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Abstract A model for investigating the drug transport into a porous arterial wall from a drug-
eluting stent is developed. Under the assumption of Darcy flow in the tissue, a model based
on a two-dimensional unsteady convection—diffusion equation is derived where the relative
roles of the convective and diffusive transport are characterised by a Peclet number, Pe. The
Marker and Cell method is developed in Cartesian co-ordinate system in order to tackle the
governing equations of motion representing interstitial flow and the transport of drug within
a porous arterial wall in a stent-based drug delivery. The effects of Peclet number on drug
transport are quantitatively investigated graphically. The present study clearly predicts that
with an increase in Peclet number, there occurs a reduction in the drug deposition within the
arterial wall. This observation is consistent with those of previous investigations available in
the literature.

Keywords Porous wall - Drug transport - Drug-eluting stent - MAC method - Interstitial
flow

Introduction

Since abnormal deposition of macromolecules in the arterial wall is believed by many to
play a significant role in diseases such as coronary artery disease (CAD)—the foremost
cause of morbidity in the industralised world, a number of mathematical models has been
developed which elucidate our ability in understanding the treatments available. The gold
standard medical treatment consists of deploying a drug-eluting stent in the occluded vessel
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in order to restore luminal blood flow and to resist the tendency of the body to re-occlude
the artery by means of local and controlled release of drug from DES. The first DES to gain
commercial approval from the Food and Drug Administration (FDA) in the United States
was the Cypher stent, which was developed by Cardis Corporation (Miami, FL, USA). The
first generation DES exhibited considerable effect on reducing restenosis rates, compared to
bare metal stent (BMS) (cf. [1]). A successful DES deployment is defined by its ability to
transport the right proportion of an appropriate drug within the correct time frame that will
prevent post-operative in-stent restenosis (ISR). The degree of initial stenosis, the presence
of thrombus on the stent and even the advent of re-endothelialisation will all contribute to
the DES’s ability to transport drug throughout the porous arterial wall.

Keeping this in mind, several studies were carried out in the recent past covering different
aspects of the problem by disregarding luminal flow (cf. [2-16]). Due to porosity of the
arterial wall, flow within it must consider the influence of the tissue permeability. A number
of studies has been carried out by taking into account the interstitial flow within the porous
arterial wall (cf. [17-24]).

In view of these, an attempt is made in the present investigation to explore the influence
of diffusivity (Peclet number) on the transport of drug within a porous arterial wall eluted
from a coronary stent in which the interstitial fluid (plasma) is treated to be Newtonian. The
governing equations of motion of unsteady flow phenomena together with the drug transport
equation are successfully solved numerically by MAC method primarily introduced by [25]
to achieve the desired degree of accuracy. The primary objective of the present investigation
is to explore the effect of diffusivity of drug on the drug deposition within the arterial wall
quantitatively by using a relatively simple finite-difference scheme. The novelty of the present
study lies with the inclusion of DES and unsteadiness of the mass transport within a porous
arterial wall which closely resemble the pathological situation.

Governing Equations and Boundary Conditions

The governing equations representing the interstitial flow within a porous arterial wall are
Brinkman equations and continuity equation whose dimensionless forms in two-dimensional
Cartesian co-ordinate system may be written as
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where x and y are the dimensionless co-ordinates scaled with respect to rp, the width of the
domain [cf. Fig. 1]. The dimensionless axial and transmural components of velocity u, and
uy are scaled with respect to the transmural filtration velocity Ugy. The Reynolds number
(Re) and the dimensionless pressure (p) may be defined as
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in which p is the density of the interstitial fluid, p, the viscosity and p’, the pressure. Here,
kp = %; k being the Darcy permeability.

The convection—diffusion equation representing the transport of drug within the arterial
wall can be written in dimensionless form as

dc, ac; dcr 1 [8%¢; 8%
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in which the Peclet number Pe = rog%; Dy, the coefficient of diffusion. Here time and drug

concentration are scaled as follows:
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where c; is the reference concentration at the strut.

The computational domain consists of a long section of length L idealised as a rectangle
and the arterial wall thickness is taken to be 10 times the strut width. As the drug at the
lumen-tissue interface (I'p;) becomes exposed to flowing blood, it is assumed that blood is
extremely efficient at washing out mural-adhered drug, modelled as a zero concentration
condition by (cf. [26])

uy =1,uy =0and ¢, =0 for x €Iy, y=0;
uy =0=uy,c;, =1 for x €y, y=0.

At the perivascular wall (I';;), zero variations in normal direction for the drug concentra-
tion and velocities are assumed [cf. [27]] which may be mathematically written as

9 9 9
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Moreover, along the proximal (I';;) and distal (I';,) boundaries I'y, [cf. [21]], the condi-
tions are as follows:
duy _ 0
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Method of Solutions

The above governing equations along with the boundary conditions are solved numerically
by finite-difference method. Control volume-based finite-difference discretisation of those
equations is carried out in staggered grids, usually known as Marker and Cell (MAC) proposed
initially by [25]. In this type of grid alignment, the interstitial velocities, the pressure and the
drug concentration are calculated at different locations of the control volume, as indicated
in Fig. 2. The discretisation of the time derivative terms are based on the first order accurate
two-level forward time differencing formula while those for the convective terms in the
momentum equations are accorded with a hybrid formula consisting of central differencing
and second order unwinding. The diffusive terms, however, are discretised by second order
accurate three-point central difference formula.

The equation for pressure is derived from the discretised momentum and continuity equa-
tions which is solved iteratively by Successive-over-Relaxation (S.O.R.) method with the
chosen value of over-relaxation parameter as 1.2, in order to get the intermediate pressure-
field using the interstitial velocity field. Subsequently, the maximum cell divergence of the
velocity field is calculated and checked for its tolerance. If the tolerance limit is not satisfied,
then the pressure at each cell of the domain is corrected and the interstitial velocities at each
cell are adjusted accordingly by repeating the process. Thus, in the finite-difference formula,
we assume x; = idx,y; = jdy,t, = ndt in which n refers to the time direction, 6¢, the
time increment. Here, §x and §y denote the space step sizes along the axial and transmural
directions respectively. The computational code based on the following algorithm has been
successfully programmed using FORTRAN language.

The MAC method consists of the following two stages:

Stage 1:
1) u":-lJrl,j u \:1 il and cg,_/. are initialised at each cell (i, j). This is done either from result
of thé previous cz:ycle or from the prescribed initial conditions.
(i) Time step §¢ calculated from stability criteria.
(iii) The equation for pressure is solved to get the intermediate pressure-field p} j using

" L uy™  of the n™ time step.
i+5.] iL,j+3
(iv) The momentum equations representing interstitial flow are solved to get intermediate
velocities u x>'k+ LUyt " in an explicit manner using the previously known velocities
I+5,] LT3

interstitial velocities u, U

and pressure.
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Stage 2:

(v) The maximum cell divergence of the velocity-field is calculated and checked for its
tolerance. If the tolerance limit is satisfied, then the drug transport equation is solved to
get drug concentration cz_jl within the arterial tissue in an explicit manner and steady-
state convergence is checked for whether to stop calculation. If the maximum divergence
of the velocity-field is found to be greater than the tolerance limit at any cell in absolute
sense, go to step (vi).

(vi) The pressure at each cell of the domain is corrected and subsequently the velocities at

each cell are adjusted to get uxl”_tll i and u y"+j_ , - Then step (v) is again performed.
1, 1

ij+%
This completes the necessary calculations for advancing flow-field through one cycle in
time. The process is to be repeated until steady-state convergence is achieved.

Numerical Stability: Time-stepping Procedure

Amsden and Harlow [28] suggested that the number of calculation cycles and hence the
running time could be reduced by the use of an adaptive time stepping routine which, at a
given cycle, would automatically choose the time step most appropriate to the velocity-field
at that cycle. Welch et al. [29] discussed the stability and accuracy requirements for the MAC
method. They suggested stability restriction involving the Reynolds number:
.| Re 5x28y2
o < Min| ————— .
|: 2 Sx%+ 8y2:|l.’/.
This stability condition is related to viscous effect [cf. [30]] which can be applied directly to
select an appropriate time step.
A more appropriate treatment used by [31], among others, is to require that no particles
should cross more than one cell boundary in a given time interval, that is,

1) 1)
8ty gMin[—x,—y] .
x| fuyl ij

The time step to be used at a given point in the calculation will be
8t =a Min[n, on.].

where 0 < a < 1; the reason for this extra added factor a led to a considerable computational
savings.

Results and Discussion

For the purpose of numerical computation of the desired quantities of major physiological
significance, the computational domain has been confined with a finite nondimensional length
of 1.7 in which the onset and offset lengths have been selected to be 8§ times the width of
the strut. For this computational domain, solutions are computed through the generation of
staggered grids with a size of 86 x 51.

Figure 3a, b display respectively the axial and the transmural velocity contours of the
interstitial fluid streaming through the porous arterial wall for Re = 0.00005 and Pe = 15.
The velocity contour, as appeared in Fig. 3a, has some interesting features to note that when
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Fig. 3 a Axial velocity contour (a) 1=
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the interstitial fluid crosses the middle of the strut, the corresponding axial velocity becomes
negative and the asymmetry of the contour about the middle of the strut is observed. One may
also observe that within the domain under study, there should be a separatrix (a boundary
separating two distinct signs of axial velocity) along which the axial velocity vanishes.
Furthermore, one may observe that the transmural velocity contour (cf. Fig. 3b), reflecting
the asymmetry about the middle of the strut, is maximum along the lumen-tissue interface
(non-strut region) and diminishes gradually as one moves away from it. However, a reverse
trend is observed in the region where the strut is well apposed with the arterial tissue. This
observation may be justified in the sense that in the lumen-tissue interface, filtration of blood
plasma from the lumen takes place whereas the transmural velocity vanishes owing to the
so-slip conditons in the strut-tissue interface.

Figure 4a exhibits the profile for drug concentration through the depth of the arterial wall
at Re = 0.00005 and Pe = 15. It is to be noted from the results of this figure that the drug
concentration vanishes at the non-strut region owing to the clearing out of mural-adhered
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Fig. 4 a Transmural (a) 10
concentration profile for different

axial positions at Re = 0.00005 1
and Pe = 15. b Transmural
concentration profile at the
middle of the strut for different
Pe at Re = 0.00005. ¢ Transmural
concentration profile for different
times at Re = 0.00005 and

Pe = 15 (non-dimensional time
one =4.79 h)
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drug by the blood stream and then increases up to some upper bound as one moves away from
the interface, and then finally decays steadily. However, the concentration is all time higher
(x = 0.85) throughout the depth of the arterial wall just beneath the strut. This observation
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Fig. 5 a Axial variation of the
drug concentration for different
times (Re = 0.00005, Pe = 15). b
Variation of the drug
concentration at y = 0.11 for

Re = 0.00005. ¢ Contour plot of
drug distribution within the
porous arterial wall for

Re =0.00005 and Pe = 15

—_
Q
~

Dimensionless drug concentration

_
(=)
N

Dimensionless drug concentration

(c)

o
1N}
S

0.15

0.10

0.05

0.8

0.6

0.4

0.2

4 |—=—t=0.1
——1t=05
—*—t=1.0
x40
\
LN AL B A LA B A I B B |
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6

Dimensionless axial position

T — T T T T T
0.2 0.4 0.6 0.8 1.0 1.2 14 16

0.0
Dimensionless axial position

I oordarer H H
l g g
SN

£ g
L\ % £
L %

L) 4 &

5 § . & o
Y ( [% / $ &
L % \ % N

L% N ol
0.5 1 15
z

is in good agreement with those of [32]. Figure 4b shows the results of concentration profiles
for different Pe. Simulations for six values of Pe in a compatible range are carried out to
show the trend of the solution. One may observe that the drug concentration reduces with
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Fig. 6 Temporal distribution of
dimensionless drug concentration
in the tissue for different Pe at
Re = 0.00005

Dimensionless drug concentration
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increasing Pe as the convection velocity sweeps the drug away from the wall, where it is
dispersed. At the intermediate instances, the profiles may appear bulged and therefore a more
uniform concentration is guaranteed [cf. Fig. 4c].

The unsteady nature of the concentration profile of drug for three distinct times (f =
0.1, 0.5, 1) is portrayed in Fig. 5a. The concentration of drug increases with increasing time
and the rate of increase is maximum for smaller times, and thereafter attains a steady state
(cf. Figs. 4c, 6). Moreover, it is clear that peaks of the concentration are attained immediately
beneath the contact surface of the strut which has further been established in Fig. 5b, c. Axial
dependence of drug concentration within the arterial tissue for different Pe is plotted in
Fig. 5b. The results of this figure reveal that the drug concentration reduces with increasing
Pe, as anticipated. All the above observations are in conformity to those of [33]. Figure 6
exhibits the evolution of drug concentration at the upstream of the stent corresponding to
Re = 0.00005 for different Pe. Comparing the results of this figure, one may conclude that
the mass balance reached the quasi-steady state faster for large Pe.

Conclusion

In this study, a two-dimensional model of interstitial flow and drug transport within a porous
arterial tissue is proposed. The interstitial fluid is taken to be Newtonian and the transport of
drug is considered to be governed by unsteady convection—diffusion equation. The analysis
shows that the concentration of drug within the arterial tissue is maximum just beneath the
stent strut which decreases with increasing Pe. One may also observe the asymmetry of the
distribution of drug about the middle of the strut.

With the rapid ascent of stent-based drug elution in the treatment of vascular disease, many
important issues concerning drug distribution and drug targeting need to be addressed. The
application of drug transport through porous media in biological tissues is an ever-expanding
field of research. Although advancing rapidly, there are many challenges in modelling of
the transport of drug eluted from DES. The multi-layer model of the arterial wall describes
the arterial anatomy most accurately. Some aspects of transport through porous arterial wall
have not been properly addressed and more fundamental research is warranted. For instance,
more accurate measurement of diffusivity for different layers and for different composi-
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tions of plaque, porosity, permeability and tortuosity may be taken into account in future
investigations of the problem.
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