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Abstract Although a very vast and extensive literature including books and papers on the
Laplace transformof a function of a single variable, its properties and applications is available,
but a very little or no work is available on the double Laplace transform, its properties and
applications.This paper deals with the double Laplace transforms and their properties with
examples and applications to functional, integral and partial differential equations. Several
simple theorems dealing with general properties of the double Laplace transform are proved.
The convolution, its properties and convolution theorem with a proof are discussed in some
detail. Themain focus of this paper is to develop themethodof the doubleLaplace transform to
solve initial and boundary value problems in appliedmathematics, andmathematical physics.

Keywords Double Laplace transform · Single Laplace transform · Convolution ·
Functional · Integral and partial differential equations
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Introduction with Historical Comments

‘What we know is not much.What we do not know is immense.’ Pierre-Simon Laplace

‘The greatest mathematicians like Archimedes, Newton, and Gauss have always been
able to combine theory and applications into one.’

FelixKlein

In his celebrated study of probability theory and celestial mechanics, P. S. Laplace (1749–
1827) introduced the idea of the Laplace transform in 1782. Laplace’s classic treatise on La
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Théorie Analytique des Probabilities ( Analytical Theory of Probability) contained some
basic results of the Laplace transform which is one of the oldest and most commonly used
linear integral transforms available in the mathematical literature. This has effectively been
used in finding the solutions of linear differential, difference and integral equations.

On the other hand , Joseph Fourier’s (1768–1830) monumental treatise on La Théorie
Analytique de la Chaleur (The Analytical Theory of Heat) provided themodernmathematical
theory of heat conduction, Fourier series, and Fourier integrals with applications. In his
treatise, he discovered a double integral representation of a non-periodic function f(x) for all
real x which is universally known as the Fourier Integral Theorem in the form

f (x) = 1

2π

∫ ∞

−∞
eikx

[∫ ∞

−∞
f (ξ)e−ikξdξ

]
dk. (1)

The deep significance of this theorem has been recognized by mathematicians and mathe-
matical physicists of the nineteenth and twentieth centuries. Indeed, this theorem is regarded
as one of the most fundamental representation theorems of modern mathematical analy-
sis and has widespread mathematical, physical and engineering applications. According to
Lord Kelvin (1824–1907) and Peter Guthrie Tait (1831–1901) once said: “Fourier’s The-
orem, which is not only one of the most beautiful results of modern analysis, but may be
said to furnish an indispensable instrument in the treatment of nearly recondite question
in modern physics · · · ′′. Another remarkable fact is that the Fourier integral theorem was
used by Fourier to introduce the Fourier transform and the inverse Fourier transform. This
celebrated work of Fourier was known to Laplace, and, in fact, the Laplace transform is a
special case of the Fourier transform. It was also A. L. Cauchy (1789–1857) who also used
independently some of the ideas of the thoery of Fourier transforms. At the same time, S.
D. Poisson (1781–1840) also independently applied the method of Fourier transforms in his
research on the propagation of water waves. Although both Laplace and Fourier transforms
have been discovered in the 19th century, it was the British electrical engineer, Oliver Heav-
iside (1850–1925) who made the Laplace transform very popular by applying it to solve
ordinary differential equations of electrical circuits and systems, and then to develop modern
operational calculus in less rigorous way. He first recognized the power and success of his
operational method and then used it as a powerful and effective tool for the solutions of
telegraph equations and the second order hyperbolic partial differential equations with con-
stant coefficients. Subsequently, T. J. Bromwich (1875–1930) first successfully introduced
the thoery of complex functions to provide formal mathematical justification of Heaviside’s
operational calculus. After Bromwich’s work, notable contributions to rigorous formulation
of operational calculus were made by J. R. Carson (1886–1940), Van der Pol, (1892–1977),
G. Doetsch (1889–1959) and many others.

Both Laplace and Fourier transforms have been studied very extensively and have found
to have a wide variety of applications in mathematical, physical, statistical, and engineering
sciences and also in other sciences. At present, there is a very extensive literature available
of the Laplace transform of a function f (t = x) of one variable t = x and its applications
(see Sneddon [1], Churchill [2], Schiff [3], Debnath and Bhatta [4]). But there is very little
or no work available on the double Laplace transforms of f(x,y) of two positive real variables
x and y and their properties and applications.

So, themajor objective of this paper is to study the double Laplace transform, its properties
with examples and applications to functional, integral and partial differential equations.
Several simple theorems dealing with general properties of the double Laplace theorem are
proved. The convolution of f(x,y) and g(x,y), its properties and convolution theorem with a
proof are discussed in some detail. The main focus of this paper is to develop the method

123



Int. J. Appl. Comput. Math (2016) 2:223–241 225

of the double Laplace transform to solve initial and boundary value problems in applied
mathematics, and mathematical physics.

Definition of the Double Laplace Transform and Examples

The double Laplace transform of a function f (x, y) of two variables x and y defined in the
first quadrant of the x–y plane is defined by the double integral in the form

¯̄f (p, q) = L2 [ f (x, y)] = L [L { f (x, y); x → p} ; y → q] = L[ f̄ (p, y); y → q]
=
∫ ∞

0

∫ ∞

0
f (x, y) e−(px+qy) dxdy, (2)

provided the integral exists, where we follow Debnath and Bhatta [4] to denote the Laplace
transform f̄ (p) = L{ f (x); x → p} of f (x) and to define by

f̄ (p) = L{ f (x)} =
∫ ∞

0
e−px f (x)dx, Re(p) > 0, (3)

andL ≡ L1 is used throughout this paper. Similarly,L−1 ≡ L−1
1 is used to denote the inverse

Laplace transformation of f̄ (p) and to define by

f (x) = L−1{ f̄ (p)} = 1

2π i

∫ c+i∞

c−i∞
epx f̄ (p)dp, c ≥ 0. (4)

Evidently, L2 is a linear integral transformation as shown below :

L2 [a1 f1(x, y) + a2 f2(x, y)] =
∫ ∞

0

∫ ∞

0
[a1 f1(x, y) + a2 f2(x, y)] e

−(px+qy)dxdy

=
∫ ∞

0

∫ ∞

0
a1 f1(x, y)e

−(px+qy)dxdy +
∫ ∞

0

∫ ∞

0
a2 f2(x, y)e

−(px+qy)dxdy

= a1

∫ ∞

0

∫ ∞

0
f1(x, y)e

−(px+qy)dxdy + a2

∫ ∞

0

∫ ∞

0
f2(x, y)e

−(px+qy)dxdy

= a1L2 [ f1(x, y)] + a2L2 [ f2(x, y)] , (5)

where a1 and a2 are constants.

The inverse double Laplace transformL−1
2

[ ¯̄f (p, q)
]

= f (x, y) is defined by the complex

double integral formula

L−1
2

[ ¯̄f (p, q)
]

= f (x, y)

= 1

2π i

∫ c+i∞

c−i∞
epx dp

1

2π i

∫ d+i∞

d−i∞
eqx ¯̄f (p, q) dq, (6)

where ¯̄f (p, q) must be an analytic function for all p and q in the region defined by the
inequalities Re p ≥ c and Re q ≥ d, where c and d are real constants to be chosen suitably.

It follows from (5) that L−1
2

[ ¯̄f (p, q)
]
satisfies the linear property

L−1
2 [a ¯̄f (p, q) + b ¯̄g(p, q)] = a L−1

2 [ ¯̄f (p, q)] + b L−1
2 [ ¯̄g(p, q)], (7)

where a and b are constants. This shows that L−1
2 is also a linear transformation.
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Examples

(a) If f(x,y) = 1 for x > 0 and y > 0, then

¯̄f (p, q) = L2{1} =
∫ ∞

0

∫ ∞

0
e−px e−qydxdy

=
∫ ∞

0
e−pxdx

∫ ∞

0
e−qydy = L{1; x → p}L{1; y → q} = 1

pq
. (8)

(b) If f(x,y) = exp(ax + by) for all x and y, then

L2{exp(ax + by)} =
∫ ∞

0

∫ ∞

0
e−(p−a)x e−(q−b)ydxdy

= L{eax ; x → p}L{eby; y → q}
= 1

(p − a)(q − b)
. (9)

(c)

L2{exp[i(ax + by)]} = 1

(p − ia)(q − ib)

= (p + ia)(q + ib)

(p2 + a2)(q2 + b2)
= (pq − ab) + i(aq + bp)

(p2 + a2)(q2 + b2)
. (10)

Consequently,

L2{cos(ax + by)} = pq − ab

(p2 + a2)(q2 + b2)
. (11)

L2{sin(ax + by)} = (aq + bp)

(p2 + a2)(q2 + b2)
. (12)

(d)

L2[cosh(ax + by)] = 1

2

[
L2{eax+by} + L2{e−(ax+by)}

]

= 1

2

[
1

(p − a)(q − b)
+ 1

(p + a)(q + b)

]
. (13)

Similarly,

L2[sinh(ax + by)] = 1

2

[
1

(p − a)(q − b)
− 1

(p + a)(q + b)

]
. (14)

(e)

L2{e−ax−by f (x, y)} = ¯̄f (p + a, q + b). (15)

L2{(xy)n} =
∫ ∞

0
e−px xndx

∫ ∞

0
yne−qydy

= n!
pn+1 · n!

qn+1 = (n!)2
(pq)n+1 , (16)

where n is a positive integer.
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(g)

L2{(xm yn)} = m!n!
pm+1qn+1 , (17)

where m and n are positive integers.
(h) If a(> −1) and b(> −1) are real numbers, then

L2{xa yb} = �(a + 1)

pa+1 · �(b + 1)

qb+1 . (18)

It follows from the definition of (2) that

L2{xa yb} =
∫ ∞

0

∫ ∞

0
e−px−qy xa yb dxdy

=
∫ ∞

0
xae−pxdx

∫ ∞

0
ybe−qydy

which is, by putting px = s, and qy = t

= 1

pa+1

∫ ∞

0
e−ssads · 1

qb+1

∫ ∞

0
e−t tbdt

= �(a + 1)

pa+1 · �(b + 1)

qb+1 . (19)

where �(a) is the Euler gamma function defined by the uniformly convergent integral

�(a) =
∫ ∞

0
sa−1e−sds, a > 0. (20)

This example can be used to derive the celebrated integral representation of the product
of Riemann zeta functions ζ (s) defined by

ζ (s) =
∞∑
n=1

1

ns
. (21)

It follows from (19) that

L2{xa−1yb−1} = �(a)

pa
· �(b)

qb
. (22)

Or,

�(a)

pa
· �(b)

qb
=
∫ ∞

0

∫ ∞

0
epx xa−1e−qy yb−1dxdy.

Summing this result over p and q from one to infinity gives

�(a)

∞∑
p=1

1

pa
· �(b)

∞∑
q=1

1

qb

=
∫ ∞

0
xa−1

∞∑
p=1

e−pxdx
∫ ∞

0
yb−1

∞∑
q=1

e−qydy

=
∫ ∞

0
xa−1 dx

(ex − 1)

∫ ∞

0
yb−1 dy

(ey − 1)
.
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Or,

�(a)ζ(a)�(b)ζ(b) =
∫ ∞

0
xa−1 dx

(ex − 1)
·
∫ ∞

0
yb−1 dy

(ey − 1)

ζ(a) · ζ(b) = 1

�(a)

∫ ∞

0
xa−1 dx

(ex − 1)
· 1

�(b)

∫ ∞

0
yb−1 dy

(ey − 1)
. (23)

This is a double integral representation for the product of two zeta functions.
(i)

L2
[
J0(a

√
xy)
] = 4

(4pq + a2)
, (24)

where J0(z) is a Bessel function of zero order. We have, by definition (2),

L2[J0(a√
xy)] =

∫ ∞

0

∫ ∞

0
e−(px+qy) J0(a

√
xy)dxdy

=
∫ ∞

0
e−qydy

[∫ ∞

0
e−px J0(a

√
xy)dx

]

= 1

p

∫ ∞

0
e−qy exp

(
−a2y

4p

)
dy = 1

p
(
q + a2

4p

) = 4

(4pq + a2)
.

Similarly,

L2[I0(a√
xy)] = 4

(4pq − a2)
, (25)

where I0(z) is the modified Bessel function of order zero.
(j) If f(x,y) = g(x)h(y), then

L2[ f (x, y)] = L2[g(x) · h(y)]
=
∫ ∞

0
e−px g(x)dx

∫ ∞

0
e−qyh(y)dy

= ḡ(p) h̄(q). (26)

In particular,

L2

[
1√
xy

]
= π√

pq
. (27)

(k)

L2

[
er f

(
x

2
√
y

)]
=
(

1

p
√
q

)
1

(p + √
q)

, (28a)

L2

[
er f

(
y

2
√
x

)]
=
(

1

q
√
p

)
1

(q + √
p)

. (28b)

By definition (2),

L2

[
er f

(
x

2
√
y

)]
=
∫ ∞

0
e−pxdx

∫ ∞

0
e−qy er f

(
x

2
√
y

)
dy
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which is, using item 87 of Table B-4 of Debnath and Bhatta [4],

= 1

q

∫ ∞

0
e−px

(
1 − e−x

√
q
)
dx

= 1

q

[
1

p
− 1

p + √
q

]
= 1

p
√
q(p + √

q)
.

Similarly, it is easy to prove (28b).
A table of double Laplace transforms can be constructed from the standard tables of Laplace
transforms by using the definition (2) or directly by evaluating double integrals. The above
results can be used to solve integral, functional and partial differential equations.

Existance Condition for the Double Laplace Tranform

If f(x,y) is said to be of exponential order a (> 0) and b(> 0) on 0≤ x < ∞, 0 ≤ y < ∞, if
there exists a positive constant K such that for all x > X and y > Y

| f (x, y)| ≤ K eax+by (29)

and we write
f (x, y) = O (eax+by) as x → ∞, y → ∞. (30)

Or, equivalently,

lim
x→∞,y→∞ e−αx−βy | f (x, y)|

= K lim
x→∞,y→∞ e−(α−a)x e−(β−b)y = 0, α > a, β > b. (31)

Such a function f(x,y) is simply called an exponential order as x → ∞, y → ∞, and
clearly, it does not grow faster than K exp(ax + by) as x → ∞, y → ∞.

Theorem 2.1 If a function f(x,y) is a continous function in every finite intervals (0,X) and
(0,Y) and of exponential order exp(ax + by), then the double Laplace transform of f(x,y)
exists for all p and q provided Re p > a and Re q > b.

Proof We have

| ¯̄f (p, q)| = |
∫ ∞

0

∫ ∞

0
e−px−qy f (x, y) dxdy|

≤ K
∫ ∞

0
e−x(p−a) dx

∫ ∞

0
e−y(q−b) dy

= K

(p − a)(q − b)
for Re p > a,Re q > b. (32)

It follows from this (32) that

lim
p→∞,q→∞ | ¯̄f (p, q)| = 0, or lim

p→∞,q→∞
¯̄f (p, q) = 0.

This result can be regarded as the limiting property of the double Laplace transform. Clearly,
¯̄f (p, q) = pq or p2 + q2 is not the double Laplace transform of any function f(x,y) because
¯̄f (p, q) does not tend to zero as p → ∞ and q → ∞. 	
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On the other hand, f(x,y) = exp(ax2 + by2), a > 0, b > 0 cannot have a double Laplace
transform even though it is continuous but is not of the exponential order because

lim
x→∞,y→∞ exp(ax2 + by2 − px − qy) = ∞. (33)

Basic Properties of the Double Laplace Transforms

Using Debnath and Bhatta [4], we can prove the following general properties of the double
Laplace transform under suitable conditions on f (x, y):

(a) L2

[
e−ax−by f (x, y)

]
= ¯̄f (p + a, q + b), (34)

(b) L2 [ f (ax) g(by)] = 1

ab
f̄
( p
a

)
ḡ
(q
b

)
, a > 0, b > 0, (35)

(c) L2 [ f (x)] = 1

q
f̄ (p), L2[g(y)] = 1

p
ḡ(q), (36)

(d) L2 [ f (x + y)] = 1

p − q

[
f̄ (p) − f̄ (q)

]
. (37)

(e) L2 [ f (x − y)] = 1

p + q

[
f̄ (p) + f̄ (q)

]
, when f is even. (38)

= 1

p + q

[
f̄ (p) − f̄ (q)

]
, when f is odd. (39)

(f) L2 [ f (x) H(x − y)] = 1

q

[
f̄ (p) − f̄ (p + q)

]
. (40)

(g) L2 [ f (x) H(y − x)] = 1

q

[
f̄ (p + q)

]
, (41)

(h) L2 [ f (x) H(x + y)] = 1

q

[
f̄ (p)

]
, (42)

(i) L2 [H(x − y)] = 1

p(p + q)
, put f (x) = 1 in (40). (43)

(j) L2

[
∂u

∂x

]
= p ¯̄u(p, q) − ū1(q), (44)

where ¯̄u(p, q) = L2 [u(x, y)] , ū1(q) = L [u(0, y)].

(k) L2

[
∂u

∂y

]
= q ¯̄u(p, q) − ū2(p), where ū2(p) = L [u(x, 0)] . (45)

(l) L2

[
∂2u

∂x2

]
= p2 ¯̄u(p, q) − p ū1(q) − ū3(q), (46)

where ū3(q) = L [ux (0, y)].

(m) L2

[
∂2u

∂y2

]
= q2 ¯̄u(p, q) − q ū2(p) − ū4(p), (47)

where ū4(p) = L [uy(x, 0)
]
.

(n) L2

[
∂2u

∂x∂y

]
= pq ¯̄u(p, q) − q ū1(q) − pū2(p) + u(0, 0), (48)

where L [ux (x, 0)] = pū2(p) − u(0, 0) is used.
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(o)

Theorem 3.1 If L2[ f (x, y)] = ¯̄f (p, q), then

L2[ f (x − ξ, y − η)H(x − ξ, y − η)] = e−ξp−ηq ¯̄f (p, q), (49)

where H(x, y) is the Heaviside unit step function defined by H(x − a, y − b) = 1 when
x > a and y > b : and H(x − a, y − b) = 0 when x < a and y < b.

Proof We have, by definition,

L2[ f (x − ξ, y − η)H(x − ξ, y − η)]
=
∫ ∞

0

∫ ∞

0
e−px−qy f (x − ξ, y − η)H(x − ξ, y − η)dx dy

=
∫ ∞

ξ

∫ ∞

η

e−px−qy f (x − ξ, y − η)dx dy

which is, by putting x − ξ = τ, y − η = s,

= e−pξ−qη

∫ ∞

0

∫ ∞

0
e−pτ−qs f (τ, s)dτ ds

= e−pξ−qη ¯̄f (p, q).

(p)

Theorem 3.2 If f(x,y) is a periodic function of periods a and b, (that is, f (x + a, y + b) =
f (x, y) for all x and y), and if L2{ f (x, y)} exists, then

L2{ f (x, y)} =
[
1 − e−pa−qb

]−1
∫ a

0

∫ b

0
e−px−qy f (x, y)dx dy. (50)

We have, by definition,

L2{ f (x, y)} =
∫ ∞

0

∫ ∞

0
e−px−qy f (x, y)dx dy

=
∫ a

0

∫ b

0
e−px−qy f (x, y)dx dy +

∫ ∞

a

∫ ∞

b
e−px−qy f (x, y)dx dy

Setting x = u + a, y = v + b in the second double integral, we obtain

¯̄f (p, q) =
∫ a

0

∫ b

0
e−px−qy f (x, y)dx dy +

∫ ∞

0

∫ ∞

0
e−pu−qv f (u + a, v + b)du dv

=
∫ a

0

∫ b

0
e−px−qy f (x, y)dx dy + e−pa−qb

∫ ∞

0

∫ ∞

0
e−pu−qv f (u, v)du dv

=
∫ a

0

∫ b

0
e−px−qy f (x, y)dx dy + e−pa−qb ¯̄f (p, q).

Consequently,

¯̄f (p, q) =
[
1 − e−pa−qb

]−1
∫ a

0

∫ b

0
e−px−qy f (x, y)dx dy

This proves the theorem of the double Laplace transform of a periodic function.
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Convolution and Convolution Theorem of the Double Laplace Transforms

The convolution of f (x, y) and g(x, y) is denoted by ( f ∗ ∗g)(x, y) and defined by

( f ∗ ∗g)(x, y) =
∫ x

0

∫ y

0
f (x − ξ, y − η) g(ξ, η) dξdη. (51)

The convolution is commutative, that is,

( f ∗ ∗g)(x, y) = (g ∗ ∗ f )(x, y). (52)

This follows from the definition (51). It can easily be verified that the following properties
of convolution hold :

[ f ∗ ∗(g ∗ ∗h)](x, y) = [( f ∗ ∗g) ∗ ∗h](x, y) (Associative), (53)

[ f ∗ ∗(ag + bh)](x, y) = a( f ∗ ∗g)(x, y) + b( f ∗ ∗h)(x, y) (Distributive), (54)

( f ∗ ∗δ)(x, y) = f (x, y) = (δ ∗ ∗ f )(x, y), (Identity), (55)

where δ(x, y) is the Dirac delta function of x and y. By virtue of these convolution properties,
it is clear that the set of all double Laplace transformable functions form a commutative
semigroup with respect to the convolution operation **. This set does not, in general, form
a group because f ∗ ∗g−1 does not have a double Laplace transform.

Theorem 4.1 (Convolution Theorem). If L2{ f (x, y)} = ¯̄f (p, q), and L2{g(x, y)} =
¯̄g(p, q), then

L2[( f ∗ ∗g)(x, y)] = L2{ f (x, y)}L2{g(x, y)} = ¯̄f (p, q) ¯̄g(p, q). (56)

Or, equivalently,

L−1
2 [ ¯̄f (p, q) ¯̄g(p, q)] = ( f ∗ ∗g)(x, y), (57)

where ( f ∗ ∗g)(x, y) is defined by the double integral (51) which is often called the Convo-
lution integral (or Faltung) of f (x, y) and g(x, y). Physically, ( f ∗ ∗g)(x, y) represents the
output of f (x, y) and g(x, y).

Proof We have, by definition,

L2[( f ∗ ∗g)(x, y)] =
∫ ∞

0

∫ ∞

0
e−px−qy( f ∗ ∗g)(x, y)dxdy

=
∫ ∞

0

∫ ∞

0
e−px−qy

[∫ x

0

∫ y

0
f (x − ξ, y − η)g(ξ, η)dξdη

]
dxdy

which is, using the Heaviside unit step function,

=
∫ ∞

0

∫ ∞

0
e−px−qy

[∫ ∞

0

∫ ∞

0
f (x − ξ, y − η) H(x − ξ, y − η)g(ξ, η)dξdη

]
dxdy

=
∫ ∞

0

∫ ∞

0
g(ξ, η)dξdη

[∫ ∞

0

∫ ∞

0
e−px−qy f (x − ξ, y − η) H(x − ξ, y − η)

]
dxdy
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which is, by Theorem 3.1,

=
∫ ∞

0

∫ ∞

0
g(ξ, η) · e−pξ−qη ¯̄f (p, q)dξdη

= ¯̄f (p, q)

∫ ∞

0

∫ ∞

0
e−pξ−qηg(ξ, η)dξdη

= ¯̄f (p, q) ¯̄g(p, q).

This completes the proof of the convolution theorem. 	


Corollary 4.1 If f (x, y) = a(x) b(y) and g(x, y) = c(x) d(y), then

L2[( f ∗ ∗g)(x, y)] = L{(a ∗ c)(x)}L{(b ∗ d)(y)}. (58)

Or, equivalently,

¯̄f (p, q) ¯̄g(p, q) = ā(p)b̄(p)c̄(q)d̄(q),

where ( f ∗ g)(x) =
∫ x

0
f (x − ξ)g(ξ)dξ and

L{( f ∗ g)(x)} = f̄ (p)ḡ(p) (see Debnath and Bhatta [4]. (59)

We prove (52) and (53) by means of convolution Theorem 4.1.
We apply L2 to the left hand side of (52) so that by Convolution Theorem 4.1

L2[( f ∗ ∗g)(x, y)] = ¯̄f (p, q) ¯̄g(p, q) = ¯̄g(p, q) ¯̄f (p, q)

= L2[(g ∗ ∗ f )(x, y)]. (60)

Application of L−1
2 to both sides of (60) gives

( f ∗ ∗g)(x, y) = (g ∗ ∗ f )(x, y).

Similarly, we apply L2 to the left hand side of (53) and use the convolution theorem (4.1) so
that

L2[ f ∗ ∗(g ∗ ∗h)(x, y)]
= ¯̄f (p, q) · L2[(g ∗ ∗h)(x, y)]
= ¯̄f (p, q) · ¯̄g(p, q) ¯̄h(p, q)

= [ ¯̄f (p, q) · ¯̄g(p, q)] ¯̄h(p, q)

= L2[( f ∗ ∗g)(x, y)] · L2[h(x, y)]
= L2[{( f ∗ ∗g)(x, y)} ∗ ∗h(x, y)]
= L2[{( f ∗ ∗g) ∗ ∗h}(x, y)]. (61)

Application of L−1
2 to (61) proves the associative property (53).
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Applications of the Double Laplace Transforms to Functional and Partial
Differential Equations

Functional Equations

Cauchy’s Functional Equation

This equation has the standard form as

f (x + y) = f (x) + f (y), (62)

where f is an unknown function.
We apply the double Laplace transform ¯̄f (p, q) of f (x, y) to (62) combined with (36) and
(37) to obtain

L2 [ f (x + y)] = L2 [ f (x)] + L2 [ f (y)]

or,
1

p − q

[
f̄ (q) − f̄ (p)

] = 1

q
f̄ (p) + 1

p
f̄ (q) (63)

that is,

f̄ (p)

[
1

q
+ 1

p − q

]
= f̄ (q)

[
1

p − q
− 1

p

]
.

Simplifying this equation, we get

p2 f̄ (p) = q2 f̄ (q), (64)

where the left hand side is a function of p alone and right hand side is a function of q alone.
This equation is true provided each side is equal to an arbitrary constant k so that

p2 f̄ (p) = k

Or,

f̄ (p) = k

p2
.

The inverse transform gives the solution of the Cauchy functional equation (62) as

f (x) = kx, (65)

where k is an arbitrary constant.

The Cauchy–Abel Functional Equation

This equation for an unknown function f (x) has the form

f (x + y) = f (x) f (y). (66)

We apply the double Laplace transform to (66) with (35) and (37) to obtain

L2 [ f (x + y)] = L2 [ f (x) f (y)] ,
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or,
1

p − q

[
f̄ (q) − f̄ (p)

] = f̄ (p) f̄ (q). (67)

Simplifying this equation leads to the separable form

1 − p f̄ (p)

f̄ (p)
= 1 − q f̄ (q)

f̄ (q)
. (68)

Equating each side to an arbitrary constant k, we obtain

f̄ (p) = 1

p + k
. (69)

Thus, the inverse transform gives the solution as

f (x) = e−kx . (70)

Partial Differential Equations

(a) Solve the equation
aux + buy = 0, (71)

with

u(x, 0) = f (x), x > 0; u(0, y) = 0, y > 0. (72)

Application of the double Laplace transform ¯̄u(p,q) of u(x,y) to (71) gives

a L2[ux ] + b L2[uy] = 0.

Or,

a[p ¯̄u(p, q) − L[u(0, y)]] + b(q ¯̄u(p, q) − L[u(x, 0)]) = 0.

Or,

(ap + bq) ¯̄u(p, q) = b f̄ (p).

Or,

¯̄u(p, q) = f̄ (p)
1(

q + a
b p
) (73)

The inverse Laplace transformation wih respect to q gives

ū(p, y) = f̄ (p) exp
(
−ap

b
y
)

(74)

The inverse transformation with respect to p yields the solution

u(x, y) =L−1
{
f̄ (p) exp

(
−ap

b
y
)}

= f (x) ∗ δ
(
x − ay

b

)
, by the convolution theorem,

=
∫ x

0
f (x − τ)δ

(
τ − ay

b

)
dτ = f

(
x − ay

b

)
. (75)

(b) Solve the first-order partial differential equation

ux = uy, u(x, 0) = f (x), x > 0, u(0, y) = g(y), y > 0. (76)
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Applying the double Laplace transform to equation (76) gives

L2 [ux ] = L2
[
uy
]

p ¯̄u(p, q) − ū1(q) = q ¯̄u(p, q) − ū2(p)

¯̄u(p, q) = ū1(q) − ū2(p)

p − q
,

where

ū1(q) = L{u(0, y)} = L{g(y)} = ḡ(q),

ū2(p) = L{u(x, 0)} = L{ f (x)} = f̄ (p).

Thus, inverting, we have

u(x, y) = L−1
2

[ ¯̄u(p, q)
] = L−1

2

[
ū1(q) − ū2(p)

p − q

]
. (77)

In particular, if u(x, 0) = 1 and u(0, y) = 1, so that ū1(q) = 1/q and ū2(p) = 1/p, then

¯̄u(p, q) = 1/q − 1/p

p − q
= 1

pq
(78)

Thus, the inverse of the double Laplace transform gives the solution

u(x, y) = L−1
2

{
1

pq

}
= 1. (79)

(b) D’ Alembert’s Wave Equation in a Quarter Plane The standard wave equation is

c2uxx = utt , x ≥ 0, t > 0, (80)

u(x, 0) = f (x), ut (x, 0) = g(x), x > 0, (81)

u(0, t) = 0, ux (0, t) = 0. (82)

We apply the double Laplace transform ¯̄u(p, q) = L2 [u(x, t)] defined by

¯̄u(p, q) =
∫ ∞

0

∫ ∞

0
u(x, t) e−px−qt dxdt, (83)

to the wave equation system (80)–(82) so that

c2L2 [uxx (x, t)] = L2 [utt (x, t)]

c2
[
p2 ¯̄u(p, q) − p L {u(0, t)} − L {ux (0, t)}

]
= q2 ¯̄u(p, q) − q L {u(x, 0)} − L {ut (x, 0)}(
c2 p2 − q2

) ¯̄u(p, q) = − [q f̄ (p) + ḡ(p)
]
.

Or,

¯̄u(p, q) = q f̄ (p) + ḡ(p)

q2 − c2 p2
. (84)
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The inverse of the double Laplace transform gives

u(x, t) = 1

2π i

∫ c+i∞

c−i∞
epx

[
f̄ (p) cosh cpt + ḡ(p)

cp
sinh cpt

]
dp

= 1

2
L−1 {ecpt + e−cpt}

+ 1

2c
L−1

{
ḡ(p)

p

(
ecpt − e−cpt )}

= 1

2
[ f (x + ct) + f (x − ct)]

+ 1

2c

[
L−1

{
ḡ(p)

p
ecpt
}

+ L−1
{
ḡ(p)

p
e−cpt

}]

= 1

2
[ f (x + ct) + f (x − ct)]

+ 1

2c

[∫ x+ct

0
g(τ )dτ −

∫ x−ct

0
g(τ )dτ

]
.

Hence,

u(x, t) = 1

2
[ f (x + ct) + f (x − ct)] + 1

2c

∫ x+ct

x−ct
g(τ )dτ. (85)

This is the celebrated D’ Alembert solution of the wave equation, where we have used

L−1 {epa f̄ (p)} = f (x + a) and L−1
{
ḡ(p)

p

}
=
∫ t

0
g(τ ) dτ.

(c) Fourier’s Heat Equation in a Quarter Plane
The standard heat equation is

ut = κ uxx , x ≥ 0, t > 0, (86)

u(x, 0) = 0, u(0, t) = 2T0, x > 0, t > 0, (87)

ux (0, t) = 0, t > 0, u(x, t) → 0 as x → ∞ (88)

where T0 is a constant.
We apply the double Laplace transform defined by (83) to (86) with the conditions (87)–

(88) to obtain

L2 [ut ] = κL2 [uxx ]

q ¯̄u(p, q) − L {u(x, 0)} = κ
[
p2 ¯̄u(p, q) − pL {u(0, t)} − L {ux (0, t)}

]
.

Thus, we have

¯̄u(p, q) = 2pT0
q

κ

κp2 − q
(89)
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The inverse of the double Laplace transform gives

u(x, t) = 2T0L−1
2

{
p

q
(
p2 − q

κ

)
}

= 2T0L−1
{
1

q
cosh

(√
q

κ

)
x

}

= T0L−1
{
1

q

(
e
√ q

κ
x + e−√ q

κ
x
)}

.

The first term above vanishes because of u(x, t) → 0 as x → ∞. Hence,

u(x, t) = T0L−1
{
1

q
e−√ q

κ
x
}

. (90)

Now inversion yields the solution

u(x, t) = T0 erfc

(
x

2
√

κt

)
. (91)

(d) Two-dimensional heat conduction problem for the temperature distribution u(x, y, t) in
the region x > 0, 0 < y < b, with t > 0

The governing equation with the initial and boundary conditions is given by

κ

(
∂2u

∂x2
+ ∂2u

∂y2

)
= ∂u

∂t
, x > 0, 0 < y < b, t > 0, (92)

u(x, y, t = 0) = u0(x, y), x > 0, 0 < y < b, (93)

u(x = 0, y, t) = w0(y, t), 0 < y < b, t > 0, (94)

u(x, y = 0, t) = 0, x > 0, t > 0, (95)

u(x, y = b, t) = 1, x > 0, t > 0, (96)(
∂u

∂x

)
x=0

= w1(x, y) = unknown. (97)

We apply the double Laplace transform with respect to x and t in the form

¯̄u(p, y, q) = L2{u(x, y, t)} =
∫ ∞

0

∫ ∞

0
e−px−qt u(x, y, t)dxdt, (98)

so that the above initial and boundary value heat conduction problem becomes

d2 ¯̄u
dy2

+ σ 2 ¯̄u = w̄1(y, q), σ 2 = p2 − q

κ
, (99)

¯̄u(p, y, q) = 0, y = 0; ¯̄u(p, y, q) = 1

pq
, y = b. (100)

It turns out that the solution of (99)–(100) is given by

¯̄u(p, y, q) = 1

pq

sin σ y

sin σb
− sin σ y

σ sin σb
− σ y

σ sin σb

∫ b

y
sin(b − η)w̄1(η, q)dη

− sin σ(b − y)

σ sin σb

∫ y

0
sin ση w̄1(η, q)dη. (101)

123



Int. J. Appl. Comput. Math (2016) 2:223–241 239

Following Jaeger’smethod of evaluation of (101) based on the theory of residues (seeDebnath
and Bhatta [4]), we obtain the solution in the form

u(x, y, t) = y

b
+ 2

π

∞∑
n=1

(−1)n

n
exp

(
−nπx

b

)

⎡
⎣
∫ ∞

0
exp

⎧⎨
⎩−κt

(
λ2 + n2π2

b2

)
sin λx dλ

λ
(
λ2 + n2π2

b2

)
⎫⎬
⎭
⎤
⎦ . (102)

(e) Two-dimensional heat conduction initial and boundary value problem for the temper-
ature distribution u(x, y, t) in the region x > 0, 0 < y < b with t > 0.

The governing initial and boundary value problem for the temperature distribution
u(x, y, t) in the region x > 0, 0 < y < b is

κ

(
∂2u

∂x2
+ ∂2u

∂y2

)
= ∂u

∂t
, x > 0, o < y < b, t > 0, (103)

u(x, y, t = 0) = u0(x, y) = 1, x > 0, 0 < y < b, (104)

u(x, y, t) = 0 when y = 0 and y = b, x > 0 and t > 0, (105)

u(x = 0, y, t) = w0(y, t) = 0, 0 < y < b, t > 0, (106)(
∂u

∂x

)
x=0

= w1(y, t) = unknown. (107)

We apply the double Laplace transform (98) so that the transformed system of (103)–(107)
becomes

d2 ¯̄u
dy2

+ σ 2 ¯̄u = w̄1(y, q) − 1

kp
, σ 2 = p2 − q

k
, (108)

¯̄u(p, y, q) = 0 when y = 0 and y = b. (109)

Thus, the solution of (108)–(109) is given by

¯̄u(p, y, q) = sin σ y − sin σb + sin σ(b − y)

κpσ 2 sin σb
− sin σ y

σ sin σb

∫ b

y
sin σ(b − η) w̄1(η, q)dη

− sin σ(b − y)

σ sin σb

∫ y

0
sin ση w̄1(η, q)dη. (110)

We follow Jaeger’smethod of evaluation based on the theory of residues to obtain the solution

u(x, y, t) = 8

π2

∞∑
n=0

1

2n + 1
sin

{(
2n + 1

b

)
πy

}

∫ ∞

0

sin λx

λ
exp

[
−κt

{
λ2 + (2n + 1)2π2

b2

}]
dλ. (111)

In particular, when u0(x, y) = x, x > 0, 0 < y < b, we can obtain the solution for
¯̄u(p, y, q), and then the solution u(x, y, t) can be obtained by inversion in the exact form

u(x, y, t) = 4x

π

∞∑
n=0

1

(2n + 1)
sin(2n + 1)

(πy

b

)
exp

[
−κt

{
(2n + 1)2π2

b2

}]
. (112)

123



240 Int. J. Appl. Comput. Math (2016) 2:223–241

Solution of Integral Equations by the Double Laplace Transform

We consider a double integral equation of the form

f (x, y) = h(x, y) + λ

∫ x

0

∫ y

0
f (x − ξ, y − η)g(ξ, η)dξdη, (113)

where f (·, ·) is an unknown function, λ is a given constant parameter, h(x, y) and g(x, y)
are known functions.

We apply the double Laplace transform ¯̄f (p, q) = L2[ f (x, y)] defined by (2) so that the
convolution integral equation reduces to the form

¯̄f (p, q) = ¯̄h(p, q) + λ L2[( f ∗ ∗g)(x, y)]
which is, by the convolution Theorem 4.1,

¯̄f (p, q) = ¯̄h(p, q) + λ ¯̄f (p, q) ¯̄g(p, q). (114)

Consequently,

¯̄f (p, q) =
¯̄h(p, q)

1 − λ ¯̄g(p, q)
. (115)

The inversion of the double Laplace transform gives the solution of (114) in the form

f (x, y) = L−1
2

[ ¯̄h(p, q)

1 − λ ¯̄g(p, q)

]
= L−1

2 [ ¯̄h(p, q) · ¯̄m(p, q)], (116)

=
∫ x

0

∫ y

0
h(x − ξ, y − η)m(ξ, η)dξdη, (117)

where ¯̄m(p, q) = 1
1−λ ¯̄g(p,q)

.

Thus, we obtain the formal solution of the original integral equation (113). It is necessary
to obtain the inverse of the double Laplace transform for the explicit representation of the
solution (116).

We illustrate the above method by simple examples.
(a) Solve the integral equation

f (x, y) = a − λ

∫ x

0

∫ y

0
f (ξ, η)dξdη, (118)

where a and λ are constant.
We apply the double Laplace transform to (118) so that

¯̄f (p, q) = L2{a} − λL2[1 ∗ f (x, y)]
or,

¯̄f (p, q) = a

pq
− λ

pq
¯̄f (pq).

Thus,

¯̄f (p, q) = a

pq + λ
. (119)
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The inverse double Laplace transform of (119) gives the solution

f (x, y) = aL−1
2

{
1

pq + λ

}
= a J0(2

√
λxy). (120)

(b) Solve the integral equation∫ x

0

∫ y

0
f (x − ξ, y − η) f (ξ, η)dξ dη = a2, (121)

where a is a constant.
Application of the double Laplace transform to (121) gives

¯̄f 2(p, q) = a2

pq
.

Or,

¯̄f (p, q) = a · 1√
pq

.

Using the inverse of the double Laplace transform yields the solution of (121)

f (x, y) = aL−1
2

{
1√
pq

}
= a

π

1√
xy

. (122)

Concluding Remarks

Some simple examples and applications of the double Laplace transform are discussed in
this paper. Some advanced problems in fluid dynamics and elasticity dealing with integral
and partial differential equations will be discussed in a subsequent paper.
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