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Abstract The homotopy continuation methods are capable to locate multiple solutions of
nonlinear systems of equations. In this paper is presented the path-following technique used
to trace the homotopy trajectory. The spherical method is employed resizing the radius of
the sphere at each iteration, the above based on the behavior of the radius of curvature. Also
the Newton homotopy is applied in conjunction with the proposed methodology for tracing
homotopy curve. To prove the usefulness of the proposedmethod is applied to three examples
with different numbers of equations obtaining successful results.

Keywords Homotopy path · Spherical algorithm · Path-following

Introduction

The task of located DC operating points of integrated electrical circuits is one of the most
important task in electrical circuit simulation. Such analysis includes finding the solutions
for a nonlinear algebraic equation system (NAEs). The complexity of the NAEs, depends
on the density of transistor fabricated on a wafer of silice and the mathematical model used
to represent the behavior of the transistor. The above causes the presence of multiple points
of operation where the method used most often is the Newton–Raphson (NR) which is not
capable to locatemultiple points of operation. Themain reason for the use of NRmethod is its
quadratic convergence however the starting point must be close to the solution. Alternative
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methods to NR are the homotopy methods, such methods are used to locate multiple DC
solutions and perhaps all the solutions if the path has more than one solution [1–3]. Continu-
ation methods or homotopymethods have shown promise in solving computational problems
associated with the simulation of circuits containing transistors. To employ the homotopy
methods we embed a continuation parameter λ into a set non-linear equation system. When
the continuation parameter λ is set to zero then the system is reduced to equations that can
be solved easily. Homotopy equations are continuously deformed until reaching the solution
of the original system of equations. For example for finding the solution of a set of nonlinear
equations F(x) = 0, where F : Rn → Rn is smooth using the continuation method. In gen-
eral, this method involves incorporating the continuation parameter into a set of nonlinear
equations H(x, λ),where H : Rn+1 → Rn [4–7]. The computational efficiency of homotopy
methods depends on the homotopy formulation as well as the curve-tracing algorithm and
the initial point [4,5,7–11]. The usefulness of homotopy methods depends on the type of
a circuits descriptive equations. Such methods are becoming a viable alternative in circuit
simulation, where they can be used to resolve convergence difficulties and to find multiple
operation points. These methods are slower than conventional methods but their speed can
often be improved by careful implementation [12–17].

In this paper is organizable in the following sections, first the introduction is submit-
ted, we briefly explain the characteristics of the Newton homotopy used in this proposed
work is present in “Newton Homotopy” section, later to trace the curve of homotopy is used
the spherical method explained in “The Spherical Algorithm” section, proposed methodol-
ogy to change the radius of the spheres in the spherical method is presented in “Proposed
Methodology to Accelerate the Course of the Curve on the Spherical Algorithm” section,
numerical examples are solved using the proposed methodology in “Numerical Examples”
section, finally the discussion of results and conclusions are shown in “Discussion” and
“Conclusions” sections, respectively.

Newton Homotopy

The operating point problem for a DC network is formulated as a system of non-linear
equations to be solved F(x) = 0. The Newton homotopy has similar properties to the NR
method, meaning that every homotopy path in the regular domain crosses at the same solution
point. TheNewton homotopy [11,18] is described by the following set of nonlinear equations:

H(x, λ) = F(x) − (1 − λ)

[
g(x0)

0

]
= 0. (1)

In circuit simulation applications, x ∈ Rn is the vector of node voltages, F(x) gives the set
of Kirchhoff’s Current Law equations at each node, where λ ∈ R is called the continuation
parameter and g(x0) is F(x) assessed at the initial point.

The solutions in DC are founded at λ = 1 on the solution curve, changing the start point
g(x0) we can trace the another solution curves. If the starting point is selected properly then
it possible find all solutions of the system [18].

The Spherical Algorithm

Tracing solution curves is a problem encountered in homotopy methods, where is required
suitable path-tracking techniques. The curve tracing algorithm can be divided in two types;
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Fig. 1 Path tracking using
spheres

the first is based on the predictor–corrector algorithmwhereas the second are piecewise-linear
algorithms [19]. These algorithm are sophisticated and very efficient, notwithstanding these
curve algorithm tracing algorithms are not widely used in practical applications; difficulties
primarily linked to the implementation of these algorithms are the theory and programming.
The spherical algorithm (SA) based predictor–corrector algorithm is used for geometrically
clear interpretation besides its easy implementation in programming [20–23]. The SA algo-
rithm consists of trace the curve using spheres of dimension n+1,where n+1 is the number
of variables of the equation system to be solved and continuation parameter. For tracing solu-
tion curves a starting point is chosen as the same point used wherein, the center of the first
sphere; then spheres are traced following the shape of the curve using predictor–corrector
algorithm as shown in Fig. 1.

Equation (2) that describe the sphere with center at C and radius r is expressed by:

S(X) = (x1 − c1)
2 + (x2 − c2)

2 + · · · + (xn+1 − cn+1)
2 − r2 = 0. (2)

The equation of the sphere is update at every iteration using the new center at C(c1, c2, . . . ,
cn+1). The homotopy is applied to equilibrium equations F(x) to obtain a equation system
increased as (3) with n + 1 equations and n + 1 variables.

H1 (F1(x), λ) = 0,
H2 (F2(x), λ) = 0,
...

Hn (Fn(x), λ) = 0,
S (x1, x2, . . . , xn, λ) = 0.

(3)

To follow the tracing solutions, the spheres are plotted using the predictor–corrector algo-
rithm, where the predictor is calculated as a sum of vectors and the predictor point is used to
find the correction point by solving the system of equations as (3).

Predictor–Corrector

– The predictor point is given using the Fig. 1, where the center of the first sphere o1 and
the center of the consecutive sphere o2 are used to obtain the step predictor.
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Fig. 2 Sphere intersecting with
the curve at two points

Fig. 3 Reversion strategy
proposed

– The corrector point uses NR method, setting as a starting point the predictor point and
solving (3), where can be localized at least two solutions: one lies in the forward direction
o4 and the other in the backward direction o2 (see Fig. 2). The forward solution can be
considered as a success of the algorithm, nonetheless if the backward solution is obtained,
the algorithm fails; such case of failure is known as “reversion” phenomenon of the SA.
To solve reversion problem is applied the calculus the angles of their normal vector to a
sphere for the solutions o2 and o4, instead of comparing o2 and o4 directly, we use the
angles of their normal vectors for an efficient comparison. After detecting the reversion
phenomenon, we have to modify the corrector step by increasing the radius a δr (where
δr is an increase of the radius) inducing the corrector step to converge to the forward
solution [23,24] (Fig. 3).

– Find zero strategy the finding zero strategy should start after the trajectory crosses solution
line λ = 1 [25,26]. A functional way consist by monitoring the change of sign of �λ

after the corrector step. This procedure is realized by multiplying �λ of two consecutive
predictor steps.

sign
(
�λ j+1�λ j

) �= −1. (4)

– Interpolate solutions when the trajectory crosses the line solution the point (k1, k2) are
taken to implement multidimensional interpolation to approximate the solution. Interpo-
lation is performed using the command “ArrayInterpolation” language Maple [24].
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Fig. 4 Spherical algorithm

Proposed Methodology to Accelerate the Course of the Curve
on the Spherical Algorithm

Homotopy methods are characterized by slowness to the path tracking. We want to solve the
system of equations H(x · λ) = 0, using Newton homotopy and for tracking the solution
curve use the SA. Size radius for spheres is fixed for the SA was reported in [21]. Therefore
making the radius of each sphere varies according to the form of the solution curve (see
Fig. 4).

As the first step of the proposed methodology is to calculate the radius of curvature by

ρ =
∣∣∣∣∣
(1 + (x ′

i )
2)

3
2

x ′′
i

∣∣∣∣∣ , (5)

where x ′
i , x

′′
i are numerical derivatives of first and second order, respectively evaluated for

current iteration. Numerical approximation for the first derivative is used in calculating the
radius of curvature by

x ′
i = xi − xi−1

h
, (6)

where xi and xi−1 are current iteration and preceding iteration, respectively, h is the Euclidean
distance between them. The second-order derivative also used to calculate the radius of
curvature can be analogously calculated as:

x ′′
i = x ′

i − x ′
i−1

h
, (7)

where x ′
i is the first derivative evaluated in the current iteration and x

′
i−1 is first order derivative

evaluated in the previous iteration (see Fig. 5).
Using (7) and (6) can be calculated (5) for each variable x1, x2, . . . , xn corresponds to

the number of system variables. Then is used arithmetic mean for the radius of curvature is
given by

ρav = ρx1 + ρx2 + · · · + ρxn

n
. (8)
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Fig. 5 Proposed variable radius

ix

1−ix h

jx

1−jx

Fig. 6 Hyperbolic tangent
function

The radius of the sphere expressed as the variable r is calculated using the hyperbolic tangent
function (9)

r = f (ρav) = tanh (ρav) = eρav − e−ρav

eρav + e−ρav
. (9)

The function there are also a pair of horizontal asymptotes is know as a sigmoid function
and is a bounded differentiable real function that is defined for all real input values and has a
positive derivative at each point. Figure6 shows the function behavior, using as parameters
the radius of curvature.

Equation (8) is a hyperbolic tangent function used to find the value of the radius of the
sphere. To accelerate change radio size can increase the hyperbolic function exponent using
a constant K by

r = f (ρav) = eKρav − 1

eKρav + 1
, (10)

where K is an integer that allows the function to have is an abrupt change in the range of
allowed values. At each iteration the curvature radius is calculated to obtain the radius of the
sphere suitable to trace homotopy curve during the course of the bend solution.

Numerical Examples

For exemplify the effectiveness of the methodology of fixed radius versus variable radius,
three study case are submitted.
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Case Study with Two Variables

The first study case is a circuit with a two diodes, one voltage source (E) an a resistor (R) as
shown in Fig. 7. In where the range of the radius of the hypersphere is taking of 0.009–0.1,
knowing that most of the time the radius size will have the most value.

The mathematical expression that represents the non-linear model having the form of a
polynomial:

g1 (v1) = 2.5v31 − 10.5v21 + 11.8v1;
g2 (v2) = 0.43v32 − 2.69v22 + 4.56v2. (11)

Using Kirchhoff laws, we obtain the equilibrium equation system:

F1 (v1, v2) = E − Rg1 (v1) − (v1 + v2) = 0;
F2 (v1, v2) = g1 (v1) − g2 (v2) = 0. (12)

The formulation used in this work is the Newton homotopy (12), then spherical method with
fixed radius is applied, for this first example the radio fixed size is r = 0.03. For the same
example, we change the variable radius methodology proposed in this work, for which a
range of possible values for the radius of the sphere where the minimum value is the fixed
value of radius 0.3 and the maximum value is 0.1 to avoid jumps between solution path. We
can see Fig. 8, the result of comparison between fixed radius and the methodology of variable
radius.

Fig. 7 Two tunnel diode circuit

(a) (b)

Fig. 8 a Radius size constant. b Radius size variable
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Table 1 Numerical results for the first case study

CPU time (s) Iteration numbers

Same size radio (0.03) 7.03 205

Different size radio (0.03–0.1) 6.1 146

Table 2 All solutions found for
the first case study

Initial point (0, 0.3) Solutions (v1, v2)

S1 (2.3052, 0.7055)

S2 (1.6663, 0.7393)

S3 (0.2282, 0.8286)

S4 (0.2198, 1.6729)

S5 (1.7026, 1.8090)

S6 (2.2775, 1.8574)

S7 (2.2247, 3.6930)

S8 (1.7755, 3.7071)

S9 (0.1997, 3.7542)

12V

0.1K 0.1K

8K 8K

4K 4K

30K

1K

0.1K

10K

4K 10K

1K

i 1

2

3

4 5

6

7

8

9

10

11
12

13

Fig. 9 Example circuit with 14 variables

Comparing the same curve solution but in the Fig. 8a using fixed radius display a curve
as solid lines while for Fig. 8b points are drawn wide apart because the radius of the sphere
is changed with respect to changes in the curve form solution. Table1 shows the results as
the computation time and the total number of iterations. The result shows advantages in the
use of fixed radius regarding sphere of variable radius. For this case study all solutions were
successfully found as shown in Table2.

Case Study with 14 Variables

The following circuit is described by a system of nonlinear equations with 14 variables
IE , v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13. This circuit contain four transis-
tor and one diode as shown in Fig. 9.
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The equilibrium equations are obtained from the modified nodal analysis by:

f1 = 37

20, 000
v1 − 1

4000
v2 − 1

4000
v6 − 1

1000
v9 − 1

4000
v12 − 1

10, 000
v13 + IE ,

f2 = − 1

40, 000
v1 + 3

8000
v2 + 3

8000
v5 + 9.90E − 09 exp40v4−40v3

+1E − 10 − 1E − 08 exp40v4−40v2 ,

f3 = 1

100
v3 − 1E − 08 exp40v4−40v3 +9.90E − 09 + 1E − 10 exp40v4−40v2 ,

f4 = 1

8000
v4 − 1

8000
v6 + 1E − 10 exp40v4−40v3 −1E − 08 + 9.90E

−09 exp40v4−40v2 ,

f5 = 1

8000
v2 + 1

8000
v5 + 1E − 10 exp40v5−40v7 −1E − 08

+9.90E − 09 exp40v5−40v6 ,

f6 = 1

4000
v1 − 1

8000
v4 + 3

8000
v6 + 9.90E − 09 exp40v5−40v7

+1.010E − 08 exp40v5−40v6 −1E − 08 exp40v8−40v6 ,

f7 = 1

100
v7 − 1E − 08 exp40v5−40v7 +9.90E − 09 + 1E − 10 exp40v5−40v6 ,

f8 = 1

30, 000
v8 − 1

30, 000
v9 + 1E − 08 exp40v8−40v6 −1.E − 08,

f9 = 1

1000
v1 − 1

30, 000
v8 + 31

30, 000
v9 + 9.90E − 09 exp40v11−40v10 +1E − 10

+1E − 08 exp40v11−40v9 ,

f10 = 1

100
v10 − 1E − 08 exp40v11−40v10 +9.90E − 09

+1E − 10 exp40v11−40v9 ,

f11 = 1

10, 000
v11 − 1

10, 000
v12 + 1e − 10 exp40v11−40v10 −1E − 08

+9.9E − 09 exp40v11−40v9 ,

f12 = − 1

4000
v1 − 1

10, 000
v11 + 7

20, 000
v12 + 9.9E − 12 exp40v13 +1E − 10

−1E − 08 exp40v13−40v12 ,

f13 = − 1

10, 000
+ 11

10, 000
v13 + 1E − 10 exp40v13 −1E − 08

+9.90E − 09 exp40v13−40v12 ,

f14 = v1 − 12.

The exponential function in the Ebers–Moll is used. Then Newton homotopy is applied to
embedding the continuation parameter λ into a set of nonlinear equations H(x, λ) and then
curve is traced using proposed methodology, we obtain the solution in Tables3 and 4.

While the CPU time also is reduced for fixed radius and variable radius respectively. The
projection of variable versus the λ parameter can be graphed, Fig. 10 shows IE and v13.
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Table 3 Solutions second case study

Initial point Solution Iter.
(r = 0.03)

CPU time
(s)

Iter.
(r = 0.03–0.1)

CPU time
(s)

(0, 10, 10, 10, 10, 0, 10, 10,
10, 10, 10, 10, 10, 10)

S1 478 696.2 180 601.7

(0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0)

S2 478 696.2 172 601.7

(0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5)

S3 476 696.2 171 601.7

Table 4 Solutions second case study

Solutions Numerical solution

S1 (−0.0089, 12.000, 0, 0.0388, 0.0387, 0.3214, 5.9958, 0.0849, 0.3686, 0.7126, 0.4364, 0.3907,
0.6990, 11.6354)

S2 (−0.0100, 12.000, 0.0000, 0.0388, 0.0387, 0.3214, 0.8839, 0.2775, 0.5908, 0.6318, 0.8128,
0.3153, 1.0745, 11.6475)

S3 (−0.0089, 12.000, 0.0000, 0.0388, 0.0387, 0.3214, 5.9944, 0.0849, 0.3685, 0.7126, 0.4364,
0.3907, 0.6990, 11.6354)

(a) (b)

Fig. 10 a Radius size constant. b Radius size variable

Case Study with 18 Variables

Consider the following case study containing 6 transistors, 3 diodes and 18 resistors;
the Fig. 11 shows the circuit. In this example, we applied the proposed algorithm to
the same Newton homotopy function as above example, we choose a starting point as
(−15, −15, −15, −15, −15, −15, −15,−15, −15, −15, −15, −15, −15, −15, −15,
−15, −15, −15). Tables5 and 6 shows results of tracing the homotopy path, where can
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Fig. 11 Six transistor multistate circuit

Table 5 Solutions third case study

Solution Iter. (r = 0.03) CPU time (s) Iter. (r = 0.03–0.1) CPU time (s)

S1 2545 5118.003 865 1835.6

Table 6 Solutions third case study

Solution S1

(−0.0347, 11.9999, 5.1209, 0.6756, 0.9813, 0.7824, 1.0244, 5.1209, 0.6756, 0.9813, 8.2950, 8.0239, 0.2842,
0.3276, 0.5148, 0.5148, 0.7824, 1.0244 )

be see a clear decrease in the number of iterations and consequently also the computation
time is reduced. A solution was found using a starting point without a methodology, however
using other starting points probably to find other paths.

The solution founded is plotting as a projection of the variables v1 and v17 versus λ

parameter (see Fig. 12).

Discussion

Proposed methodology has been applied in three circuits with different number of variables
in which the number of iterations is reduced. Numerical derivatives are calculated in each
iteration to obtain the radius of curvature, which changes while the curve goes through the
nonlinearities own of the system of equations to be solved. Then the value for the radius
of curvature is used in hyperbolic tangent function to change the radius of the spheres in
the path of the homotopy curve. Tables1, 2, 3, 4, 5, and 6 show the results of varying
radius methodology where the number of iterations is decreased compared to a fixed radius
methodology for SA.Numerical results is useful to solve exampleswith 2, 14 and 18 variables
achieving the reduction of the number of iterations in each case study. In a future work will
be necessary to include a proposal to find a path connecting all solutions and improve the
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(a) (b)

Fig. 12 a Radius size constant. b Radius size variable

results obtained. Nonetheless finding a curve with all connected solutions is presented as an
area of opportunity to work on the starting point of homotopy.

Conclusions

The radius of curvature provides sufficient information on the prediction of how the curvewill
behave in the next iteration. Then the SA has been adapted to the variable-radius conforming
to the shape of the curve. Using three study cases describing the behavior of electrical circuits,
we show the use of variable radius for spheres in the SA yields better computation times in
the simulations because the less number of iterations in each simulation. In the first case
study all solutions are found while in the following case studies solutions depend strongly
on the starting point.
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