double cover graph, generalized thorn graphs and subdivision vertex corona of
graphs.

Irregularity of Some Subdivision Graphs

LetG be a connected graph. The line graph ofG, denoted by L(G) is the graphwhose vertices
are the edges of G and two vertices of L(G) are adjacent if and only if the corresponding
edges are adjacent in G.

In the following, we study the irregularities of some subdivision graphs which are defined
below and were investigated for their Wiener and hyper-Wiener indices in [9,11,24].

Definition 1 The subdivision graph of a graph G denoted by S(G) is obtained from G by
replacing each edge of G by a path of length two.

Definition 2 The triangle parallel graph of a graph G is denoted by R(G) and is obtained
from G by replacing each edge of G by a triangle.

Definition 3 The line superposition graph Q(G) of a graphG is obtained fromG by inserting
a new vertex into each edge ofG, and joining with edges each pair of new vertices on adjacent
edges of G.

Definition 4 The total graph T (G) of a graph G has its vertices as the edges and vertices
of G. Adjacency in T (G) is determined by adjacency or incidence of the corresponding
elements of G.

In [22], Tavakoli et al. have shown that irr(L(S(G))) = irr(G). Here, we first determine
the lower bound of irregularity of the subdivision graph S(G) of G in terms of the number
of edges and the first Zagreb index of G.
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Theorem 1 The irregularity of the subdivision graph S(G) of G follows the inequality
irr(S(G)) ≥ M1(G) − 4m, and equality holds if and only if all the vertices of G are of
degree more than one.

Proof The subdivision graph S(G) is obtained from G by replacing each edge by a path of
length two. So, |V (S(G))| = n + m and |E(S(G))| = 2m. Also, dS(G)(v) = dG(v), if
v ∈ V (G), otherwise dS(G)(v) = 2. Hence the irregularity of S(G) is given by

irr(S(G)) =
∑

uv∈E(S(G))

|dS(G)(u)−dS(G)(v)|

=
∑

u∈V (S(G))

|dS(G)(u)−2|

=
∑

u∈V (G)

|dG(u)−2|dG(u).

Now since for any two positive real numbers a and b, |a − b| ≥ |a| − |b|, from above we
have

irr(S(G)) ≥
∑

u∈V (G)

(dG(u) − 2) dG(u) = M1(G) − 4m

which is the desired result. In the above inequality, equality holds if and only if all the vertices
of G are of degree more than one. ��

Next, we shall determine the irregularity of the graph R(G) in terms of the number of
edges, the first Zagreb index and the irregularity of the original graph G.

Theorem 2 The irregularity of the triangle parallel graph R(G) of G is given by

irr(R(G)) = 2irr(G) + 2M1(G) − 4m.

Proof From the definition of triangle parallel graph R(G) of G, it is clear that, dR(G)(v) =
2dG(v), if v ∈ V (G), and dR(G)(v) = 2, if v ∈ V (R(G))\V (G). So, |V (R(G))| = n + m
and |E(R(G))| = 3m. Hence, from (1) the irregularity of R(G) is given by

irr(R(G)) =
∑

uv∈E(R(G))

|dR(G)(u) − dR(G)(v)|

=
∑

u,v∈V (G)
uv∈E(R(G))

|dR(G)(u) − dR(G)(v)|

+
∑

p∈V (G)
q∈V (R(G))\V (G)

pq∈E(R(G))

|dR(G)(p) − dR(G)(q)|

=
∑

uv∈E(G)

|2dG(u) − 2dG(v)| +
∑

p∈V (G)

|2dG(p) − 2|dG(p)

= 2
∑

uv∈E(G)

|dG(u) − dG(v)| + 2
∑

p∈V (G)

(dG(p) − 1)dG(p)

from where the desired result follows. ��
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Now, we shall determine the irregularity of Q(G) in terms of the first Zagreb index of the
graph G and the irregularity of the line graph of G.

Theorem 3 The irregularity of the line superposition graph Q(G) of G is given by

irr(Q(G)) = irr(L(G)) + M1(G)

where L(G) is the line graph of G.

Proof From the construction of Q(G) it is clear that, |V (Q(G))| = n+m and |E(Q(G))| =
2m + |E(L(G))|. Also, dQ(G)(v) = dG(v), if v ∈ V (G), and dQ(G)(v) = dL(G)(v) + 2, if
v ∈ V (R(G))\V (G). Hence, from (1), the irregularity of Q(G) is given by

irr(Q(G)) =
∑

uv∈E(Q(G))

|dQ(G)(u) − dQ(G)(v)|

=
∑

u∈V (G)
v∈V (Q(G))\V (G)

uv∈E(Q(G))

|dQ(G)(u)−dQ(G)(v)| +
∑

p∈V (Q(G))\V (G)
q∈V (Q(G))\V (G)

pq∈E(Q(G))

|dQ(G)(p)−dQ(G)(q)|

=
∑

u∈V (G)
uv∈E(G)

|dG(u) − {dG(u) + dG(v)} |

+
∑

p∈V (Q(G))\V (G)
q∈V (Q(G))\V (G)

pq∈E(Q(G))

|dL(G)(p) + 2 − dL(G)(q) − 2|

=
∑

u∈V (G)

dG(u)2 +
∑

pq∈E(L(G))

|dL(G)(p) − dL(G)(q)|

= irr(L(G)) + M1(G),

which is the desired result. ��
Finally, we express the irregularity of the total graph T (G) ofG in terms of the irregularity

of the original graph G and that of the line graph of G.

Theorem 4 The irregularity of the total graph T (G) of G is given by

irr(T (G)) = irr(L(G)) + 4irr(G)

where L(G) is the line graph of G.

Proof For the total graph T (G), V (T (G)) = V (G)∪E(G) and any two vertices of T (G) are
adjacent if and only if, the corresponding elements of G are either adjacent or incident. So,
|V (T (G))| = n + m and |E(T (G))| = 2m + |E(L(G))|. For the total graph, it is clear that
dT (G)(v) = 2dG(v), if v ∈ V (G) and dT (G)(v) = dL(G)(v) + 2, if v ∈ V (T (G))\V (G).
Therefore, from (1), the irregularity of the total graph T (G) is given by

irr(T (G)) =
∑

uv∈E(T (G))

|dT (G)(u) − dT (G)(v)|

=
∑

u,v∈V (G)
uv∈E(T (G))

|dT (G)(u) − dT (G)(v)| +
∑

u∈V (G)
v∈V (T (G))\V (G)

uv∈E(T (G))

|dT (G)(u) − dT (G)(v)|
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+
∑

u∈V (T (G))\V (G)
v∈V (T (G))\V (G)

uv∈E(T (G))

|dT (G)(u) − dT (G)(v)|

=
∑

u,v∈V (G)
uv∈E(G)

|2dG(u) − 2dG(v)| +
∑

u,v∈V (G)
uv∈E(G)

|2dG(u) − {dG(v) + dG(v)} |

+
∑

u,v∈V (L(G))
uv∈E(L(G))

|dL(G)(u) − dL(G)(v)|

= 2
∑

uv∈E(G)

|dG(u)−dG(v)| + 2
∑

uv∈E(G)

|dG(u)−dG(v)| + irr(L(G))

= 4irr(G) + irr(L(G)),

which is the desired result. ��
Example 1 Let Km,n be the complete bipartite graph where m, n ≥ 2 and Pn be a path on n
vertices (n ≥ 2). The following results are obtained as direct consequences of Theorems 1,
2, 3 and 4.

(i) irr(S(Km,n)) = mn(m + n − 4);
(ii) irr(R(Pn)) = 4(n − 1) = irr(Q(Pn)); and
(iii) irr(T (Pn)) = 10.

Irregularity of Double Graph and Extended Double cover

In this section, we give exact expressions of irregularity of double graph and extended double
cover in terms of that of the original graph.

Let us denote the double graph of a graphG byG∗, which is constructed from two copies of
G in the followingmanner [3,10,17]. Let the vertex set ofG be V (G) = {v1, v2, . . . , vn}, and
the vertices of G∗ are given by the two sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}.
Thus for each vertex vi ∈ V (G), there are two vertices xi and yi in V (G∗). The double graph
G∗ includes the initial edge set of each copies of G, and for any edge viv j ∈ E(G), two
more edges xi y j and x j yi are added. The double graph of the path P3 is illustrated in Fig. 1.

Theorem 5 The irregularity of the double graph G∗ of a graph G is given by

irr(G∗) = 8irr(G).

Proof From the definition of double graph it is clear that dG∗(xi ) = dG∗(yi ) = 2dG(vi ),
where vi ∈ V (G) and xi , yi ∈ V (G∗) are corresponding clone vertices of vi . Thus the
irregularity of double graph G∗ is

v1 v2 v3

x1 x2 x3

y1 y2 y3

Fig. 1 The graph P3 and its double graph P∗
3
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irr(G∗) =
∑

uv∈E(G∗)
|dG∗(u) − dG∗(v)|

=
∑

xi x j∈E(G∗)
|dG∗(xi ) − dG∗(x j )| +

∑

yi y j∈E(G∗)
|dG∗(yi ) − dG∗(y j )|

+
∑

xi y j∈E(G∗)
|dG∗(xi ) − dG∗(y j )| +

∑

x j yi∈E(G∗)
|dG∗(x j ) − dG∗(yi )|

= 4
∑

viv j∈E(G)

|2dG(vi ) − 2dG(v j )|,

from where the desired result follows. ��
Let G = (V, E) be a simple connected graph with V = {v1, v2, . . . , vn}. The extended

double cover of G, denoted by G∗∗ is the bipartite graph with bipartition (X, Y ) where
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} in which xi and y j are adjacent if and only
if either vi and v j are adjacent in G or i = j . For example, the extended double cover of
the complete graph is the complete bipartite graph. This construction of the extended double
cover was introduced by Alon [3] in 1986. In Fig. 2, we illustrate the extended double cover
of P3.

Theorem 6 The irregularity of the extended double cover G∗∗ of the graph G is given by

irr(G∗∗) = 2irr(G).

Proof If G is a graph with n vertices and m edges, then from definition of extended double
cover graph G∗∗ consists of 2n vertices and (n + 2m) edges and dG∗∗(xi ) = dG∗∗(yi ) =
dG(vi ) + 1, for i = 1, 2, . . . , n. Here, vi ∈ V (G) and xi , yi ∈ V (G∗∗) are corresponding
clone vertices of vi . Thus the irregularity of extended double cover graph G∗∗ of G is given
by

irr(G∗∗) =
∑

uv∈E(G∗∗)
|dG∗∗(u) − dG∗∗(v)|

=
∑

xi y j∈E(G∗∗)
|dG∗∗(xi ) − dG∗∗(y j )|

+
∑

x j yi∈E(G∗∗)
|dG∗∗(x j ) − dG∗∗(yi )| +

n∑

i=1

|dG∗∗(xi ) − dG∗∗(yi )|

= 2
∑

viv j∈E(G)

|dG(vi ) + 1 − dG(v j ) − 1|,

from where the desired result follows. ��

v1 v2 v3

x1 x2 x3

y1 y2 y3

Fig. 2 The graph P3 and its extended double cover P∗∗
3
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Irregularity of Thorn Graph

An edge e = uv of a graph G is called a thorn if either d(u) = 1 or d(v) = 1. The concept of
thorn graph was first introduced by Gutman [14] by joining a number of thorn to each vertex
of any given graph G. A variety of topological indices of thorn graphs have been already
studied by the researchers, in the recent past [5–8,16,18,23,25,26]. In this section, our aim
is to study irregularity of graphs in terms of some auxiliary invariants.

Let V (G) and V (GT ) be the vertex sets of G and its thorn graph GT respectively. Let
V (G) = {v1, v2, . . . , vn} and V T (G) = V (G) ∪ V1 ∪ V2 ∪ . . . ∪ V n , where Vi are the set
of degree one vertices attached to the vertices vi in GT and Vi ∩ Vj = ϕ, i 	= j . Let the
vertices of the set Vi are denoted by vi j for j = 1, 2, . . . , pi and i = 1, 2, . . . , n. Thus
|V (GT )| = n + z where, z = ∑n

i=1 pi . Then the degree of the vertices vi in GT are given
by dGT (vi ) = dG(vi )+ pi , for i = 1, 2, . . . , n. In the following, we first find the irregularity
of the general thorn graph GT and then consider some particular cases.

Theorem 7 The irregularity of a thorn graph GT is given by

irr(GT ) ≤ irr(G) +
n∑

i=1

pidG(vi ) +
n∑

i=1

pi
2 +

∑

viv j∈E(G)

|pi − p j | − z. (2)

Proof From (1), the irregularity of the thorn graph GT is given by
∑

viv j∈E(GT )

|dGT (vi ) − dGT (v j )|

=
∑

viv j∈E(G)

|dGT (vi ) − dGT (v j )| +
n∑

i=1

pi∑

j=1

|dGT (vi ) − dGT (vi j )|

=
∑

viv j∈E(G)

|dG(vi ) + pi − dGT (v j ) − p j | +
n∑

i=1

pi∑

j=1

|dG(vi ) + pi − 1|

≤
∑

viv j∈E(G)

|dG(vi ) − dG(v j )| +
∑

viv j∈E(G)

|pi − p j | +
n∑

i=1

pi {dG(vi ) + pi − 1}

= irr(G) +
∑

viv j∈E(G)

|pi − p j | +
n∑

i=1

pidG(vi ) +
n∑

i=1

pi
2 −

n∑

i=1

pi .

from where the desired result follows. ��

The following corollaries are direct consequences of the previous theorem.

Corollary 1 Let GT be a thorn graph with parameters pi = t for all i , then

irr(GT ) = irr(G) + t (2|E(G)| + n(t − 1)).

Corollary 2 If the parameters pi (≥ 1) is equal to the degree of the corresponding vertex
vi , then

irr(GT ) = 2 [irr(G) + M1(G) − |E(G)|] .
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Corollary 3 If λ be an integer so that λ > dG(vi ), i = 1, 2, . . . , n and if GT be the thorn
graph with parameters pi = λ − dG(vi ), then

irr(GT ) = (λ − 1)(nλ − 2|E(G)|).
Corollary 4 If the number of thorns, i.e., pendant edges attached to any vertex of the parent
graph is a linear function of the degree of the corresponding vertex vi , i.e., pi = a dG(vi )+b,
where a and b are any constants, the irregularity of the thorn graph is given by

irr(GT ) = (a + 1)irr(G) + a(a + 1)M1(G) + 2(b − a + 2ab)|E(G)| + bn(b − 1).

Corollary 5 Let CT
n be the thorny ring (having n ring as parent and (z − 2) thorns at each

vertex) then irr(CT
n ) = n(z − 1)(z − 2).

Corollary 6 Let PT
n be the thorn path (caterpillar) obtained from Pn by attaching z pendent

vertices at each vertex of Pn, then we have irr(PT
n ) = nz2 + (n − 2)z.

Corollary 7 Let STn be the thorn star obtained from Sn(∼= K1,n) by joining z thorns at each
vertex of the parent graph Sn. Then, irr(STn ) = (n + 1)z2 + (n − 1)(z + n).

Irregularity of Subdivision Vertex Corona of Graphs

In this section,we give exact expression for irregularity of subdivision vertex corona of two
graphs and then consider some particular cases.

Let G1 and G2 be any two simple connected graph with n1 and n2 number of vertices
and m1 and m2 number of edges respectively.The subdivision vertex corona of G1 and G2

is denoted by G1 � G2 and was introduced by Lu and Miao [19]. The graph G1 � G2 is
obtained from S(G1) and n1 copies of G2, by joining the i-th vertex of V (G1) to every
vertex in the i-th copy of G2. Let V (G1) = {v1, v2, . . . , vn1}, I (G1) = {ve1, ve2, . . . , vem1

}
and V (G2) = {u1, u2, . . . , un2}, so that V (S(G)) = V (G) ∪ I (G). Let ui1, u

i
2, . . . , u

i
n2

denote the vertices of the i-th copy of G2,i , i = 1, 2, . . . , n1, so that

V (G1 � G2) = V (G1) ∪ I (G1) ∪ [V (G2,1) ∪ V (G2,2) ∪ . . . ∪ V (G2,n1)].
Theorem 8 The irregularity of G1 � G2 is given by

irr(G1 � G2) = n1irr(G2) + M1(G1) + 4m1n2 − 2n1m2 + n1n2(n2 − 1) − 4m1. (3)

Proof The degree of the vertices of G1 � G2 is given by dG1�G2(vi ) = dG1(vi ) + n2 for
i = 1, 2, . . . , n1, dG1�G2(ei ) = 2 for i = 1, 2, . . . ,m1, dG1�G2(u

i
j ) = dG2(u j ) + 1 for

i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2. Let the vertex set of G1 � G2 can be partitioned into
three subsets

E1 = {
xy ∈ E(G1 � G2) : x, y ∈ V (G2,i ), i = 1, 2, . . . , n1

}
,

E2 = {xy ∈ E(G1 � G2) : x ∈ V (G1), y ∈ I (G1)}, and
E3 = {

xy ∈ E(G1 � G2) : x ∈ V (G1), y ∈ V (G2,i ), i = 1, 2, . . . , n1
}
.

The contribution of the edges in E1 to the irregularity of G1 � G2 is given by

irr1(G1 � G2) =
∑

xy∈E1

|dG1�G2(x) − dG1�G2(y)|

=
n1∑

i=1

∑

ui u j∈E(G2)

|dG2(ui ) + 1 − dG2(u j ) − 1| = n1irr(G2).
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Similarly, the contribution of the edges in E2 to the irregularity of G1 � G2 is given by

irr2(G1 � G2) =
∑

xy∈E1

|dG1�G2(x) − dG1�G2(y)|

=
n1∑

i=1

|dG1(vi ) + n2 − 2| dG1(vi )

=
n1∑

i=1

dG1(vi )
2 + (n2 − 2)

n1∑

i=1

dG1(vi )

= M1(G1) + 2(n2 − 2)m1.

Also, for the edges in E3, contribution to the irregularity of G1 � G2 is given by

irr3(G1 � G2) =
∑

xy∈E3

|dG1�G2(x) − dG1�G2(y)|

=
n1∑

i=1

n2∑

j=1

|dG1(vi ) + n2−dG2(u j ) − 1|

= n1n2(n2 − 1) + 2n2m1 − 2n1m2.

The desired expression for the irregularity of G1 �G2 is obtained by summing the above
three expressions. ��

Let |V (G)| = p and |E(G)| = q , then the following corollaries are direct consequence
of Theorem 8.

Corollary 8 Let Cn be cycle on n vertices. Then for any simple graph G,

(i) irr(Cn � G) = n irr(G) + n p2 + 3np − 2nq,
(ii) irr(G � Cn) = M1(G) + n p2 − 3np + 4nq − 4q.

Corollary 9 Let Pn be path on n vertices. Then for any simple graph G,

(i) irr(Pn � G) = n irr(G) + n p2 + 3np − 2nq − 4p − 2,
(ii) irr(G � Pn) = M1(G) + n p2 − 3np + 4nq + 4p − 4q.

UsingCorollary 8 and 9 the following results are obtained by straight forward calculations.

Example 2 (i) irr(Cn � Cm) = nm2 + nm;
(ii) irr(Pn � Pm) = nm2 + nm + 4n − 4m − 2;
(iii) irr(Cn � Pm) = nm2 + nm + 4n; and
(iv) irr(Pn � Cm) = nm2 + nm − 4m − 2.

Acknowledgments The authors thanks the anonymous reviewers whose comments helped improve and
clarify this manuscript.
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